Li-Cs-Na-Rich Beryl from Beryl-Bearing Pegmatite Dike No. 7 of the Shongui Deposit, Kola Province, Russia
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods and Samples
3.1. ICP-MS Method
3.2. SIMS Techmique
3.3. Samples
4. Results
4.1. Geochemistry of the Beryl-Bearing Pegmatites
4.2. Geochemistry of the Barren Pegmatites
4.3. Geochemistry of Beryl
4.3.1. Large-Ion Lithophile Elements (LILE)
4.3.2. Transition Metals
5. Discussion
5.1. Beryl Classification
- alkali-free beryl—the amount of alkalis (R2O) ≤ 0.5%;
- sodium beryl—the amount of alkalis (R2O) > 0.5%;
- Na-Li beryl—the amount of alkalis (R2O) > 1%;
- Li-Cs beryl—the amount of alkalis (R2O) > 1%,
- where R = Na, Li, Cs, Rb, and K.
5.2. Environment of Beryl Crystallization
5.3. Petrogenesis and Evolution of the Pegmatite System
6. Conclusions
- The chemical composition of beryl from the beryl-bearing pegmatites of the Shongui deposit is unique due to the very high total content of alkalis (Li, Cs, K, Rb, and Na), which is higher than the highest concentrations of Li, Cs, and Na reported from other beryl-bearing pegmatites throughout the world. According to its chemical composition, the Shongui beryl belongs to the Li-Cs-Na type, a type that was not recognized in the available classifications.
- The content of Be, Li, Rb, Cs, Nb, Ta, and Mn increases, while the content of Ba, Sr, Y, and REE decreases, from the barren to beryl-bearing pegmatites in the Shongui pegmatite field. Respectively, the Rb/Ba, Rb/Sr, and Zr/Hf ratios, showing the fractionation degree, change from the barren to beryl-bearing pegmatites: Rb/Ba and Rb/Sr increase and Zr/Hf decreases.
- The beryl of the Shongui deposit was mainly formed in the magmatic stage rather than in the hydrothermal and metasomatic stages. The following sequence of crystallization of beryl varieties from beryl-bearing pegmatite dike No. 7 is proposed: at first, Brl-I from the intermediate zone and then Brl-II from the central zone. Compared with Brl-I, Brl-II is depleted in Cs, Li, Na, Ca, Cl, P, Ni, and H2O and is enriched in Mn, Mg, and Fe.
- The color of the Shongui beryl, with yellowish-greenish tones, is controlled by the high Fe content compared to the Mn content.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, R.F. Historical Note on Sources and Uses of Beryllium. In The Metal Beryllium; White, D.W., Burke, J.E., Eds.; The American Society for Metals: Cleveland, OH, USA, 1955; pp. 5–13. [Google Scholar]
- Beus, A.A. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits; W. H. Freeman: San Francisco, CA, USA, 1966. [Google Scholar]
- Ginzburg, A.I. The Genetic Types of Hydrothermal Beryllium Deposits; Nedra: Moscow, Russia, 1975. [Google Scholar]
- Gaines, R.V. Beryl—A review. Mineral. Rec. 1976, 7, 211–223. [Google Scholar]
- Hörmann, P.K. Handbook of Geochemistry II/1 Elements H (1)-Al (13). In Beryllium; Wedepohl, K.H., Ed.; Springer: Berlin/Heidelberg, Germnay, 1978; pp. 1–6. [Google Scholar]
- Burt, D.M. Granitic Pegmatites in Science and Industry. In Minerals of Beryllium; Černý, P., Ed.; Short Course Handbook 8; Mineralogical Association of Canada: Québec, QC, Canada, 1982; pp. 135–148. [Google Scholar]
- Černý, P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl. Geochem. 1992, 7, 393–416. [Google Scholar]
- Pekov, I.V. Remarkable finds of minerals of beryllium: From the Kola Peninsula to Primorie. World Ston. 1994, 4, 10–26. [Google Scholar]
- Grew, E.S. Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of Beryllium Minerals. Rev. Mineral. Geochem. 2002, 50, 1–76. [Google Scholar] [CrossRef]
- Černý, P. Mineralogy of beryllium in granitic pegmatites. In Mineralogy, Petrology, and Geochemistry, Reviews in Mineralogy and Geochemistry; Grew, E.S., Ed.; Mineralogical Society of America: Washington, DC, USA, 2022; pp. 405–444. [Google Scholar]
- Černý, P.; Anderson, A.J.; Tomascak, P.B.; Chapman, R. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. Can. Miner. 2003, 41, 1003–1011. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Linnen, R.L.; Van Lichtervelde, M.; Černy, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- London, D.; Kontak, D.J. Granitic Pegmatites: Scientific Wonders and Economic Bonanzas. Elements 2012, 8, 257–261. [Google Scholar] [CrossRef]
- Sardi, F.G.; Heimann, A. Pegmatitic beryl as indicator of melt evolution: Example from the Velasco district, Pampeana pegmatite province, Argentina, and review of worldwide occurrences. Can. Mineral. 2014, 52, 809–836. [Google Scholar] [CrossRef]
- Foley, N.K.; Jaskula, B.W.; Piatak, N.M.; Schulte, R.F. Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. In Beryllium; Schulz, K.J., DeYoung, J.H., Seal, R.R., Bradley, D.C., Eds.; U.S. Geological Survey Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2017; p. 1802. [Google Scholar] [CrossRef]
- Morozova, L.N. Kolmozero lithium deposit of rare metal pegmatites: New data on rare element composition (Kola Peninsula). Lithosphere 2018, 18, 82–98. [Google Scholar] [CrossRef]
- Martin, R.F.; De Vito, C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can. Mineral. 2005, 43, 2027–2048. [Google Scholar] [CrossRef]
- Lyalina, L.; Selivanova, E.; Zozulya, D.; Ivanyuk, G. Beryllium Mineralogy of the Kola Peninsula, Russia—A Review. Minerals 2018, 9, 12. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Fioravanti, G.; Grudessi, O.; Zanazzi, P.F. Reappraizal of the crystal chemistry of beryl. Am. Mineral. 1988, 73, 826–837. [Google Scholar]
- Černý, P.; Turnock, A. Beryl from the granitic pegmatites at Greer Lake, Southeastern Manitoba. Can. Mineral. 1975, 13, 55–61. [Google Scholar]
- London, D. Pegmatites; The Canadian Mineralogist, Special Publication 10; Mineralogical Association of Canada: Québec, QC, Canada, 2008; pp. 1–347. [Google Scholar]
- Baĉík, P.; Fridrichová, J.; Uher, P.; Vaculovič, T.; Bizovská, V.; Škoda, R.; Miglierini, M.; Malíčková, I. Beryl crystal chemistry and trace elements: Indicators of pegmatite development and fractionation (Damara Belt, Namibia). Lithos 2021, 404–405, 106441. [Google Scholar] [CrossRef]
- Daneshvar, N.; Azizi, H.; Asahara, Y.; Tsuboi, M.; Minami, M.; Mohammad, Y.O. Geochemistry and Genesis of Beryl Crystals in the LCT Pegmatite Type, Ebrahim-Attar Mountain, Western Iran. Minerals 2021, 11, 717. [Google Scholar] [CrossRef]
- Evensen, J.M.; London, D. Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geoch. Cosmoch. Act. 2002, 66, 2239–2265. [Google Scholar] [CrossRef]
- Uher, P.; Chudík, P.; Baćík, P.; Vaculoviĉ, T.; Galiová, M. Beryl composition and evolution trends: An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia. J. Geosc. 2010, 55, 69–80. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Grubessi, O.; Zecchini, P. Infrared spectroscopy and crystal chemistry of the beryl group. Can. Min. 1994, 32, 55–68. [Google Scholar]
- Aurisicchio, C.; Conte, A.M.; De Vito, C.; Ottolini, L. Beryl from miarolitic pockets of granitic pegmatites, Elba, Italy: Characterization of crystal chemistry by means of EMP and SIMS analyses. Can. Mineral. 2012, 50, 1467–1488. [Google Scholar] [CrossRef]
- Fukuda, J.; Shinoda, K. Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy. Phys. Chem. Miner. 2008, 35, 347–357. [Google Scholar] [CrossRef]
- Fukuda, J.; Shinoda, K.; Nakashima, S.; Miyoshi, N.; Aikawa, N. Polarized infrared spectroscopic study of diffusion of water molecules along structure channels in beryl. Am. Mineral. 2009, 94, 981–985. [Google Scholar] [CrossRef]
- Lambruschi, E.; Gatta, G.D.; Adamo, I.; Bersani, D.; Salvioli-Mariani, E.; Lottici, P.P. Raman and structural comparison between the new gemstone pezzottaite Cs(Be2Li)Al2Si6O18 and Cs-beryl. J. Raman Spectr. 2014, 45, 993–999. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. The orientation and vibrational states of H2O in synthetic alkali-free beryl. Phys. Chem. Miner. 2000, 27, 557–564. [Google Scholar] [CrossRef]
- Wang, P.; Gray, T.P.; Li, Z.; Anderson, E.J.D.; Allaz, J.; Smyth, J.R.; Koenig, A.E.; Qi, L.; Zhou, Y.; Raschke, M.B. Mineralogical classification and crystal water characterisation of beryl from the W–Sn–Be occurrence of Xuebaoding, Sichuan province, western China. Min. Mag. 2021, 85, 172–188. [Google Scholar] [CrossRef]
- Fukuda, J.; Shinoda, K. Water molecules in beryl and cordierite: High-temperature vibrational behavior, dehydration, and coordination to cations. Phys. Chem. Miner. 2011, 38, 469–481. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Černý, P. The alkali-metal positions in Cs-Li beryl. Can. Mineral. 1977, 15, 414–421. [Google Scholar]
- Suo, Q.; Shen, P.; Luo, Y.; Li, C.; Feng, H.; Cao, C.; Pan, H.; Bai, Y. Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China. Minerals 2022, 12, 450. [Google Scholar] [CrossRef]
- Černý, P. Alkali variations in pegmatitic beryls and their petrogenetic implications. Neues Jahrb. Min. Abhandl. 1975, 123, 198–212. [Google Scholar]
- Neiva, A.; Neiva, J. Beryl from the granitic pegmatite at Namivo, Alto Ligonha, Mozambique. Neues Jahrb. Mineral. Abhandl. 2005, 18, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Bidny, A.S.; Baksheev, I.A.; Popov, M.P.; Anosova, M.O. Beryl from deposits of the Ural Emerald Belt, Russia: ICP-MS-LA and infrared spectroscopy study. Mosc. Univ. Geol. Bull. 2011, 66, 108–115. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Conte, A.M.; Medeghini, L.; Ottolini, L.; De Vito, C. Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol. Rev. 2018, 94, 351–366. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald deposits: A review and enhanced classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef]
- Saeseaw, S.; Pardieu, V.; Sangsawong, S. Three-phase inclusions in emerald and their impact on origin determination. Gems Gemol. 2014, 50, 114–132. [Google Scholar] [CrossRef]
- Saeseaw, S.; Renfro, N.D.; Palke, A.C.; Sun, Z.; McClure, S.F. Geographic origin determination of emerald. Gems Gemol. 2019, 55, 614–646. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, X.; Guo, H. Major and trace element geochemistry of Dayakou vanadium-dominant emerald from Malipo (Yunnan, China): Genetic model and geographic origin determination. Minerals 2019, 9, 777. [Google Scholar] [CrossRef]
- Skublov, S.G.; Gavrilchik, A.K.; Berezin, A.V. Geochemistry of beryl varieties: Comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). J. Min. Inst. 2022, 255, 455–469. [Google Scholar] [CrossRef]
- Chen, Z.; Wan, S.; Lu, X.; Wang, W. Study on fluid inclusions in beryl from Pingwu, Sichuan province. Geol. Sci. Technol. Inf. 2002, 21, 65–73. [Google Scholar]
- Thomas, R.; Webster, J.D.; Davidson, P. Be-daughter minerals in fluid and melt inclusions: Implications for the enrichment of Be in granite-pegmatite systems. Contrib. Mineral. Petrol. 2011, 161, 483–495. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hu, H. Paragenetic assemblage of beryllium silicates and phosphates from the Nanping granite pegmatite dyke; Fujian province southeastern China. Can. Mineral. 2011, 49, 1175–1187. [Google Scholar] [CrossRef]
- Schilling, J.; Bingen, B.; Skar, Q.; Wenzel, T.; Markl, G. Formation and evolution of the Høgtuva beryllium deposit, Norway. Contrib. Mineral. Petrol. 2015, 170, 30. [Google Scholar] [CrossRef]
- Antonyuk, E.S. Structural-mineral associations of granite pegmatite veins. In Materials on Mineralogy of the Kola Peninsula; CF of the USSR Academy of Sciences: Apatity, Russia, 1962; pp. 134–142. [Google Scholar]
- Ponomareva, N.I.; Gordienko, V.V.; Shurekova, R.S. Physico-chemical conditions for the formation of beryl in the Bolshoy Lapot deposit (Kola Peninsula). Bull. St. Petersb. Univ. 2005, 7, 4–20. [Google Scholar]
- Rundqvist, D.V.; Mitrofanov, F.P. (Eds.) Precambrian Geology of the USSR; Elsevier Science: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Glebovitsky, V.A. (Ed.) Early Precambrian of the Baltic Shield; Nauka: Saint-Petersburg, Russia, 2005. [Google Scholar]
- Daly, J.S.; Balagansky, V.V.; Timmerman, M.J.; Whitehouse, M.J. The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In European Lithosphere Dynamics, Memoir 32; Gee, D.G., Stephenson, R.A., Eds.; Geological Society: London, UK, 2006; pp. 579–597. [Google Scholar]
- Mints, M.V. Kolmozero-Voronya belt. In East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure; Condie, K., Harvey, F.E., Eds.; Special Paper 510; Geological Society of America: Boulder, CO, USA, 2015; pp. 39–40. [Google Scholar]
- Hölttä, P.; Balagansky, V.; Garde, A.A.; Mertanen, S.; Peltonen, P.; Slabunov, A.; Sorjonen-Ward, P.; Whitehouse, M. Archean of Greenland and Fennoscandia. J. Int. Geosci. 2008, 31, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Gavrilchik, A.K.; Skublov, S.G.; Kotova, E.L. Trace Element Composition of Beryl from the Sherlovaya Gora Deposit, South-Eastern Transbaikalia, Russia. Proc. Russ. Mineral. Soc. 2021, 2, 69–82. [Google Scholar] [CrossRef]
- Abdel Gawad, A.E.; Ene, A.; Skublov, S.G.; Gavrilchik, A.K.; Ali, M.A.; Ghoneim, M.M.; Nastavkin, A.V. Trace element geochemistry and genesis of beryl from Wadi Nugrus, South Eastern Desert, Egypt. Minerals 2022, 12, 206. [Google Scholar] [CrossRef]
- Nosova, A.A.; Narkisova, V.V.; Sazonova, L.V.; Simakin, S.G. Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals. Geochem. Int. 2002, 40, 219–232. [Google Scholar]
- Portnyagin, M.V.; Simakin, S.G.; Sobolev, A.V. Fluorine in primitive magmas of the Troodos Ophiolite Complex, Cyprus: Analytical methods and main results. Geoch. Int. 2002, 40, 625–632. [Google Scholar]
- Portnyagin, M.; Almeev, R.; Matveev, S.; Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 2008, 272, 541–552. [Google Scholar] [CrossRef]
- Jochum, K.P.; Dingwell, D.B.; Rocholl, A.; Stoll, B.; Hofmann, A.W.; Becker, S.; Besmehn, A.; Bessette, D.; Dietze, H.-J.; Dulski, P.; et al. The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geost. Newsl. 2000, 24, 87–133. [Google Scholar] [CrossRef]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosystems 2006, 7, Q02008. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Chaussidon, M. H2O concentrations in primary melts from island arcs and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 1996, 137, 45–55. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; Eggins, S.M.; Falloon, T.J.; Christie, D.M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 2000, 41, 1329–1364. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Everard, J.L.; Crawford, A.J.; Varne, R.; Eggins, S.M.; Lanyon, R. Enriched end-member of primitive MORB melts: Petrology and geochemistry of glasses from Macquarie Island (SW Pacific). J. Petrol. 2000, 41, 411–430. [Google Scholar] [CrossRef]
- Shishkina, T.A.; Botcharnikov, R.E.; Holtz, F.; Varne, R.; Eggins, S.M.; Lanyon, R. Solubility of H2O and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem. Geol. 2010, 277, 115–125. [Google Scholar] [CrossRef]
- Tamic, N.; Behrens, H.; Holtz, F. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO-H2O fluid phase. Chem. Geol. 2001, 174, 333–347. [Google Scholar] [CrossRef]
- Rocholl, A.B.E.; Simon, K.; Jochum, K.P.; Bruhn, F.; Gehann, R.; Kramar, U.; Luecke, W.; Molzahn, M.; Pernicka, E.; Seufert, M.; et al. Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostand. Newslett. 1997, 21, 101–114. [Google Scholar] [CrossRef]
- Morozova, L.N.; Sokolova, E.N.; Smirnov, S.Z.; Balagansky, V.V.; Bazai, A.V. Spodumene from rare-metal pegmatites of the Kolmozero lithium world-class deposit on the Fennoscandian shield: Trace elements and crystal-rich fluid inclusions. Mineral. Mag. 2021, 85, 149–160. [Google Scholar] [CrossRef]
- Zaraiskii, G.P.; Aksyuk, A.M.; Devyatova, V.N. The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology 2009, 17, 25–45. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Staatz, M.H.; Griffitts, W.R.; Barnett, P.R. Differences in the minor element compositions of beryl in various environments. Am. Mineral. 1965, 50, 1783–1795. [Google Scholar]
- Andersson, L.O. The positions of H+, Li+ and Na+ impurities in beryl. Phys. Chem. Miner. 2006, 33, 403–416. [Google Scholar] [CrossRef]
- Černý, P.; Hawthorne, F.C. Refractive indices versus alkali contents in beryl: General limitations and applications to some pegmatitic types. Can. Mineral. 1976, 14, 491–497. [Google Scholar]
- Penfield, S.L.; Harper, D.N. On the chemical composition of herderite and beryl, with note on the precipitation of aluminum and separation of beryllium and aluminum. Am. J. Sci. 1886, 32, 107. [Google Scholar]
- Wilhelmsen, M.N. The Scandium Content of Beryllium-Bearing Minerals and Micas from Tørdal Pegmatites and Its Genetic and Economic Implications; University of Oslo: Oslo, Norway, 2020. [Google Scholar]
- Caucia, F.; Marinoni, L.; Callegari, A.M.; Leone, A.; Scacchetti, M. Gem-quality morganite from Monte Capanne pluton (Elba Island, Italy). Neues Jahrb. Miner. Abhandl 2016, 1993, 69–78. [Google Scholar] [CrossRef]
- Morgan, G.B.; London, D. Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am. Mineral. 1987, 72, 1097–1121. [Google Scholar]
- Fan, Z.-W.; Xiong, Y.-Q.; Shao, Y.-J.; Wen, C.-H. Textural and chemical characteristics of beryl from the Baishawo Be-Li-Nb-Ta pegmatite deposit, Jiangnan Orogen: Implication for rare metal pegmatite genesis. Ore Geol. Rev. 2022, 149, 105094. [Google Scholar] [CrossRef]
- Lum, J.E.; Viljoen, F.; Cairncross, B.; Frei, D. Mineralogical and geochemical characteristics of beryl (aquamarine) from the Erongo Volcanic complex, Namibia. J. Afr. Earth Sci. 2016, 124, 104–125. [Google Scholar] [CrossRef]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Černý, P. Rare-element granitic pegmatites. Part 1: Anatomy and internal evolution of pegmatite deposits. Geosci. Can. 1991, 18, 49–67. [Google Scholar]
- Trueman, D.L.; Černý, P. Exploration for rare-element granitic pegmatites. In Proceedings of the Short Course in Granitic Pegmatites in Science and Industry, Winnipeg, MB, Canada, 13–16 May 1982; Mineralogical Association of Canada: Quebec, QC, Canada, 1982; pp. 463–493. [Google Scholar]
Shongui Deposit | Shongui Pegmatite Field | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aggregate | Quartz-Albite-Microcline | Quartz-Microcline | Quartz-Cleavelandite | Albite-Muscovite-Quartz | Barren Pegmatites | ||||||||||
Sample | SH-31-1 | SH-39-1 | SH-116-2 | SH-30-1-GH | SH-30-18 | SH-30-2-GH | SH-6-GH | SH-111-13 | SH-6-GX | SH-30-19 | SH-30-23 | SH-30-24 | L-43-1 | L-45-1 | A-51-1 |
Li | 7.0 | 7.0 | 7.0 | 17 | 17 | 60 | 15.0 | 90.0 | 10.0 | 60.0 | 31.0 | 50.0 | 1.50 | 2.90 | 40.0 |
Be | 1.0 | 1.1 | 1.1 | 0.80 | 0.80 | 0.70 | 2.30 | 55 | 2.30 | 25.0 | 28.0 | 23.0 | 0.70 | 0.60 | 1.90 |
Sc | 8.0 | 2.0 | 4.1 | 3.4 | 2.3 | 3.7 | 6.0 | 11 | 7.0 | 1.2 | 0.7 | 1.3 | 3.6 | 6.0 | 2.3 |
Ti | 40 | 40 | 21 | 12 | 21 | 11 | 30 | 30 | 18 | 70 | 30 | 50 | 100 | 60 | 100 |
V | 1.3 | 0.26 | 0.29 | 0.40 | 0.41 | 0.23 | 0.33 | 3.0 | 1.40 | 0.50 | 0.60 | 0.50 | 2.00 | 1.70 | 0.50 |
Cr | 11 | 16 | 110 | 9.0 | 9.0 | 9.0 | 15 | 110 | 130 | 17 | 17 | 18 | 11 | 16 | 9 |
Mn | 80 | 219 | 90 | 30 | 27 | 29 | 80 | 1400 | 70 | 380 | 210 | 800 | 40 | 90 | 80 |
Co | 0.9 | 1.2 | 0.7 | 0.6 | 0.4 | 0.6 | 1.10 | 0.80 | 1.00 | 1.10 | 1.20 | 1.00 | 1.50 | 1.40 | 0.90 |
Ni | 21 | 31 | 8.0 | 16 | 9.0 | 15 | 30 | 9.0 | 16 | 30 | 34 | 29 | 23 | 28 | 20 |
Cu | 5.0 | 7.0 | 5.0 | 7.0 | 3.9 | 5.0 | 8.0 | 8.0 | 7.0 | 10.6 | 8.0 | 7.0 | 9.0 | 9.0 | 5.0 |
Zn | 9.0 | 12 | 6.0 | 5.0 | 4.0 | 6.0 | 8.0 | 12 | 5.0 | 70 | 14 | 20 | 10 | 8.0 | 14 |
Ga | 10 | 10 | 12 | 13 | 13 | 14 | 12 | 24 | 11 | 16 | 8.0 | 18 | 9.0 | 9.0 | 13 |
Ge | 1.30 | 1.20 | 1.30 | 2.7 | 2.7 | 3.0 | 1.90 | 3.00 | 1.70 | 2.20 | 2.10 | 2.50 | 0.90 | 1.00 | 1.50 |
As | 4.90 | 22.60 | 5.30 | 23.3 | 24.1 | 25.5 | 7.00 | 9.70 | 7.70 | 22.20 | 21.40 | 24.10 | 3.50 | 4.40 | 4.30 |
Se | 0.69 | 0.13 | 0.09 | 0.12 | 0.08 | 0.15 | 0.09 | b.d.l. | 0.07 | b.d.l. | b.d.l. | 0.08 | 0.16 | 0.17 | 0.14 |
Rb | 73 | 69 | 48 | 1400 | 1700 | 1900 | 61 | 15 | 22 | 120 | 130 | 250 | 48 | 61 | 37 |
Sr | 60 | 70 | 60 | 60 | 60 | 60 | 60 | 60 | 70 | 60 | 50 | 60 | 130 | 130 | 70 |
Y | 1.4 | 5.0 | 1.7 | 0.11 | 0.30 | 0.06 | 4.00 | 1.90 | 1.10 | 1.30 | 0.60 | 1.50 | 6.00 | 7.00 | 5.00 |
Zr | 11 | 32.8 | 11 | 2.4 | 1.3 | 1.1 | 9.0 | 18 | 2.20 | 5.0 | 7.0 | 69 | 29.80 | 36.60 | 15 |
Nb | 1.50 | 1.10 | 2.20 | 3.8 | 1.5 | 11 | 5 | 100 | 5.0 | 170 | 53 | 250 | 0.6 | 0.23 | 0.4 |
Mo | 1.30 | 1.70 | 1.10 | 0.8 | 0.6 | 0.8 | 1.80 | 1.10 | 1.70 | 1.60 | 1.80 | 1.60 | 1.20 | 1.50 | 1.10 |
Ag | 0.12 | 0.12 | 0.19 | 0.14 | 0.08 | 0.3 | 0.19 | 2.60 | 0.18 | 4.20 | 1.30 | 6.10 | 0.06 | 0.06 | 0.05 |
Cd | 0.04 | 0.14 | 0.06 | 0.05 | 0.06 | 0.06 | 0.09 | 0.7 | 0.07 | 0.50 | 0.20 | 0.90 | 0.03 | 0.05 | 0.07 |
Sn | 2.60 | 2.50 | 3.0 | 2.4 | 1.3 | 1.1 | 4.0 | 2.10 | 1.50 | 22 | 12 | 38 | 0.60 | 0.60 | 0.90 |
Sb | 0.09 | 0.10 | 0.09 | 0.22 | 0.22 | 0.26 | 0.19 | 0.16 | 0.14 | 0.26 | 0.24 | 0.28 | 0.07 | 0.24 | 0.06 |
Te | 0.06 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.02 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.02 | b.d.l. | b.d.l. | b.d.l. |
Cs | 4.1 | 5.4 | 3.5 | 150 | 270 | 250 | 17 | 18 | 10 | 20 | 23 | 30 | 2.1 | 3.5 | 4.4 |
Ba | 14 | 22 | 9.0 | 30 | 18 | 18 | 18 | 18 | 16 | 20 | 16 | 40 | 250 | 240 | 80 |
La | 0.80 | 2.50 | 0.90 | 0.20 | 0.28 | 0.12 | 1.40 | 1.0 | 1.0 | 1.70 | 0.50 | 2.90 | 4.0 | 6.0 | 6.0 |
Ce | 1.70 | 6.0 | 1.80 | 0.28 | 0.47 | 0.18 | 2.70 | 1.70 | 1.90 | 3.0 | 1.0 | 5.0 | 9.0 | 13 | 11 |
Pr | 0.18 | 0.60 | 0.20 | 0.04 | 0.06 | 0.02 | 0.31 | 0.18 | 0.20 | 0.27 | 0.10 | 0.40 | 1.10 | 1.50 | 1.20 |
Nd | 0.58 | 1.90 | 0.62 | 0.11 | 0.28 | 0.06 | 0.96 | 0.47 | 0.60 | 0.61 | 0.29 | 0.84 | 3.70 | 5 | 3.90 |
Sm | 0.23 | 0.80 | 0.29 | 0.03 | 0.08 | 0.01 | 0.45 | 0.25 | 0.24 | 0.28 | 0.11 | 0.27 | 1.20 | 1.50 | 1.30 |
Eu | 0.04 | 0.05 | 0.04 | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.01 | 0.07 | 0.34 | 0.31 | 0.05 |
Gd | 0.26 | 1.0 | 0.34 | 0.03 | 0.09 | 0.02 | 0.56 | 0.25 | 0.24 | 0.26 | 0.11 | 0.26 | 1.50 | 1.70 | 1.30 |
Tb | 0.06 | 0.21 | 0.07 | 0.01 | 0.01 | 0.02 | 0.13 | 0.06 | 0.05 | 0.06 | 0.02 | 0.05 | 0.27 | 0.30 | 0.21 |
Dy | 0.33 | 1.20 | 0.40 | 0.02 | 0.04 | 0.01 | 0.70 | 0.37 | 0.26 | 0.29 | 0.12 | 0.25 | 1.60 | 1.70 | 1.10 |
Ho | 0.05 | 0.19 | 0.06 | 0.00 | 0.01 | 0.00 | 0.10 | 0.05 | 0.04 | 0.03 | 0.02 | 0.03 | 0.27 | 0.29 | 0.16 |
Er | 0.16 | 0.50 | 0.16 | 0.01 | 0.03 | 0.00 | 0.28 | 0.14 | 0.1 | 0.07 | 0.05 | 0.06 | 0.70 | 0.80 | 0.44 |
Tm | 0.03 | 0.08 | 0.03 | 0.01 | 0.02 | 0.01 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.10 | 0.11 | 0.08 |
Yb | 0.23 | 0.60 | 0.23 | 0.01 | 0.02 | 0.00 | 0.40 | 0.30 | 0.15 | 0.08 | 0.06 | 0.08 | 0.60 | 0.70 | 0.50 |
Lu | 0.03 | 0.09 | 0.03 | 0.00 | 0.00 | 0.00 | 0.05 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.09 | 0.10 | 0.07 |
Hf | 0.70 | 1.80 | 0.70 | 0.03 | 0.04 | 0.07 | 0.60 | 2.10 | 0.15 | 0.50 | 0.40 | 7.0 | 1.50 | 1.80 | 0.90 |
Ta | 0.15 | 0.17 | 0.21 | 2.5 | 0.7 | 18 | 5.0 | 37 | 2.50 | 41 | 14 | 54 | 0.42 | 0.07 | 0.22 |
W | 1.60 | 2.0 | 1.50 | 0.9 | 0.5 | 0.7 | 1.80 | 1.70 | 1.0 | 2.50 | 2.10 | 3.20 | 1.30 | 1.50 | 1.10 |
Tl | 0.30 | 0.30 | 0.20 | 7 | 9 | 10 | 0.32 | 0.07 | 0.11 | 0.50 | 0.60 | 0.90 | 0.18 | 0.21 | 0.19 |
Pb | 6.0 | 6.0 | 6.0 | 26 | 21 | 24 | 7.0 | 2.1 | 7.0 | 2.0 | 1.7 | 1.8 | 14 | 19 | 10 |
Bi | 0.04 | 0.11 | 0.06 | 0.41 | 0.21 | 1.4 | 0.90 | 0.36 | 0.24 | 0.37 | 0.32 | 0.30 | 2.0 | 1.40 | 0.14 |
Th | 0.52 | 2.20 | 0.80 | 0.07 | 0.07 | 0.1 | 1.20 | 0.52 | 0.60 | 0.65 | 0.26 | 1.90 | 3.60 | 5.0 | 5.0 |
U | 0.90 | 3.90 | 1.20 | 0.14 | 0.19 | 0.31 | 1.20 | 2.80 | 0.24 | 9.0 | 1.10 | 5.0 | 2.30 | 3.70 | 1.30 |
Element | Brl-Ia, Spot SH-39-1 | Brl-Ib, Spot SH-30-1-GX | Brl-Ic, Spot SH-6-GX | Brl-II, Spot SH-30-23 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Core | Rim | Intermediate Zone | Core | Rim | Intermediate Zone | Core | Rim | Intermediate Zone | Core | Rim | Intermediate Zone | |
P | b.d.l. | 16.9 | 8.63 | 72 | 123 | 57.1 | 93.4 | n.d. | 55.6 | n.d. | 3.69 | 83.9 |
Ca | 77.1 | 106 | 108 | 41.8 | 135 | 115 | 121 | 91.7 | 129 | 136 | 133 | 127 |
Sc | 7.11 | 7.05 | 7.82 | 8.76 | 7.77 | 7.30 | 4.10 | 4.36 | 7.06 | 5.48 | 5.16 | 5.58 |
Cr | 28.8 | 32.4 | 34.7 | 15.3 | 40.9 | 31.8 | 50.0 | 22.4 | 41.8 | 37.9 | 32.5 | 28.9 |
Ni | 184 | 189 | 240 | 125 | 341 | 233 | 370 | 146 | 280 | 198 | 208 | 176 |
Rb | 147 | 137 | 146 | 192 | 163 | 164 | 154 | 152 | 131 | 154 | 178 | 186 |
Sr | 0.56 | 0.71 | 0.85 | 0.43 | 0.93 | 0.88 | 0.74 | 0.63 | 0.70 | 0.85 | 0.79 | 0.73 |
Cs | 6300 | 7210 | 4400 | 5820 | 6000 | 6000 | 6530 | 7380 | 3430 | 2540 | 3940 | 2750 |
Ga | 10.6 | 10.4 | 12.4 | 14.1 | 12.9 | 12.1 | 11.9 | 11.8 | 12.5 | 12.1 | 10.9 | 12.7 |
Mn | 91.9 | 88.5 | 102 | 70.6 | 80.2 | 82.2 | 84.3 | 78.9 | 106 | 95.9 | 93.5 | 132 |
V | 2.95 | 3.28 | 3.23 | 2,41 | 3.58 | 3.56 | 2.64 | 2.56 | 2.77 | 2.35 | 2.88 | 2.43 |
Ti | 9.58 | 13.8 | 8.78 | 10.3 | 12.7 | 15.3 | 8.85 | 7.27 | 8.62 | 10.7 | 7.81 | 10.8 |
K | 218 | 272 | 392 | 287 | 317 | 259 | 306 | 280 | 330 | 343 | 351 | 341 |
Mg | 55.7 | 53.5 | 81.4 | 32.8 | 52.4 | 46.5 | 43.7 | 30.6 | 98.2 | 53.7 | 45.5 | 121 |
Na | 15,200 | 18,600 | 15,500 | 12,600 | 19,200 | 18,800 | 15,000 | 16,100 | 14,100 | 12,400 | 15,000 | 12,300 |
Fe | 1130 | 1090 | 1670 | 766 | 951 | 1020 | 774 | 783 | 1750 | 1370 | 1180 | 1350 |
Co | 1.76 | 1.66 | 1.91 | 1.85 | 2,56 | 1.82 | 2.21 | 1.25 | 1.84 | 1.58 | 1.71 | 1.59 |
B | 0.62 | 0.61 | 1.12 | 0.73 | 0.48 | 0.62 | 0.54 | 0.65 | 0.98 | 0.55 | 0.55 | 0.40 |
Li | 4750 | 5660 | 4090 | 4350 | 5610 | 2180 | 4770 | 5380 | 4080 | 3870 | 4450 | 3920 |
H2O | 38,800 | 38,600 | 36,900 | 37,200 | 39,800 | 34,300 | 39,500 | 40,100 | 39,300 | 37,700 | 39,900 | 35,500 |
F | 7.25 | 12.1 | 11.6 | 7.39 | 9.09 | 12.9 | 10.4 | 12.2 | 6.68 | 7.00 | 12.7 | 7.63 |
Cl | 9200 | 11,500 | 8850 | 8400 | 11,900 | 12,800 | 8810 | 10,300 | 7790 | 7830 | 9000 | 7700 |
Fe/(Mn+Cr+V) | 9.11 | 8.79 | 11.9 | 8.67 | 7.63 | 8.68 | 5.65 | 7.54 | 11.6 | 10.1 | 9.18 | 8.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, L.N.; Skublov, S.G.; Zozulya, D.R.; Serov, P.A.; Borisenko, E.S.; Solovjova, A.N.; Gavrilchik, A.K. Li-Cs-Na-Rich Beryl from Beryl-Bearing Pegmatite Dike No. 7 of the Shongui Deposit, Kola Province, Russia. Geosciences 2023, 13, 309. https://doi.org/10.3390/geosciences13100309
Morozova LN, Skublov SG, Zozulya DR, Serov PA, Borisenko ES, Solovjova AN, Gavrilchik AK. Li-Cs-Na-Rich Beryl from Beryl-Bearing Pegmatite Dike No. 7 of the Shongui Deposit, Kola Province, Russia. Geosciences. 2023; 13(10):309. https://doi.org/10.3390/geosciences13100309
Chicago/Turabian StyleMorozova, Lyudmila N., Sergey G. Skublov, Dmitry R. Zozulya, Pavel A. Serov, Elena S. Borisenko, Anna N. Solovjova, and Alexandra K. Gavrilchik. 2023. "Li-Cs-Na-Rich Beryl from Beryl-Bearing Pegmatite Dike No. 7 of the Shongui Deposit, Kola Province, Russia" Geosciences 13, no. 10: 309. https://doi.org/10.3390/geosciences13100309
APA StyleMorozova, L. N., Skublov, S. G., Zozulya, D. R., Serov, P. A., Borisenko, E. S., Solovjova, A. N., & Gavrilchik, A. K. (2023). Li-Cs-Na-Rich Beryl from Beryl-Bearing Pegmatite Dike No. 7 of the Shongui Deposit, Kola Province, Russia. Geosciences, 13(10), 309. https://doi.org/10.3390/geosciences13100309