Inland Record of the Last Interglacial Maximum in the Western Mediterranean: Revealing the Aljezares Pleistocene Basin (Alicante, SE-Spain)
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Geomorphology
- Successive hogbacks and structural slopes: This zone, representing the flanks of the anticline, shows a process of strong differential erosion between alternating weak and resistant Miocene bedrock. Linked to the lithology and structure of the anticline, they constituted the ring-shaped hills found encircling the anticlinal structure. The anticline is cut by the Vinalopó River in north-to-south direction.
- Badlands: This zone is linked to the drainage system of the Vinalopó River within the core of the anticline and it is developed above the less resistant rocks of the Triassic, ERC and Pleistocene units. Its development is mainly associated with the tributary channels existent in the western area of the basin (Cinco Ojos Creek).
- Terraces: This zone is constituted by isolated flat areas found at the top of the Pleistocene deposits and located T + 18/20 m above the talweg of the Vinalopó River. They occupy tens to hundreds of meters of lateral extension in the center of the basin, extending through the boundaries (Figure 2b). Their configuration is linked to the incision of the Holocene drainage network into the Pleistocene infill, characterized by flat tops and vertical scarps (Figure 3a,b).
- Triassic relief: This is composed of topographic heights within the anticlinal core that have not been occupied by Quaternary sedimentation, mainly corresponding to the dolomitic or the most massive gypsum and clay units from the Triassic formations which have not eroded (Figure 4a). They show very complex structures with a chaotic appearance in the form of topographic highs scattered throughout the area above the flat terraces.
- Colluvial slopes: These are conformed by discontinuous patched areas with gentle slopes of logarithmic expression that link the high Miocene and Triassic reliefs with the flat Pleistocene terraces (Figure 4b). They can be described as pediment type depositional/erosive systems from the upper areas of the Neogene ridge relief toward the center of the anticline.
- Floodplain: This zone is occupied by the Vinalopó River, Elche reservoir and Holocene sedimentation (Figure 4b).
4.2. Characterization of the Pleistocene Deposits
4.3. Geochronology
5. Discussion
5.1. Geomorphological and Sedimentary Evolution
5.2. Regional Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagniewski, W.; Rousseau, D.D.; Ghil, M. The PaleoJump database for abrupt transitions in past climates. Nat. Sci. Rep. 2023, 13, 4472. [Google Scholar] [CrossRef] [PubMed]
- Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T.; Stocchi, P.; Gómez-Pujol, L.; Harris, D.L.; Casella, E.; O’Leary, M.J.; Hearty, P.J. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth-Sci. Rev. 2016, 159, 404–427. [Google Scholar] [CrossRef]
- Machado, M.J.; Benito, G.; Barriendos, M.; Rodrigo, F.S. 500 Years of rainfall variability and extreme hydrological events in southeastern Spain drylands. J. Arid Environ. 2011, 75, 1244–1253. [Google Scholar] [CrossRef]
- Goy, J.L.; Hillaire-Marcel, C.; Zazo, C.; Ghaleb, B.; Dabrio, C.J.; González, A.; Bardají, T.; Civis, J.; Preda, M.; Yébenes, A.; et al. Further evidence for a relatively high sea level during the penultimate interglacial: Open-system U-series ages from La Marina (Alicante, East Spain). Geod. Acta 2006, 19, 409–426. [Google Scholar] [CrossRef]
- Zazo, C.; Goy, J.L.; Dabrio, C.J.; Bardají, T.; Hillaire-Marcel, C.; Ghaleb, B.; González-Delgado, J.A.; Soler, V. Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: Records of coastal uplift, sea-level highstands and climate changes. Mar. Geol. 2003, 194, 103–133. [Google Scholar] [CrossRef]
- Camuera, J.; Jiménez-Moreno, G.; Ramos-Román, M.J.; García-Alix, A.; Jiménez-Espejo, F.J.; Toney, J.L.; Anderson, R.A. Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region. Quat. Sci. Rev. 2021, 255, 106814. [Google Scholar] [CrossRef]
- González-Sampériz, P.; Gil-Romera, G.; García-Prieto, E.; Aranbarri, J.; Moreno, A.; Morellón, M.; Sevilla-Callejo, M.; Leunda, M.; Santos, L.; Franco-Múgica, F.; et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: The Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 2020, 242, 106425. [Google Scholar] [CrossRef]
- Goy, J.L.; Zazo, C. The role of neotectonics in the morphologic distribution of the Quaternary marine and continental deposits of the Elche Basin, southeast Spain. Tectonophysics 1989, 163, 219–225. [Google Scholar] [CrossRef]
- Ferrer García, C. Dinámica fluvial durante el inicio del Holoceno superior en el curso medio del Vinalopó (Alicante, España). Bol. Geol. Min. 2018, 129, 305–330. [Google Scholar] [CrossRef]
- Cuenca, A.; Walker, M.J. Terrazas fluviales en la zona bética de la Comunidad Valenciana. In El Cuaternario del País Valenciano; Roselló, V.M., Ed.; Universidad de Valencia: Valencia, Spain, 1995; pp. 105–114. [Google Scholar]
- Leret, G.; Nuñez, A.; Colodrón, I. Mapa Geológico de España, 1:50.000 Hoja n° 871 (Elda) y Memoria, 2nd ed.; IGME: Madrid, Spain, 1976; p. 65. [Google Scholar]
- Eixea, A.; Cuevas-González, J.; Díez-Canseco, D.; Bel, M.A.; Bonnet, A.; Carrión, Y.; Martínez-Alfaro, A.; Martínez-Rubio, V.; Martínez-Varea, C.M.; Pardo, R.; et al. Los Aljezares archaeological site (Alicante, Spain) and the MIS 6/5 open-air settlement in the Iberian Peninsula. J. Quat. Sci. 2022, 37, 1091–1111. [Google Scholar] [CrossRef]
- Vilas, L.; Castro, J.M.; Martín-Chivelet, J. El Prebético del Sector Oriental. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 361–363. [Google Scholar]
- Tent-Manclús, J.E. Estructura y Estratigrafía de las Sierras de Crevillente, Abanilla y Algayat: Su Relación con la Falla de Crevillente. Ph.D. Dissertation, Universidad de Alicante, Alicante, Spain, 2003. [Google Scholar]
- Pignatelli, R. Mapa Geológico de España, 1:50.000 Hoja n° 893 (Elche) y Memoria, 2nd ed.; IGME: Madrid, Spain, 1972; p. 65. [Google Scholar]
- Miall, A.D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology; Springer: Berlin/Heidelberg, Germany, 2013; p. 582. [Google Scholar]
- Cheng, H.; Edwards, L.R.; Hoff, J.; Gallup, C.D.; Richards, D.A.; Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chem. Geol. 2000, 169, 17–33. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, L.R.; Shen, C.-C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wan, Y.; Kong, X.; Spötl, C.; et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371–372, 82–91. [Google Scholar] [CrossRef]
- Archambault, M.; Lhénaff, R.; Vanney, J.R. Documents et Méthode Pour le Commentaire de Cartes: Fascicule 2: Les Reliefs Structuraux; Masson: Paris, France, 1970; p. 166. [Google Scholar]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; AAPG: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Grant, K.M.; Rohling, E.J.; Ramsey, C.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-level variability over five glacial cycles. Nat. Comm. 2014, 5, 5076. [Google Scholar] [CrossRef] [PubMed]
- Miall, A.D. Alluvial deposits. In Facies Models 4; James, N.P., Dalrymple, R.G., Eds.; GAC: Ottawa, ON, Canada, 2010; pp. 105–138. [Google Scholar]
- Macan, T.T.; Maudsley, R. Fauna of the stony substratum in lakes in the English Lake District. Int. Ver. Für Theor. Und Angew. Limnol. 1969, 17, 173–180. [Google Scholar] [CrossRef]
- Arenas-Abad, C.; Vázquez-Urbez, M.; Pardo-Tirapu, G.; Sancho-Marcén, C. Fluvial and associated carbonate deposits. In Carbonates in Continental Settings: Facies, Environments, and Processes; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 61, pp. 133–175. [Google Scholar]
- Arenas, C.; Gutiérrez, F.; Osácar, C.; Sancho, C. Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain. Sedimentology 2000, 47, 883–909. [Google Scholar] [CrossRef]
- Colombo, F. Abanicos aluviales: Secuencias y modelos de sedimentación. In Sedimentología: Del Proceso Físico a la Cuenca de Sedimentación; Arche, A., Ed.; CSIC: Madrid, Spain, 2010; pp. 131–224. [Google Scholar]
- Miall, A.D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Sci. Rev. 1985, 22, 261–308. [Google Scholar] [CrossRef]
- Committee On Alluvial Fan Flooding, National Research Council. Alluvial Fan Flooding; National Academy Press: Washington, DC, USA, 1996; 182p. [Google Scholar]
- Gasull, L. Las Helicella (Xeroplexa) de Baleares. Gasteropoda pulmonata. Bolletí Soc. d’Història Nat. Balear. 1964, 10, 3–88. [Google Scholar]
- Martínez-Ortí, A.; Robles, F. Moluscos Continentales de la Comunidad Valenciana; Conselleria de Territori i Habitatge Comunitat Valenciana: Valencia, Spain, 2003; p. 197. [Google Scholar]
- Stocchi, P.; Vacchi, M.; Lorscheid, T.; de Boer, B.; Simms, A.R.; van de Wal, R.S.; Vermeersen, B.L.A.; Pappalardo, M.; Rovere, A. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium. Quat. Sci. Rev. 2018, 185, 122–134. [Google Scholar] [CrossRef]
Description | Malacofauna | Processes | Units |
---|---|---|---|
Clast-supported conglomerates with moderate sorting. Flat base tabular bodies with moderate lateral continuity. Pebbles and cobbles of limestone, sandstone and dolomite. | I. alonensis S. candidissima | Sheet flows | P2 |
Clast-supported conglomerates with good to moderate sorting. Erosive base and low lateral continuity and thickness. Locally cross-stratification and positive graded. | Ephemeral channels | ||
Matrix-supported conglomerates with very poor sorting and scattered blocks. Clayey and medium size sandy matrix. Massive bodies with great thickness. | Debris flows | ||
Clast-supported medium to coarse sandstones with moderate sorting interbedded with thin lutitic layers. Massive or with diffuse amalgamated bodies marked by lutites. Commonly paleosols. | Sandy flat | ||
Lutites and poorly cemented sandstones. Commonly rizoliths and root traces. | T. fluviatilis Melanopsis sp. I. alonensis | Marsh | P1 |
Bluish lutites. | T. fluviatilis Melanopsis sp. | Permanent sheet of water and protected zones | |
Clast-supported conglomerates with well to moderate sorting. Erosive base and high lateral continuity of tens of meters. Locally cross-stratification and positive graded. Pebbles and cobbles of limestone and flint. | I. alonensis (locally T. fluviatilis Melanopsis sp.) | Relative stable channels | |
Stromatolite-like tufa levels. | Often associated with lumaquela levels with T. fluviatilis Melanopsis sp. | Permanent sheet of water and microbial activity over plant debris |
238U (ppb) | 232Th (ppt) | 230Th/232Th (Atomic × 10−6) | d234U * (Measured) | d234UInitial ** (Corrected) | 230Th Age (yr BP) *** (Corrected) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1727.0 | ±2.7 | 339,607 | ±6814 | 87 | ±2 | 397.3 | ±1.9 | 573 | ±5 | 129,406 | ±2729 |
1192.7 | ±6.3 | 186,664 | ±3870 | 110 | ±2 | 438.2 | ±3.6 | 624 | ±7 | 125,115 | ±2485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas-González, J.; Díez-Canseco, D.; Elez, J.; Pérez-Mejías, C.; Cheng, H.; Cañaveras, J.C. Inland Record of the Last Interglacial Maximum in the Western Mediterranean: Revealing the Aljezares Pleistocene Basin (Alicante, SE-Spain). Geosciences 2023, 13, 385. https://doi.org/10.3390/geosciences13120385
Cuevas-González J, Díez-Canseco D, Elez J, Pérez-Mejías C, Cheng H, Cañaveras JC. Inland Record of the Last Interglacial Maximum in the Western Mediterranean: Revealing the Aljezares Pleistocene Basin (Alicante, SE-Spain). Geosciences. 2023; 13(12):385. https://doi.org/10.3390/geosciences13120385
Chicago/Turabian StyleCuevas-González, Jaime, Davinia Díez-Canseco, Javier Elez, Carlos Pérez-Mejías, Hai Cheng, and Juan Carlos Cañaveras. 2023. "Inland Record of the Last Interglacial Maximum in the Western Mediterranean: Revealing the Aljezares Pleistocene Basin (Alicante, SE-Spain)" Geosciences 13, no. 12: 385. https://doi.org/10.3390/geosciences13120385
APA StyleCuevas-González, J., Díez-Canseco, D., Elez, J., Pérez-Mejías, C., Cheng, H., & Cañaveras, J. C. (2023). Inland Record of the Last Interglacial Maximum in the Western Mediterranean: Revealing the Aljezares Pleistocene Basin (Alicante, SE-Spain). Geosciences, 13(12), 385. https://doi.org/10.3390/geosciences13120385