Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation
2.2. Pre-Concentration of Uranium and Thorium Using Extraction Chromatography
3. Results
4. Discussion
5. Conclusions
- Uranium mineralizations in stratabound deposits are in various equilibriums. The Takandeang volcanic breccia hosts stratabound deposits and most are at equilibrium. Oxidation and groundwater is the main factor of uranium remobilization. The weathering process has a less significant impact on uranium remobilization.
- The Mamuju lava hosts structure-bound deposits, in which uranium fills the fissures in lava due to faulting. Some of the uranium in structure-bound is disequilibrium, and some is equilibrium without further remobilization.
- The Ampalas volcanic breccia hosts a stratabound deposit most at equilibrium. Some of the equilibrium uranium is further remobilized, interpreted as influenced by groundwater and the reduction–oxidation environment.
- The Tapalang lava dome hosts stratabound deposits, where some have undergone a weathering process into laterite. Most laterite samples show no remobilization process of uranium. Tapalang volcanic breccia hosts the stratabound and volcano-sedimentary deposits. Both deposits show a meager disequilibrium ratio.
- Based on geochronological calculations, the mineralization ages in the Adang volcanic complex range from 0.914 to 1.11 Ma and are classified as recent mineralization.
- These data provide essential constraints for tracing uranium source rocks in the Mamuju area and may explain the area’s anomalously high radiation exposure levels.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosianna, I.; Nugraha, E.D.; Syaeful, H.; Putra, S.; Hosoda, M.; Akata, N.; Tokonami, S. Natural radioactivity of laterite and volcanic rock sample for radioactive mineral exploration in Mamuju, Indonesia. Geoscience 2020, 10, 376. [Google Scholar] [CrossRef]
- Nugraha, E.D.; Hosoda, M.; Tamakuma, Y.; Kranrod, C.; Mellawati, J.; Akata, N.; Tokonami, S. A unique high natural background radiation area in Indonesia: A brief review from the viewpoint of dose assessments. J. Radioanal. Nucl. Chem. 2021, 330, 1437–1444. [Google Scholar] [CrossRef]
- Nugraha, E.D.; Mellawati, J.; Wahyudi; Kranrod, C.; Makhsun; Tazoe, H.; Ahmad, H.; Hosoda, M.; Akata, N.; Tokonami, S. Heavy metal assessments of soil samples from a high natural background radiation area, Indonesia. Toxics 2022, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Syaeful, H.; Sukadana, I.G.; Sumaryanto, A.; Sumaryanto, A. Radiometric mapping for Naturally Occurring Radioactive Materials (NORM) assessment in Mamuju, West Sulawesi. Atom Indones. 2014, 40, 35. [Google Scholar] [CrossRef]
- Sukadana, I.G.; Harijoko, A.; Setijadji, L.D. Tectonic setting of Adang volcanic complex in Mamuju Region, West Sulawesi Province. Eksplorium 2015, 36, 31–44. [Google Scholar] [CrossRef]
- Indrastomo, F.D.; Sukadana, I.G.; Saepuloh, A.; Harsolumakso, A.H.; Kamajati, D. Volcanostratigraphy interpretation of Mamuju area based on Landsat-8 imagery analysis. Eksplorium 2015, 36, 71–88. [Google Scholar] [CrossRef]
- Ratman, N.; Atmawinata, S. Geological Map of the Mamuju Quadrangle, Sulawesi; Pusat Penelitian dan Pengembangan Geologi: Bandung, Indonesia, 1993. [Google Scholar]
- Sukadana, I.G. Magma Evolution and Radioactive Minerals Enrichment in Adang Volcanic Rocks in Mamuju, West Sulawesi. Doctoral Dissertation, Universitas Gadjah Mada, Sleman, Indonesia, 2023. [Google Scholar]
- Sukadana, I.G.; Warmada, I.W.; Harijoko, A.; Indrastomo, F.D.; Syaeful, H. The application of geostatistical analysis on radiometric mapping data to recognized the uranium and thorium anomaly in West Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 819. [Google Scholar] [CrossRef]
- Mu’awanah, F.R.; Priadi, B.; Widodo, W.; Sukadana, I.G.; Andriansyah, R. Uranium mobility of active stream sediment in Mamuju area, West Sulawesi. Eksplorium 2019, 39, 95. [Google Scholar] [CrossRef]
- Nugraha, E.D.; Hosoda, M.; Kusdiana; Winarni, I.D.; Prihantoro, A.; Suzuki, T.; Tamakuma, Y.; Akata, N.; Tokonami, S. Dose assessment of Radium-226 in drinking water from Mamuju, a high background radiation area of Indonesia. Radiat. Environ. Med. 2020, 9, 79–83. [Google Scholar]
- Hosoda, M.; Nugraha, E.D.; Akata, N.; Yamada, R.; Tamakuma, Y.; Sasaki, M.; Kelleher, K.; Yoshinaga, S.; Suzuki, T.; Rattanapongs, C.P.; et al. A unique high natural background radiation area—Dose assessment and perspectives. Sci. Total Environ. 2021, 750, 142346. [Google Scholar] [CrossRef]
- Sukadana, I.G.; Syaeful, H.; Indrastomo, F.D.; Widana, K.S.; Rakhma, E. Identification of mineralization type and specific radioactive minerals in Mamuju, West Sulawesi. J. East China Univ. Technol. 2016, 39, 39–48. [Google Scholar]
- Sukadana, I.G.; Warmada, I.W.; Pratiwi, F.; Harijoko, A.; Adimedha, T.B. Elemental mapping for characterizing of thorium and Rare Earth Elements (REE) bearing minerals using µXRF. Atom Indones. 2022, 48, 87–98. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Geological Classification of Uranium Deposits and Description of Selected Examples; IAEA-TECDOC-1842; IAEA: Vienna, Austira, 2018. [Google Scholar]
- Shin, W.; Oh, J.; Choung, S.; Cho, B.W.; Lee, K.S.; Yun, U.; Woo, N.C.; Kim, H.K. Distribution and potential health risk of groundwater uranium in Korea. Chemosphere 2016, 163, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Dahlkamp, F.J. Uranium Ore Deposits; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Liu, C.; Hu, B.; Shi, J.; Li, J.; Zhang, X.; Chen, H. Determination of uranium isotopic ratio (235U/238U) using extractive electrospray ionization tandem mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 2045–2051. [Google Scholar] [CrossRef]
- Oh, S.Y.; Lee, S.A.; Park, J.H.; Lee, M.; Song, K. Isotope measurement of uranium at ultratrace levels using multicollector inductively coupled plasma mass spectrometry. Mass Spectrom. Lett. 2012, 3, 54–57. [Google Scholar] [CrossRef]
- Horwitz, E.P.; Dietz, M.L.; Chiarizia, R.; Diamond, H.; Essling, A.M.; Graczyk, D. Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal. Chim. Acta 1992, 266, 25–37. [Google Scholar] [CrossRef]
- Rosianna, I.; Syaeful, H.; Putra, S.; Rakhma, E.; de Sukadana, I.G.; Nugraha, E.D.; Tazoe, H.; Akata, N. A novel uranium measurement using extraction chromatography separation technique in radioactive minerals exploration. AIP Conf. Proc. 2022, 2638, 030002. [Google Scholar] [CrossRef]
- Allègre, C.J. Isotope Geology; Cambridge University Press: Cambridge, UK, 2008; ISBN 9780521862288. [Google Scholar]
- Cook, N.J.; Ehrig, K.J.; Rollog, M.; Ciobanu, C.L.; Lane, D.J.; Schmandt, D.S.; Owen, N.D.; Hamilton, T.; Grano, S.R. 210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals 2018, 8, 211. [Google Scholar] [CrossRef]
- Fujikawa, Y.; Fukui, M.; Sasaki, T.; Kudo, A.; Sugahara, M.; Okano, Y.; Ikeda, E.; Yunoki, E.; Kataoka, H. Variation in uranium isotopic ratios U-234/U-238 and U-235/U-238 in Japanese soil and water samples. Application to environmental monitoring. In Proceedings of the International Congress of the International Radiation Protection Association, Hiroshima, Japan, 14–19 May 2000. [Google Scholar]
- Pekala, M.; Kramers, J.D.; Waber, H.N. 234U/238U activity ratio disequilibrium technique for studying uranium mobility in the Opalinus Clay at Mont Terri, Switzerland. Appl. Radiat. Isot. 2010, 68, 984–992. [Google Scholar] [CrossRef]
- Fantle, M.S.; Maher, K.M.; Depaolo, D.J. Isotopic approaches for quantifying the rates of marine burial diagenesis. Rev. Geophys. 2010, 48, 1–38. [Google Scholar] [CrossRef]
- Andersen, M.B.; Elliott, T.; Freymuth, H.; Sims, K.W.W.; Niu, Y.; Kelley, K.A. The terrestrial uranium isotope cycle. Nature 2015, 517, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Bonotto, D.M.; Jiménez-Rueda, J.R.; Fagundes, I.C.; Filho, C.R.A.F. Weathering processes and dating of soil profiles from São Paulo State, Brazil, by U-isotopes disequilibria. Appl. Radiat. Isot. 2017, 119, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Handley, H.K.; Turner, S.P.; Dosseto, A.; Haberlah, D.; Afonso, J.C. Considerations for U-series dating of sediments: Insights from the Flinders Ranges, South Australia. Chem. Geol. 2013, 340, 40–48. [Google Scholar] [CrossRef]
- Keech, A.R.; West, A.J.; Pett-Ridge, J.C.; Henderson, G.M. Evaluating U-series tools for weathering rate and duration on a soil sequence of known ages. Earth Planet. Sci. Lett. 2013, 374, 24–35. [Google Scholar] [CrossRef]
- Min, M.; Chen, J.; Wang, J.; Wei, G.; Fayek, M. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geol. Rev. 2005, 26, 51–69. [Google Scholar] [CrossRef]
- Veerasamy, N.; Kasar, S.; Murugan, R.; Inoue, K.; Natarajan, T.; Chand Ramola, R.; Fukushi, M.; Kumar Sahoo, S. 234U/238U disequilibrium and 235U/238U ratios measured using MC-ICP-MS in natural high background radiation area soils to understand the fate of uranium. Chemosphere 2023, 323, 138217. [Google Scholar] [CrossRef]
Type of Deposit | Sub-Type | Number of Deposits | U (t) |
---|---|---|---|
Volcanic-related | Stratabound | 18 | 35,462 |
Structure bound | 86 | 552,161 | |
Volcano sedimentary | 16 | 40,919 |
No | Sample Id | 234U/238U | Deposit | No | Sample Id | 234U/238U | Deposit |
---|---|---|---|---|---|---|---|
1 | AMP42 | 0.77 | Stratabound | 16 | TKDY3-2 | 1.01 | Stratabound |
2 | AMP24 | 0.98 | Stratabound | 17 | TKDY3-3 | 0.96 | Stratabound |
3 | AMP12 | 0.98 | Stratabound | 18 | TKDY3-4 | 0.92 | Stratabound |
4 | AMP16 | 1.08 | Stratabound | 19 | TKDOC36 | 0.99 | Stratabound |
5 | AMP13 | 1.12 | Stratabound | 20 | TKDOC28 | 1.19 | Stratabound |
6 | AMP15 | 0.89 | Stratabound | 21 | SM142 | 0.73 | Stratabound |
7 | AMP17 | 1.3 | Stratabound | 22 | TKD5-1 | 0.95 | Stratabound |
8 | BM02 | 0.97 | Structure bound | 23 | TKD5-2 | 0.95 | Stratabound |
9 | BM04 | 0.94 | Structure bound | 24 | TKD5-3 | 0.9 | Stratabound |
10 | BM06 | 0.98 | Structure bound | 25 | TKD5-4 | 1 | Stratabound |
11 | BM07 | 0.93 | Structure bound | 26 | AhuRB02 | 1 | Stratabound |
12 | BM08 | 0.98 | Structure bound | 27 | Ahu02 | 0.92 | Stratabound |
13 | MJUS1 | 1 | Stratabound | 28 | TANRT17 | 1.25 | Stratabound |
14 | Botteng1 | 0.75 | Volcanic sedimenter | 29 | TANRT24 | 0.96 | Stratabound |
15 | TKDY3-1 | 0.97 | Stratabound | 30 | TANRT25 | 1.23 | Stratabound |
Sample | 234U/238U | Classification | Deposit of Control | Type of Rock Texture | Rock Unit |
---|---|---|---|---|---|
BM02 | 0.97 | equilibrium | structure bound | lava phonolitoid | Lava Mamuju |
BM04 | 0.94 | disequilibrium | structure bound | lava phonolitoid | Lava Mamuju |
BM06 | 0.98 | equilibrium | structure bound | lava phonolitoid | Lava Mamuju |
BM07 | 0.93 | disequilibrium | structure bound | lava phonolitoid | Lava Mamuju |
BM08 | 0.98 | equilibrium | structure bound | lava phonolitoid | Lava Mamuju |
MJUS1 | 1 | equilibrium | stratabound | soil | Lava takandeang |
TANRT24 | 0.96 | equilibrium | stratabound | lava phonolitoid | Takandeang volcanic breccia |
TANRT17 | 1.25 | remobilization of uranium | stratabound | lava phonolitoid autobreccia | Takandeang volcanic breccia |
TANRT25 | 1.23 | remobilization of uranium | stratabound | lava phonolitoid | Takandeang volcanic breccia |
TKD5-1 | 0.95 | equilibrium | stratabound | lava phonolitoid autobreccia | Tapalang lava dome |
TKD5-2 | 0.95 | equilibrium | stratabound | lava phonolitoid autobreccia | Tapalang lava dome |
TKD5-3 | 0.9 | disequilibrium | stratabound | lava phonolitoid autobreccia | Tapalang lava dome |
TKD5-4 | 1 | equilibrium | stratabound | lava phonolitoid autobreccia | Tapalang lava dome |
AMP17 | 1.3 | remobilization of uranium | stratabound | lava foiditoid | Ampalas volcanic breccia |
AhuRB02 | 1 | equilibrium | stratabound | lava phonolitoid pillow lava | Tapalang lava dome |
Ahu02 | 0.92 | disequilibrium | stratabound | lava foiditoid | Tapalang lava dome |
AMP12 | 0.98 | equilibrium | stratabound | lava foiditoid | Ampalas volcanic breccia |
SM142 | 0.73 | disequilibrium | stratabound | lava foiditoid | Tapalang volcanic breccia |
AMP13 | 1.12 | remobilization of uranium | stratabound | lava foiditoid | Ampalas volcanic breccia |
AMP15 | 0.89 | disequilibrium | stratabound | lava foiditoid | Ampalas volcanic breccia |
AMP42 | 0.77 | disequilibrium | stratabound | lava foiditoid | Ampalas volcanic breccia |
AMP24 | 0.98 | equilibrium | stratabound | lava foiditoid | Ampalas volcanic breccia |
AMP16 | 1.08 | remobilization of uranium | stratabound | lava foiditoid | Ampalas volcanic breccia |
TKDOC28 | 1.19 | remobilization of uranium | laterite | lava phonolitoid | Tapalang lava dome |
TKDOC36 | 0.99 | equilibrium | laterite | lava phonolitoid | Tapalang volcanic breccia |
TKDY3-1 | 0.97 | equilibrium | laterite | weathered phonolitoid | Takandeang volcanic breccia |
TKDY3-2 | 1.01 | equilibrium | laterite | weathered phonolitoid | Takandeang volcanic breccia |
TKDY3-3 | 0.96 | equilibrium | laterite | weathered phonolitoid | Takandeang volcanic breccia |
TKDY3-4 | 0.92 | disequilibrium | laterite | weathered phonolitoid | Takandeang volcanic breccia |
Botteng1 | 0.75 | disequilibrium | volcano sedimentary | conglomerate | Tapalang volcanic breccia |
No | Sample | Type of Rock Texture | Rock Unit | 234U/238U | Classification |
---|---|---|---|---|---|
1 | AMP15 | Foiditoid | Ampalas volcanic breccia | 0.89 | Disequilibrium |
2 | AMP42 | Foiditoid | Ampalas volcanic breccia | 0.77 | Disequilibrium |
3 | AMP12 | Foiditoid | Ampalas volcanic breccia | 0.98 | Equilibrium |
4 | AMP24 | Foiditoid | Ampalas volcanic breccia | 0.98 | Equilibrium |
5 | AMP13 | Foiditoid | Ampalas volcanic breccia | 1.12 | Remobilization of uranium |
6 | AMP16 | Foiditoid | Ampalas volcanic breccia | 1.08 | Remobilization of uranium |
7 | AMP17 | Foiditoid | Ampalas volcanic breccia | 1.3 | Remobilization of uranium |
8 | MJUS1 | Soil | Takandeang lava | 1 | Equilibrium |
9 | TKD5-1 | Phonolitoid | Tapalang lava dome | 0.95 | Equilibrium |
10 | TKD5-2 | Phonolitoid | Tapalang lava dome | 0.95 | Equilibrium |
11 | TKD5-3 | Phonolitoid | Tapalang lava dome | 0.9 | Disequilibrium |
12 | TKD5-4 | Phonolitoid | Tapalang lava dome | 1 | Equilibrium |
13 | AhuRB02 | Phonolitoid | Tapalang lava dome | 1 | Equilibrium |
14 | Ahu02 | Foiditoid | Tapalang lava dome | 0.92 | Disequilibrium |
15 | SM142 | Foiditoid | Tapalang volcanic breccia | 0.73 | Disequilibrium |
16 | TANRT24 | Phonolitoid | Takandeang volcanic breccia | 0.96 | Equilibrium |
17 | TANRT17 | Phonolitoid | Takandeang volcanic breccia | 1.25 | Remobilization of uranium |
18 | TANRT25 | Phonolitoid | Takandeang volcanic breccia | 1.23 | Remobilization of uranium |
No | Sample | Type of Rock Texture | Rock Unit | 234U/238U | Classification |
---|---|---|---|---|---|
1 | TKDOC28 | Phonolitoid | Tapalang lava dome | 1.19 | Remobilization of Uranium |
2 | TKDOC36 | Phonolitoid | Tapalang lava dome | 0.99 | Equilibrium |
3 | TKDY3-2 | Phonolitoid | Takandeang volcanic breccia | 1.01 | Equilibrium |
4 | TKDY3-1 | Phonolitoid | Takandeang volcanic breccia | 0.97 | Equilibrium |
5 | TKDY3-3 | Phonolitoid | Takandeang volcanic breccia | 0.96 | Equilibrium |
6 | TKDY3-4 | Phonolitoid | Takandeang volcanic breccia | 0.92 | Disequilibrium |
No | Sample | Type of Rock Texture | Rock Unit | 234U/238U | Classification |
---|---|---|---|---|---|
1 | BM02 | Phonolitoid | Mamuju lava | 0.97 | Equilibrium |
2 | BM04 | Phonolitoid | Mamuju lava | 0.94 | disequilibrium |
3 | BM06 | Phonolitoid | Mamuju lava | 0.98 | Equilibrium |
4 | BM07 | Phonolitoid | Mamuju lava | 0.93 | disequilibrium |
5 | BM08 | Phonolitoid | Mamuju lava | 0.98 | Equilibrium |
No | Sample | Type of Rock Texture | Rock Unit | 234U/238U | Classification |
---|---|---|---|---|---|
1 | Botteng1 | Conglomerate | Tapalang volcanic breccia | 0.75 | disequilibrium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosianna, I.; Nugraha, E.D.; Tazoe, H.; Syaeful, H.; Muhammad, A.G.; Sukadana, I.G.; Indrastomo, F.D.; Ngadenin; Pratiwi, F.; Sumaryanto, A.; et al. Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia. Geosciences 2023, 13, 388. https://doi.org/10.3390/geosciences13120388
Rosianna I, Nugraha ED, Tazoe H, Syaeful H, Muhammad AG, Sukadana IG, Indrastomo FD, Ngadenin, Pratiwi F, Sumaryanto A, et al. Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia. Geosciences. 2023; 13(12):388. https://doi.org/10.3390/geosciences13120388
Chicago/Turabian StyleRosianna, Ilsa, Eka Djatnika Nugraha, Hirofumi Tazoe, Heri Syaeful, Adi Gunawan Muhammad, I Gde Sukadana, Frederikus Dian Indrastomo, Ngadenin, Fadiah Pratiwi, Agus Sumaryanto, and et al. 2023. "Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia" Geosciences 13, no. 12: 388. https://doi.org/10.3390/geosciences13120388
APA StyleRosianna, I., Nugraha, E. D., Tazoe, H., Syaeful, H., Muhammad, A. G., Sukadana, I. G., Indrastomo, F. D., Ngadenin, Pratiwi, F., Sumaryanto, A., Sucipta, Pratama, H. A., Mustika, D., Nirwani, L., Nurokhim, Omori, Y., Hosoda, M., Akata, N., & Tokonami, S. (2023). Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia. Geosciences, 13(12), 388. https://doi.org/10.3390/geosciences13120388