Nature of Paleozoic Basement of the Catalan Coastal Ranges (Spain) and Tectonic Setting of the Priorat DOQ Wine Terroir: Evidence from Volcanic and Sedimentary Rocks
Abstract
:1. Introduction
2. Geologic Background and Samples
3. Methods
4. Results
4.1. Mineralogy of Black Shale
4.2. Geochemistry of Black Shale and Associated Volcanic Rocks
5. Discussion
5.1. Geochemical Constraints on the Nature of the Paleozoic Basement of the Catalan Coastal Ranges (SE Spain)
5.2. Tectonic Setting and Volcanic Origins of the Priorat DOQ Wine Terroir
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seguin, G. ‘Terroirs’ and pedology of vinegrowing. Experientia 1986, 42, 861–873. [Google Scholar] [CrossRef]
- Pomerol, C. The Wines and Winelands of France: Geological Journeys; Robertson McCarta: London, UK, 1989; 370p. [Google Scholar]
- Wilson, J.A. Terroir: The Role of Geology, Climate, and Culture in the Making of French Wines; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1998; 336p. [Google Scholar]
- Hancock, J.M. Feature review—“Terroir; The role of Geology, Climate, and Culture in the making of French Wines”. J. Wine Res. 1999, 10, 43–49. [Google Scholar] [CrossRef]
- Huggett, J.M. Geology and wine. Proc. Geeol. Assoc. 2005, 117, 239–247. [Google Scholar] [CrossRef]
- Berry, E. The Wines of Alsace; The Bodley Head: London, UK, 1993. [Google Scholar]
- Meinert, L.D.; Busacca, A.J. Terroirs of the Walla Walla Valley appellation, southeastern Washington State, USA. Geosci. Can. 2000, 27, 149–171. [Google Scholar]
- Bargmann, C.J. Geology and wine 7: Geology and wine production in the Coastal Region, Western Cape Province, South Africa. Geosci. Can. 2003, 30, 161–182. [Google Scholar]
- Cita, M.B.; Chiesa, S.; Colacicchi, R.; Crisci, G.M.; Massiotta, P.; Parotto, M. Italian Wines and Geology; BE-MA Editrice: Milano, Italy, 2004; 148p. [Google Scholar]
- Haynes, S.J. Geology and wine 1: Concept of terroir and the role of geology. Geosci. Can. 1999, 26, 190–194. [Google Scholar]
- Tomasi, D.; Gaiotti, F.; Jones, G.V. The Power of the Terroir: The Case Study of Prosecco Wine; Springer: Basel, Switzerland, 2013. [Google Scholar]
- White, R.E. Soils for the Wines; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Bourrouilh, R. Geology and terroirs of the Bordeaux wines, France. Boll. Soc. Geol. Ital. Suppl. 2006, 6, 63–74. [Google Scholar]
- Maltman, A. The role of vineyard geology in wine typicity. J. Wine Res. 2008, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pogue, K.R. Folds, floods, and fine wine: Geologic influence on the terroir of the Columbia Basin. In Volcanoes to Vineyards: Geologic Field Trips through the Dynamic Landscape of the Pacific Northwest; O’Connor, J.E., Dorsey, R.J., Madin, I.P., Eds.; Geological Society of America Field Guide: Reston, VA, USA, 2009; Volume 15, pp. 1–17. [Google Scholar]
- Costantini, E.A.C.; Bucelli, P.; Priori, S. Quaternary landscape history determines the soil functional characters of terroir. Quat. Int. 2012, 265, 63–73. [Google Scholar] [CrossRef]
- Imre, S.P.; Kilmartin, P.A.; Rutan, T.; Mauk, J.L.; Nicolau, L. Influence of soil geochemistry on the chemical and aroma profiles of Pinot Noir wines. J. Food Agric. Environ. 2012, 10, 280–288. [Google Scholar]
- Angelova, V.R.; Angel, S.I.; Dimitar, M.B. Heavy metals (Pb, Cu, Zn and Cd) in the system soil-grapevine-grape. J. Sci. Food Agric. 1999, 79, 713–721. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Stefens, F.E.; Eiselen, R.J.; Augustyn, O.P.; Balcaens, L.; Vanhaecke, F. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. J. Agric. Food Chem. 2005, 53, 5060–5066. [Google Scholar] [CrossRef]
- Greenough, J.D.; Mallory-Greenough, L.M.; Fryer, B.J. Geology and wine 9: Regional trace element fingerprinting of Canadian wines. Geosci. Can. 2005, 32, 129–137. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011; 432p. [Google Scholar]
- Protano, G.; Rossi, S. Relationship between soil geochemistry and grape composition in Tuscany (Italy). J. Plant Nutr. Soil Sci. 2014, 177, 500–508. [Google Scholar] [CrossRef]
- Pepi, S.; Sansone, L.; Chicca, M.; Vaccaro, C. Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. “Glera”. Chem. Erde 2017, 77, 121–130. [Google Scholar] [CrossRef]
- Retallack, G.J.; Burns, S.F. The effects of soil on the taste of wine. GSA Today 2016, 26, 4–9. [Google Scholar] [CrossRef]
- Young, Y.; Duan, C.; Du, H.; Tian, J.; Pan, Q. Trace element and rare earth element profiles in berry tissues of three grape cultivars. Am. J. Enol. Vitic. 2010, 61, 401–407. [Google Scholar] [CrossRef]
- Censi, P.; Saiano, F.; Pisciotta, A.; Tuzzolino, N. Geochemical behavior in rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Sci. Total Environ. 2014, 473–474, 597–608. [Google Scholar] [CrossRef]
- Szabo, J. Volcanic wines: Salt, Grit and Power; Jacqui Small: London, UK, 2016; 256p. [Google Scholar]
- Frankel, C. Volcanoes and Wine: From Pompei to Napa; University of Chicago Press: Chicago, IL, USA, 2019; 216p. [Google Scholar]
- Kepezhinskas, P. Geologic History of Wine; Knig-Izdat: Moscow, Russia, 2021; 261p. (In Russian) [Google Scholar]
- Kepezhinskas, P. Hephaestus and Dionysus: Volcanic Wine Terroirs; Knig-Izdat: Moscow, Russia, 2022; 249p. (In Russian) [Google Scholar]
- Swinchatt, J.P.; Howell, D.G.; MacDonald, S.L. The scale dependence of wine and terroir: Examples from coastal California and the Napa Valley (USA). Elements 2018, 14, 179–184. [Google Scholar] [CrossRef]
- Thomaidis, K.; Troll, V.R.; Deegan, F.M.; Freda, C.; Corsaro, R.A.; Behncke, B.; Rafailidis, S. A message from the ‘underground forge of the gods’: History and current eruptions at Mt Etna. Geol. Today 2021, 37, 141–149. [Google Scholar] [CrossRef]
- Diaz-Acha, Y.; Campeny, M.; Casas, L.; Di Febo, R.; Ibañez-Insa, J.; Jawhari, T.; Bosch, J.; Borrell, F.; Jorge-Villar, S.E.; Greneche, J.-M.; et al. Colours of gemmy phosphates from the Gavà Neolithic mines (Catalonia, Spain): Origin and archaeological significance. Minerals 2022, 12, 368. [Google Scholar] [CrossRef]
- Izquierdo-Llavall, E.; Ayala, C.; Pueyo, E.L.; Casas-Sainz, A.M.; Oliva-Urcia, B.; Rubio, F.; Rodriguez-Pintó, A.; Rey-Moral, C.; Mediato, J.F.; Garcia-Crespo, J. Basement-cover relationships and their along-srike changes in the linking zone (Iberian Range, Spain): A combined structural and gravimetric study. Tectonics 2019, 38, 2934–2960. [Google Scholar] [CrossRef]
- Juez-Larré, J.; Andriessen, P.A.M. Post Late Paleozoic tectonism in the southern Catalan Coastal Ranges (NE Spain), assessed by apatite fission track analysis. Tectonophys 2002, 349, 113–129. [Google Scholar] [CrossRef]
- Gaspar-Escribano, J.M.; Roca, E.; Cloetingh, S. Cenozoic vertical motions of the Catalan Coastal Ranges. Tectonics 2004, 23, TC1004. [Google Scholar] [CrossRef]
- Marin, M.; Roca, E.; Marcuello, A.; Cabrera, L.; Ferrer, O. Mesozoic structural inheritance in the Cenozoic evolution of the central Catalan Coastal Ranges (western Mediterranean): Structural and magnetotelluric analysis in the Gaià-Montmell High. Tectonophys 2021, 814, 228970. [Google Scholar] [CrossRef]
- Berdnikov, N.; Kepezhinskas, P.; Konovalova, N.; Kepezhinskas, N. Formation of gold alloys during crustal differentiation of convergent zone magmas: Constraints from Au-rich websterite in the Stanovoy Suture Zone (Russian Far East). Geosciences 2022, 12, 126. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, H. Determination of platinum-group elements and gold in geological samples with ICP-MS using sodium peroxide fusion and tellurium co-precipitation. J. Anal. At. Spectrom. 2000, 15, 747–751. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and shoshonite from the continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pac. Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; 312p. [Google Scholar]
- Gest, D.; McBirney, A.R. Genetic relations of shoshonitic and absarokitic magmas, Absaroka Mountains, Wyoming. J. Volcanol. Geotherm. Res. 1979, 6, 85–104. [Google Scholar] [CrossRef]
- Morrison, G. Characteristics and tectonic setting of the shoshonite rock association. Lithos 1980, 13, 97–108. [Google Scholar] [CrossRef]
- Hole, M.J.; Saunders, A.D.; Marriner, G.F.; Tarney, J. Subduction of pelagic sediments: Implications for the origin of Ce-anomalous basalts from the Mariana Islands. J. Geol. Soc. 1984, 141, 453–472. [Google Scholar] [CrossRef]
- Neal, C.R.; Taylor, L.A. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochim. Cosmochim. Acta 1989, 53, 1035–1040. [Google Scholar] [CrossRef]
- Ben Othman, D.; White, W.M.; Patchett, J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 1989, 94, 1–21. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Choi, J.; Cai, K.; Shi, M. Petrography and geochemistry of clastic sedimentary rocks as evidence for the provenance of the Jurassic stratum in the Daqingshan area. Open Geosci. 2020, 12, 1350–1368. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Maynard, J.B.; Valloni, R.; Yu, H.S. Composition of modern deep-sea sands from arc-related basins. Geol. Soc. Lond. Spec. Publ. 1982, 10, 551–561. [Google Scholar] [CrossRef]
- Gu, X.X.; Liu, J.M.; Zheng, M.H.; Tang, J.X.; Qi, L. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: Geochemical evidence. J. Sediment Res. 2002, 72, 393–407. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbidite sandstones. J. Geol. Soc. Lond. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Floyd, P.A.; Winchester, J.A.; Park, R.G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree group of Gairloch, NW Scotland. Precambrian Res. 1989, 45, 203–214. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W.; Koukouvelas, I.; Dolansky, L.M.; Kokkalas, S. Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geol. Soc. Amer. Bull. 2009, 121, 39–54. [Google Scholar] [CrossRef]
- Kepezhinskas, P. Diverse shoshonite magma series in the Kamchatka Arc: Relationships between intra-arc extension and composition of alkaline magmas. Geol. Soc. Lond. Spec. Publ. 1994, 81, 249–264. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Shervais, J.W. The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th. Geosci. Front. 2022, 13, 101319. [Google Scholar] [CrossRef]
- Condie, K.C. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 2005, 79, 491–504. [Google Scholar] [CrossRef]
- Murphy, J.B.; MacDonald, D.L. Geochemistry and tectonic discrimination of Late Proterozoic arc-related volcaniclastic turbidite sequences, Antigonish Highlands, Nova Scotia. Can. J. Earth Sci. 1993, 30, 2273–2282. [Google Scholar] [CrossRef]
- Verma, S.P.; Armstrong-Altrin, J.S. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sed. Geol. 2016, 332, 1–12. [Google Scholar] [CrossRef]
- Gill, J.B.; Hiscott, R.N.; Vidal, P. Turbidite geochemistry and evolution of the Izu-Bonin arc and continents. Lithos 1994, 33, 135–168. [Google Scholar] [CrossRef]
- Briqueu, L.; Bougault, H.; Joron, J.L. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications. Earth Planet. Sci. Lett. 1984, 68, 297–308. [Google Scholar]
- Ryerson, F.J.; Watson, E.B. Rutile saturation in magmas: Implications for Ti-Nb-ta depletion in island-arc basalts. Earth Planet. Sci. Lett. 1987, 86, 225–239. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 2017, 18, 2817–2854. [Google Scholar] [CrossRef]
- Cousens, B.L.; Allan, J.F.; Gorton, M.P. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794. Contrib. Mineral. Petrol. 1994, 117, 421–434. [Google Scholar] [CrossRef]
- Gamble, J.; Woodhead, J.; Wright, I.; Smith, I. Basalt and sediment geochemistry and magma petrogenesis in a transect from oceanic island arc to rifted continental margin arc: The Kermadec-Hikurangi margin, SW Pacific. J. Petrol. 1996, 37, 1525–1546. [Google Scholar] [CrossRef] [Green Version]
- Karig, D.E.; Moore, G.F. Tectonically controlled sedimentation in marginal basins. Earth Planet. Sci. Lett. 1975, 26, 233–238. [Google Scholar]
- Underwood, M.B.; Balance, P.F.; Clift, P.D.; Hiscott, R.N.; Marsaglia, K.M.; Pickering, K.T.; Reid, R.P. Sedimentation in forearc basins, trenches, and collision zones of the Western Pacific: A summary of results from the Ocean Drilling Program. Geophys. Monogr. Ser. 1995, 88, 315–353. [Google Scholar]
- Clift, P.D.; ODP Leg 135 Scientific Party. Volcanism and sedimentation in a rifting island-arc terrain: An example from Tonga, SW Pacific. Geol. Soc. Lond. Spec. Publ. 1994, 81, 29–51. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. Spatial and temporal variation in Late Cenozoic back-arc volcanic rocks, Aegean Sea region. Tectonophys 1989, 169, 113–134. [Google Scholar] [CrossRef]
- Perkins, R.J.; Cooper, F.J.; Condon, D.J.; Ttattitch, B.; Naden, J. Post-collisional Cenozoic extension in the northern Aegean: Thee high-K to shoshonitic intrusive rocks of the Maronia Magmatic Corridor, northeastern Greece. Lithosphere 2018, 10, 582–601. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.H.; Stepanov, A.S.; Liang, H.-Y.; Allen, C.M.; Norman, M.D.; Zhang, Y.-Q.; Xie, Y.-W. The origin of shoshonites: New insights from the tertiary high-potassium intrusions of eastern Tibet. Contrib. Mineral. Petrol. 2014, 167, 983. [Google Scholar] [CrossRef]
- Yücel, C.; Arslan, M.; Temizel, I.; Yazar, E.A.; Ruffet, G. Evolution of K-rich magmas derived from a next veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Res. 2017, 45, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Callegari, E.; Cigolini, C.; Medeot, O.; D’Antonio, M. Petrogenesis of calc-alkaline and shoshonitic post-collisional Oligocene volcanics of the Cover Series of the Sezia Zone, Western Italian Alps. Geodin. Acta 2004, 17, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Conticelli, S.; Guarnieri, L.; Farinelli, A.; Mattei, M.; Avanzinelli, R.; Bianchini, G.; Boari, E.; Tommasini, S.; Tiepolo, M.; Prelevic, D.; et al. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 2009, 107, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J.C.; McDermid, I.R.C.; Ali, J.R.; Davis, A.M.; Zyabrev, S.V. Shoshonites in Southern Tibet record Late Jurassic rifiing of a Tethyan intraoceanic island arc. J. Geol. 2007, 115, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Kent, A.J.R.; Elliott, T.R. Melt inclusions from Marianas arc lavas: Implications for the composition and formation of island arc magmas. Chem. Geol. 2002, 183, 263–286. [Google Scholar] [CrossRef]
- Hochstaedter, A.G.; Kepezhinskas, P.; Defant, M.J.; Drummond, M.S.; Koloskov, A. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J. Geophys. Res. 1996, 101, 697–712. [Google Scholar] [CrossRef]
- Einsele, G. Basaltic sill-sediment complexes in young spreading centers: Genesis and significance. Geology 1985, 13, 249–252. [Google Scholar] [CrossRef]
- Bell, B.; Butcher, H. On the emplacement of sill complexes: Evidence from the Faroe-Shetland Basin. Geol. Soc. Lond. Spec. Publ. 2002, 197, 307–329. [Google Scholar] [CrossRef]
- Jourdain, A.; Singh, S.C.; Escartin, J.; Klinger, Y.; Kamesh Raju, K.A.; McArdle, J. Crustal accretion at a sedimented spreading center in the Andaman Sea. Geology 2016, 44, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Kepezhinskas, V.V. Calc-alkaline sheeted dikes in ophiolite complexes as indicators of intra-arc spreading. Rep. USSR Acad. Sci. 1984, 278, 700–703. (In Russian) [Google Scholar]
- Leitch, E.C. Island arc elements and arc-related ophiolites. Tectonophys 1984, 106, 177–203. [Google Scholar] [CrossRef]
- Julivert, M.; Duran, H. The Hercynian structure of the Catalonian Coastal Ranges (NE Spain). Acta Geol. Hisp. 1990, 25, 13–21. [Google Scholar]
- Julivert, M.; Duran, H. Paleozoic stratigraphy of the Central and Northern part of the Catalonian Coastal Ranges (NE Spain). Acta Geol. Hisp. 1990, 25, 3–12. [Google Scholar]
- Kepezhinskas, N.; Kamenov, G.D.; Foster, D.A.; Kepezhinskas, P. Petrology and geochemistry of alkaline basalts and gabbroic xenoliths from Utila Island (Bay Islands, Honduras): Insights into back-arc processes in the Central American Volcanic Arc. Lithos 2020, 352–353, 105306. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Adakites, high-Nb basalts and copper-gold deposits in magmatic arcs and collisional orogens: An overview. Geosciences 2022, 12, 29. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J.; Drummond, M.S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta 1996, 60, 1217–1229. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Earth Environ. Sci. Trans. R. Soc. Edinb. 1996, 87, 205–215. [Google Scholar]
- Defant, M.J.; Kepezhinskas, P. Evidence suggests slab melting in arc magma. EOS Trans. Amer. Geophys. Union 2001, 82, 65–69. [Google Scholar] [CrossRef]
- Maltman, A. Minerality in wine: A geological perspective. J. Wine Res. 2013, 24, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Rickard, D.T. The origin of framboids. Lithos 1970, 3, 269–293. [Google Scholar]
- Sawlowicz, Z. Pyrite framboids and their development: A new conceptual mechanism. Geologische Rundschau 1993, 82, 148–156. [Google Scholar]
- Ohfuji, H.; Rickard, D. Experimental synthesis of framboids—A review. Earth-Sci. Rev. 2005, 71, 147–170. [Google Scholar]
- Gallego-Torres, D.; Reolid, M.; Nieto-Moreno, V.; Martine-Casado, F.J. Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in South Iberian paleomargin. Sed. Geol. 2015, 330, 59–73. [Google Scholar] [CrossRef]
- Lougheed, M.S.; Mancuso, J.J. Hematite framboids in the Negaunee Iron Formation, Michigan: Evidence for their biogenic origin. Econ. Geol. 1973, 68, 202–209. [Google Scholar] [CrossRef]
- Ahn, J.H.; Buseck, P.R. Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation. Science 1990, 250, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Suk, D.; Peacor, D.R.; Van der Voo, R. Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism. Nature 1990, 345, 611–613. [Google Scholar] [CrossRef] [Green Version]
- Kalatha, S.; Economou-Eliopoulos, M. Framboidal pyrite and bacteriomorphic goethite at transitional zones between Fe-Ni-laterites and limestones: Evidence from Lokris, Greece. Ore Geol. Rev. 2015, 65, 413–425. [Google Scholar]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Raiswell, R.; Berner, R.A. Pyrite formation in euxinic and semi-euxinic sediments. Am. J. Sci. 1985, 285, 710–724. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Misztela, M.A.; Campbell, I.H.; Arculus, R.J. Platinum-group element geochemistry and magma evolution of the Mount Hagen (Papua New Guinea) magmatic system. J. Petrol. 2022, 63, 1–20. [Google Scholar] [CrossRef]
- Maughan, D.; Keith, J.D.; Christiansen, E.H.; Pulsipher, T.; Hattori, K.; Evans, N.J. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineral. Depos. 2002, 37, 14–37. [Google Scholar] [CrossRef]
- Kutyrev, A.; Zelenski, M.; Nekrylov, N.; Savelyev, D.; Kontonikas-Charos, A.; Kamenetsky, V.S. Noble metals in arc basaltic magmas worldwide: A case study of modern and pre-historic lavas of the Tolbachik volcano, Kamchatka. Front. Earth Sci. 2021, 9, 1199. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J.; Widom, E. Abundance and distribution of PGE and Au in the island-arc mantle: Implications for sub-arc metasomatism. Lithos 2002, 60, 113–128. [Google Scholar] [CrossRef]
- Widom, E.; Kepezhinskas, P.; Defant, M.J. The nature of metasomatism in the sub-arc mantle wedge: Evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chem. Geol. 2003, 196, 283–306. [Google Scholar] [CrossRef]
- McKibben, M.A.; Williams, A.E.; Hall, G.E.M. Solubility and transport of platinum-group elements and Au in saline hydrothermal fluids: Constraints from geothermal brine data. Econ. Geol. 1990, 85, 1926–1934. [Google Scholar] [CrossRef]
- Tassara, S.; González-Jiménez, J.M.; Reich, M.; Saunders, E.; Luguet, A.; Morata, D.; Grégoire, M.; van Acken, D.; Schilling, M.E.; Barra, F.; et al. Highly siderophile elements mobility in the subcontinental lithospheric mantle beneath southern Patagonia. Lithos 2018, 314–315, 579–596. [Google Scholar] [CrossRef]
- Tagirov, B.R.; Filimonova, O.; Trigub, A.L.; Akinfiev, N.N.; Nickolsky, M.S.; Kvashnina, K.O.; Chareev, D.A.; Zotov, A.V. Platinum transport in chloride-bearing fluids and melts: Insights from in situ X-ray absorption spectrometry and thermodynamic modeling. Geochim. Cosmochim. Acta 2019, 254, 86–101. [Google Scholar] [CrossRef]
- Wood, S.A.; Normand, C. Mobility of palladium chloride complexes in mafic rocks: Insights from a flow-through experiment at 25 °C using air-saturated, acidic, and Cl-rich solutions. Mineral. Petrol. 2008, 92, 81–97. [Google Scholar] [CrossRef]
- Hanley, J.J.; Mungall, J.E.; Pettke, T.; Spooner, E.T.C.; Bray, C.J. Fluid and halide melt inclusions of magmatic origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA. J. Petrol. 2008, 49, 1133–1160. [Google Scholar] [CrossRef] [Green Version]
- Berdnikov, N.; Nevstruev, V.; Kepezhinskas, P.; Astapov, I.; Konovalova, N. Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): Textural types, composition and possible origins. Geosciences 2021, 11, 103. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Krutikov, V.O.; Astapov, I.A. Silicate, Fe-oxide, and Au-Cu-Ag microspherules in ores and pyroclastic rocks of the Kostenga iron deposit in the Far East of Russia. Russ. J. Pac. Geol. 2021, 15, 236–251. [Google Scholar] [CrossRef]
- Barcelona Field Studies Centre. Available online: geographyfieldwork.com/PrioratClimate.html (accessed on 9 January 2023).
- Wine Folly. Available online: winefolly.com/deep-dive/in-search-of-the-best-wines-from-priorat (accessed on 10 January 2023).
- Gamberi, F.; Della Valle, G.; Marani, M.; Mercorella, A.; Distefano, S.; Di Stefano, A. Tectonic controls on sedimentary system along the continental slope of the central and southeastern Tyrrhenian Sea. Ital. J. Geosci. 2019, 138, 317–332. [Google Scholar] [CrossRef]
- Borzi, L.; Anfuso, G.; Manno, G.; Distefano, S.; Urso, S.; Chiarella, D.; Di Stefano, A. Shoreline evolution and environmental changes at the NW area of the Gulf of Gela (Sicily, Italy). Land 2021, 10, 1034. [Google Scholar] [CrossRef]
Sample# | PR-1 | PR-2 | PR-3 | PR-4 | PR-9 | PR-11 | PR-14 | PR-25 | PR-26 |
---|---|---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 55.35 | 54.43 | 53.31 | 53.03 | 66.00 | 66.87 | 75.62 | 69.81 | 82.08 |
TiO2 | 0.69 | 0.67 | 0.69 | 0.69 | 0.76 | 0.80 | 0.72 | 0.98 | 0.47 |
Al2O3 | 8.35 | 8.60 | 8.72 | 8.72 | 14.58 | 15.18 | 12.62 | 11.33 | 9.17 |
Fe2O3 | 4.63 | 4.37 | 4.45 | 4.43 | 7.13 | 5.72 | 3.96 | 8.15 | 2.12 |
MnO | 0.03 | 0.03 | 0.03 | 0.03 | 0.07 | 0.08 | 0.05 | 0.07 | 0.09 |
MgO | 0.95 | 0.96 | 0.97 | 0.96 | 2.71 | 2.86 | 0.50 | 1.32 | 0.80 |
CaO | 13.84 | 15.09 | 15.55 | 15.89 | 0.56 | 0.53 | 0.63 | 0.68 | 0.20 |
Na2O | 0.64 | 0.59 | 0.62 | 0.60 | 1.06 | 1.74 | 1.46 | 0.53 | 0.57 |
K2O | 1.65 | 1.62 | 1.69 | 1.65 | 2.79 | 2.61 | 2.02 | 1.69 | 1.70 |
P2O5 | 0.03 | 0.03 | 0.03 | 0.03 | 0.13 | 0.14 | 0.14 | 0.16 | 0.05 |
LOI | 13.65 | 13.64 | 13.70 | 13.86 | 4.46 | 3.62 | 2.34 | 5.27 | 2.98 |
Total | 99.81 | 100.03 | 99.76 | 99.87 | 100.26 | 100.15 | 100.06 | 99.99 | 100.23 |
ICV 1 | 2.69 | 2.71 | 2.75 | 2.78 | 1.04 | 0.95 | 0.74 | 1.19 | 0.61 |
Li (ppm) | 30.65 | 34.77 | 36.79 | 38.34 | 62.58 | 66.91 | 25.25 | 47.20 | 17.79 |
Sc | 6.68 | 6.39 | 6.47 | 6.45 | 12.66 | 11.99 | 8.83 | 8.59 | 3.99 |
V | 65.30 | 62.97 | 63.44 | 63.02 | 98.58 | 85.64 | 62.04 | 60.53 | 59.89 |
Cr | 185.39 | 114.11 | 110.96 | 111.63 | 76.72 | 99.55 | 140.31 | 70.93 | 60.40 |
Co | 11.56 | 9.54 | 9.79 | 9.28 | 24.55 | 16.89 | 16.94 | 21.41 | 14.93 |
Ni | 37.61 | 31.34 | 32.94 | 30.07 | 31.93 | 31.85 | 27.18 | 50.34 | 31.71 |
Cu | 125.51 | 25.31 | 50.32 | 32.18 | 54.46 | 25.13 | 21.80 | 13.45 | 90.45 |
Zn | 64.34 | 45.48 | 43.12 | 30.30 | 516.63 | 135.88 | 53.43 | 73.21 | 23.35 |
Cs | 5.61 | 5.06 | 5.16 | 7.72 | 7.23 | 3.40 | 2.48 | 8.37 | 3.74 |
Rb | 62.19 | 58.57 | 59.45 | 58.00 | 113.90 | 94.32 | 83.14 | 69.24 | 66.43 |
Ba | 125.98 | 114.65 | 118.64 | 110.57 | 492.07 | 761.88 | 359.22 | 220.41 | 177.13 |
Sr | 388.56 | 416.23 | 403.21 | 427.23 | 79.84 | 86.79 | 47.23 | 49.76 | 34.49 |
Zr | 53.01 | 46.23 | 44.74 | 45.34 | 80.23 | 74.75 | 58.93 | 88.63 | 53.01 |
Y | 11.05 | 11.33 | 11.31 | 10.83 | 18.19 | 10.70 | 9.34 | 18.47 | 12.60 |
Nb | 9.79 | 8.72 | 8.59 | 8.31 | 9.01 | 9.22 | 5.91 | 10.38 | 7.50 |
Ta | 1.26 | 1.05 | 0.98 | 0.93 | 0.64 | 0.67 | 0.32 | 0.59 | 0.41 |
Hf | 1.62 | 1.31 | 1.28 | 1.28 | 2.32 | 2.35 | 1.86 | 2.55 | 1.59 |
Th | 6.90 | 6.32 | 6.08 | 6.05 | 9.19 | 9.99 | 8.91 | 7.70 | 6.11 |
U | 8.99 | 7.85 | 8.02 | 7.73 | 2.02 | 1.54 | 1.53 | 1.57 | 1.34 |
Pb | 14.07 | 11.48 | 10.99 | 10.99 | 337.91 | 30.22 | 7.81 | 14.00 | 8.23 |
La | 16.76 | 14.70 | 13.79 | 14.05 | 28.83 | 34.23 | 25.63 | 19.38 | 18.26 |
Ce | 39.49 | 35.79 | 34.41 | 34.28 | 67.66 | 73.08 | 59.23 | 44.42 | 36.45 |
Pr | 4.51 | 4.10 | 3.96 | 2.89 | 7.02 | 7.57 | 6.15 | 4.77 | 3.56 |
Nd | 16.99 | 15.43 | 14.97 | 15.25 | 29.54 | 30.67 | 25.24 | 21.41 | 13.61 |
Sm | 3.38 | 3.27 | 3.14 | 3.20 | 6.33 | 5.76 | 4.77 | 4.92 | 2.44 |
Eu | 0.65 | 0.63 | 0.62 | 0.62 | 1.20 | 0.98 | 0.85 | 1.12 | 0.61 |
Gd | 3.61 | 3.39 | 3.31 | 3.31 | 6.42 | 5.33 | 4.60 | 5.33 | 3.15 |
Tb | 0.48 | 0.46 | 0.45 | 0.45 | 0.73 | 0.54 | 0.47 | 0.65 | 0.37 |
Dy | 2.53 | 2.38 | 2.34 | 2.39 | 2.02 | 2.75 | 2.42 | 3.84 | 2.33 |
Ho | 0.47 | 0.46 | 0.45 | 0.45 | 0.68 | 0.43 | 0.39 | 0.64 | 0.42 |
Er | 1.39 | 1.26 | 1.23 | 1.26 | 2.21 | 1.43 | 1.25 | 2.13 | 1.42 |
Tm | 0.19 | 0.18 | 0.18 | 0.18 | 0.27 | 0.18 | 0.16 | 0.26 | 0.18 |
Yb | 1.32 | 1.17 | 1.11 | 1.16 | 2.00 | 1.40 | 1.22 | 1.94 | 1.32 |
Lu | 0.19 | 0.17 | 0.16 | 0.17 | 0.26 | 0.19 | 0.16 | 0.26 | 0.18 |
Sample# | PR-13 | PR-16 | PR-18 | PR-22 | PR-24 | PR-28 |
---|---|---|---|---|---|---|
SiO2 (wt.%) | 69.18 | 69.66 | 66.92 | 70.87 | 70.96 | 72.07 |
TiO2 | 0.79 | 0.64 | 0.80 | 0.80 | 0.71 | 0.81 |
Al2O3 | 12.83 | 11.01 | 14.50 | 14.51 | 15.05 | 14.11 |
Fe2O3 | 5.49 | 3.62 | 5.18 | 4.70 | 3.96 | 4.58 |
MnO | 0.10 | 0.13 | 0.11 | 0.05 | 0.07 | 0.08 |
MgO | 2.32 | 1.83 | 1.42 | 1.35 | 1.27 | 1.03 |
CaO | 1.87 | 4.10 | 2.11 | 0.37 | 0.44 | 0.36 |
Na2O | 1.63 | 2.15 | 2.12 | 1.66 | 2.40 | 2.17 |
K2O | 1.65 | 1.25 | 2.46 | 2.82 | 2.10 | 2.09 |
P2O5 | 0.11 | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 |
LOI | 4.18 | 5.59 | 4.34 | 2.85 | 3.10 | 2.63 |
Total | 100.13 | 100.11 | 100.09 | 100.13 | 100.19 | 100.07 |
ICV 1 | 1.08 | 1.25 | 0.98 | 0.81 | 0.73 | 0.79 |
Li (ppm) | 44.34 | 21.04 | 29.97 | 26.47 | 19.80 | 17.00 |
Sc | 11.39 | 7.41 | 11.49 | 10.12 | 8.84 | 8.48 |
V | 75.12 | 56.96 | 85065 | 77.75 | 68.03 | 61.09 |
Cr | 133.73 | 116.01 | 114.54 | 110.27 | 119.17 | 109.03 |
Co | 13.45 | 14.87 | 20.38 | 16.25 | 12.77 | 14.26 |
Ni | 32.09 | 19.73 | 29.25 | 25.58 | 22.80 | 21.95 |
Cu | 18.49 | 15.55 | 39.18 | 22.27 | 24.00 | 25.98 |
Zn | 110.14 | 38.72 | 52.78 | 294.42 | 71.58 | 55.14 |
Cs | 5.16 | 1.66 | 3.50 | 3.29 | 4.58 | 3.71 |
Rb | 81.55 | 44.01 | 85.50 | 91.98 | 70.40 | 60.13 |
Ba | 578.85 | 378.53 | 436.95 | 430.16 | 366.61 | 330.66 |
Sr | 182.94 | 68.92 | 71.58 | 51.04 | 87.88 | 85.71 |
Zr | 59.05 | 60.83 | 63.05 | 98.52 | 48.98 | 44.50 |
Y | 16.31 | 14.74 | 10.81 | 13.15 | 9.20 | 13.87 |
Nb | 7.73 | 4.68 | 5.80 | 8.18 | 6.56 | 6.07 |
Ta | 0.50 | 0.28 | 0.39 | 0.50 | 0.37 | 0.37 |
Hf | 1.77 | 1.66 | 1.94 | 1.92 | 1.39 | 1.34 |
Th | 7.68 | 6.76 | 7.89 | 7.21 | 4.96 | 5.31 |
U | 1.13 | 1.34 | 1.77 | 1.38 | 1.21 | 1.17 |
Pb | 25.30 | 3.93 | 4.85 | 126.67 | 5.93 | 7.47 |
La | 22.39 | 23.23 | 25.77 | 27.61 | 19.41 | 19.78 |
Ce | 54.73 | 52.22 | 60.21 | 64.69 | 46.48 | 43.21 |
Pr | 5.25 | 5.48 | 6.08 | 6.58 | 4.80 | 4.65 |
Nd | 21.75 | 22.85 | 25.68 | 27.11 | 20.44 | 20.54 |
Sm | 4.38 | 4.59 | 5.05 | 5.28 | 4.08 | 4.08 |
Eu | 0.95 | 0.91 | 1.02 | 0.98 | 0.82 | 0.87 |
Gd | 4.67 | 4.64 | 4.91 | 5.03 | 3.79 | 4.11 |
Tb | 0.59 | 0.52 | 0.52 | 0.57 | 0.39 | 0.48 |
Dy | 3.52 | 2.96 | 2.76 | 3.05 | 2.08 | 2.87 |
Ho | 0.59 | 0.48 | 0.45 | 0.51 | 0.36 | 0.50 |
Er | 1.95 | 1.58 | 1.40 | 1.63 | 1.24 | 1.69 |
Tm | 0.24 | 0.19 | 0.18 | 0.21 | 0.19 | 0.21 |
Yb | 1.81 | 1.49 | 1.34 | 1.57 | 1.17 | 1.54 |
Lu | 0.23 | 0.19 | 0.18 | 0.21 | 0.16 | 0.20 |
Sample# | PR-5 | PR-10 | PR-19 | PR-20 | PR-23 | PR-27 |
---|---|---|---|---|---|---|
SiO2 (wt.%) | 56.07 | 56.35 | 51.51 | 53.93 | 55.54 | 55.73 |
TiO2 | 0.97 | 0.90 | 1.18 | 0.99 | 1.00 | 0.95 |
Al2O3 | 18.30 | 17.96 | 21.44 | 20.28 | 18.76 | 19.65 |
Fe2O3 | 8.83 | 8.32 | 7.73 | 7.75 | 8.21 | 7.97 |
MnO | 0.05 | 0.09 | 0.06 | 0.05 | 0.08 | 0.08 |
MgO | 3.45 | 3.83 | 3.69 | 3.64 | 2.99 | 2.28 |
CaO | 0.82 | 0.68 | 0.70 | 0.62 | 0.66 | 0.70 |
Na2O | 1.01 | 0.98 | 0.77 | 1.14 | 1.27 | 0.79 |
K2O | 4.90 | 4.41 | 5.98 | 5.01 | 4.28 | 4.97 |
P2O5 | 0.18 | 0.16 | 0.15 | 0.14 | 0.15 | 0.12 |
LOI | 5.33 | 6.50 | 7.17 | 6.68 | 7.10 | 7.05 |
Total | 99.89 | 100.16 | 100.39 | 100.24 | 100.03 | 100.30 |
Li (ppm) | 80.47 | 91.37 | 31.23 | 40.29 | 62.39 | 36.09 |
Sc | 17.67 | 17.16 | 22.38 | 18.44 | 21.19 | 16.89 |
V | 146.41 | 148.27 | 177.06 | 146.17 | 166.63 | 129.54 |
Cr | 128.27 | 103.95 | 119.58 | 110.99 | 133.11 | 99.29 |
Co | 20.90 | 13.46 | 13.23 | 14.73 | 19.57 | 17.88 |
Ni | 63.28 | 40.16 | 47.10 | 49.22 | 51.85 | 46.25 |
Cu | 235.90 | 22.06 | 33.37 | 29.23 | 44.09 | 40.60 |
Zn | 166.31 | 122.03 | 82.59 | 310.43 | 123.60 | 117.92 |
Cs | 7.72 | 9.18 | 9.26 | 6.95 | 11.62 | 7.28 |
Rb | 141.16 | 169.64 | 237.32 | 199.84 | 174.23 | 192.97 |
Ba | 824.35 | 761.88 | 1068.64 | 771.93 | 729.26 | 873.86 |
Sr | 43.93 | 65.38 | 68.64 | 84.49 | 82.72 | 87.39 |
Zr | 97.65 | 126.16 | 118.08 | 93.67 | 98.52 | 78.85 |
Y | 15.91 | 25.29 | 17.17 | 19.41 | 17.84 | 22.76 |
Nb | 21.21 | 14.87 | 7.73 | 12.53 | 11.26 | 8.12 |
Ta | 2.79 | 1.30 | 0.56 | 0.84 | 0.67 | 0.51 |
Hf | 2.83 | 3.33 | 2.99 | 2.65 | 2.90 | 2.32 |
Th | 15.17 | 14.38 | 13.74 | 13.73 | 13.59 | 12.15 |
U | 10.23 | 2.42 | 2.76 | 2.21 | 2.92 | 1.65 |
Pb | 27.89 | 24.25 | 7.67 | 25.79 | 22.03 | 23.81 |
La | 45.31 | 37.33 | 47.53 | 47.26 | 42.10 | 44.18 |
Ce | 94.90 | 49.98 | 100.08 | 97.80 | 90.99 | 84.57 |
Pr | 10.77 | 8.24 | 9.92 | 9.88 | 9.35 | 9.50 |
Nd | 38.62 | 33.86 | 40.46 | 40.84 | 38.89 | 39.05 |
Sm | 6.96 | 6.94 | 7.80 | 7.73 | 7.81 | 7.61 |
Eu | 1.58 | 1.42 | 1.50 | 1.44 | 1.54 | 1.38 |
Gd | 7.04 | 7.18 | 7.31 | 7.27 | 7.68 | 7.48 |
Tb | 0.82 | 0.90 | 0.78 | 0.78 | 0.84 | 0.90 |
Dy | 3.90 | 5.35 | 4.07 | 4.40 | 4.53 | 5.21 |
Ho | 0.67 | 0.94 | 0.66 | 0.71 | 0.72 | 0.86 |
Er | 1.94 | 3.04 | 2.30 | 2.41 | 2.29 | 2.92 |
Tm | 0.27 | 0.39 | 0.30 | 0.31 | 0.29 | 0.36 |
Yb | 1.98 | 2.86 | 2.43 | 2.35 | 2.20 | 2.73 |
Lu | 0.31 | 0.38 | 0.34 | 0.31 | 0.30 | 0.35 |
Sample# | PR-6 | PR-7 | PR-8 | PR-12 | PR-15 | PR-17 | PR-21 |
---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 68.57 | 67.24 | 67.06 | 66.08 | 56.99 | 61.91 | 67.72 |
TiO2 | 0.67 | 0.72 | 0.78 | 0.68 | 0.47 | 0.79 | 0.82 |
Al2O3 | 11.37 | 13.86 | 15.34 | 13.32 | 19.32 | 16.80 | 14.29 |
Fe2O3 | 5.95 | 4.85 | 4.62 | 6.45 | 3.98 | 7.45 | 5.05 |
MnO | 0.12 | 0.08 | 0.06 | 0.11 | 0.08 | 0.08 | 0.05 |
MgO | 3.78 | 3.86 | 2.92 | 2.87 | 0.31 | 2.12 | 2.23 |
CaO | 1.43 | 0.80 | 0.59 | 1.85 | 1.30 | 1.14 | 0.46 |
Na2O | 1.21 | 1.30 | 1.24 | 0.72 | 15.01 | 1.52 | 2.37 |
K2O | 4.28 | 2.54 | 3.57 | 1.90 | 0.24 | 2.95 | 2.13 |
P2O5 | 0.15 | 0.12 | 0.15 | 0.10 | 0.12 | 0.17 | 0.16 |
LOI | 2.62 | 4.66 | 3.80 | 6.10 | 2.40 | 5.30 | 4.90 |
Total | 100.16 | 100.03 | 100.13 | 100.17 | 100.23 | 100.23 | 100.18 |
Li (ppm) | 80.28 | 47.78 | 44.65 | 73.24 | 30.01 | 35.80 | 32.88 |
Sc | 11.24 | 10.68 | 12.09 | 11.90 | 6.96 | 13.10 | 12.27 |
V | 82.54 | 78.80 | 92.23 | 76.67 | 59.17 | 104.69 | 94.89 |
Cr | 114.22 | 105.12 | 120.46 | 94.17 | 72.49 | 92.04 | 117.75 |
Co | 23.37 | 11.32 | 14.85 | 19.32 | 17.67 | 18.46 | 16.21 |
Ni | 22.90 | 29.43 | 27.79 | 38.26 | 29.10 | 37.25 | 32.62 |
Cu | 18.72 | 17.37 | 16.91 | 20.56 | 14.82 | 26.76 | 12.78 |
Zn | 394.38 | 96.37 | 81.62 | 137.60 | 37.10 | 74.58 | 72.06 |
Cs | 1.95 | 6.80 | 7.30 | 8.05 | 0.45 | 4.56 | 2.84 |
Rb | 111.26 | 95.89 | 134.20 | 110.00 | 7.72 | 110.10 | 70.19 |
Ba | 1364.91 | 492.07 | 507.98 | 800.62 | 88.44 | 586.79 | 397.65 |
Sr | 196.31 | 58.19 | 51.74 | 105.72 | 318.09 | 85.82 | 79.15 |
Zr | 70.67 | 76.05 | 82.80 | 55.79 | 59.38 | 83.22 | 79.80 |
Y | 20.60 | 18.25 | 19.27 | 18.19 | 9.57 | 14.05 | 13.14 |
Nb | 11.60 | 8.48 | 10.05 | 9.62 | 4.87 | 8.44 | 7.36 |
Ta | 0.76 | 0.49 | 0.62 | 0.65 | 0.43 | 0.53 | 0.47 |
Hf | 2.01 | 2.19 | 2.32 | 1.69 | 1.77 | 2.26 | 2.27 |
Th | 9.49 | 9.13 | 10.90 | 8.32 | 7.72 | 9.94 | 8.09 |
U | 1.80 | 1.28 | 1.71 | 1.23 | 1.55 | 2.09 | 1.59 |
Pb | 163.23 | 36.68 | 29.53 | 58.57 | 5.36 | 10.75 | 3.97 |
La | 28.82 | 28.46 | 35.12 | 20.11 | 19.01 | 39.78 | 27.75 |
Ce | 63.68 | 62.47 | 72.80 | 52.75 | 43.75 | 82.57 | 62.64 |
Pr | 6.81 | 6.45 | 7.92 | 4.97 | 4.42 | 8.38 | 6.45 |
Nd | 27.20 | 25.66 | 31.30 | 20.27 | 18.30 | 35.33 | 26.81 |
Sm | 5.44 | 5.05 | 6.04 | 4.37 | 3.58 | 7.10 | 5.36 |
Eu | 1.43 | 0.95 | 1.14 | 1.19 | 0.74 | 1.35 | 1.16 |
Gd | 5.96 | 5.28 | 6.31 | 4.76 | 3.71 | 6.45 | 5.39 |
Tb | 0.75 | 0.64 | 0.75 | 0.61 | 0.40 | 0.66 | 0.59 |
Dy | 4.24 | 3.73 | 4.13 | 3.90 | 2.31 | 3.45 | 3.30 |
Ho | 0.76 | 0.66 | 0.72 | 0.68 | 0.40 | 0.54 | 0.57 |
Er | 2.33 | 2.11 | 2.32 | 2.23 | 1.31 | 1.80 | 1.87 |
Tm | 0.28 | 0.27 | 0.30 | 0.29 | 0.16 | 0.22 | 0.24 |
Yb | 1.96 | 1.90 | 2.04 | 2.09 | 1.22 | 1.73 | 1.75 |
Lu | 0.27 | 0.25 | 0.27 | 0.26 | 0.17 | 0.22 | 0.24 |
Sample# | PR-1 | PR-2 | PR-3 | PR-4 | PR-5 |
---|---|---|---|---|---|
Lithology | Black Shale | Black Shale | Black Shale | Black Shale | Lava Flow |
Ru | 0.24 | 0.28 | 0.27 | 0.28 | 0.34 |
Rh | <0.001 | 0.36 | 0.05 | 0.07 | 0.11 |
Ir | <0.001 | <0.001 | <0.001 | 0.15 | 0.25 |
Pd | <0.001 | <0.001 | <0.001 | <0.001 | 0.01 |
Pt | 0.55 | 1.58 | 1.38 | 0.88 | 1.24 |
Au | 87.17 | 1161.28 | 132.26 | 140.24 | 147.32 |
Au/Pt | 158.5 | 735.0 | 95.9 | 159.4 | 118.8 |
Au/Ru | 363.2 | 414.7 | 489.9 | 500.9 | 433.3 |
Pt/Ru | 2.29 | 5.64 | 5.11 | 3.14 | 3.65 |
Pt/Ir | 5.87 | 4.96 | |||
Au/Ir | 934.9 | 589.3 | |||
Pt/Rh | 4.39 | 27.6 | 12.6 | 11.27 | |
Au/Rh | 3225 | 2645 | 2003 | 1339 | |
Ru/Ir | 1.87 | 1.36 | |||
Rh/Ir | 0.45 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N.; Krutikova, V.; Astapov, I. Nature of Paleozoic Basement of the Catalan Coastal Ranges (Spain) and Tectonic Setting of the Priorat DOQ Wine Terroir: Evidence from Volcanic and Sedimentary Rocks. Geosciences 2023, 13, 31. https://doi.org/10.3390/geosciences13020031
Kepezhinskas P, Berdnikov N, Kepezhinskas N, Konovalova N, Krutikova V, Astapov I. Nature of Paleozoic Basement of the Catalan Coastal Ranges (Spain) and Tectonic Setting of the Priorat DOQ Wine Terroir: Evidence from Volcanic and Sedimentary Rocks. Geosciences. 2023; 13(2):31. https://doi.org/10.3390/geosciences13020031
Chicago/Turabian StyleKepezhinskas, Pavel, Nikolai Berdnikov, Nikita Kepezhinskas, Natalia Konovalova, Valeria Krutikova, and Ivan Astapov. 2023. "Nature of Paleozoic Basement of the Catalan Coastal Ranges (Spain) and Tectonic Setting of the Priorat DOQ Wine Terroir: Evidence from Volcanic and Sedimentary Rocks" Geosciences 13, no. 2: 31. https://doi.org/10.3390/geosciences13020031
APA StyleKepezhinskas, P., Berdnikov, N., Kepezhinskas, N., Konovalova, N., Krutikova, V., & Astapov, I. (2023). Nature of Paleozoic Basement of the Catalan Coastal Ranges (Spain) and Tectonic Setting of the Priorat DOQ Wine Terroir: Evidence from Volcanic and Sedimentary Rocks. Geosciences, 13(2), 31. https://doi.org/10.3390/geosciences13020031