The Mahout Structure in the Central Desert of Oman: A Possible Simple Impact Crater
Abstract
:1. Introduction
- Impact pits formed by intact meteorites.
- Impact craters formed by broken up and deformed meteorites, but the target materials are not subjected to shock metamorphism.
- Simple hypervelocity craters, consisting of uplifted and overturned rim rocks and a breccia lens.
- Complex hypervelocity craters that are relatively shallow in terms of depth–diameter ratio, with a central uplifted area and slumped or depressed rim structure.
2. Geological Setting
3. Methodology and Results
3.1. Geology of Mahout Structure
3.2. Petrology
3.2.1. Melt-Bearing Polymict Breccia from the Crater Center (Suevite)
- Type A breccia
- 2.
- Type B breccia
- 3.
- Type C Breccia
3.2.2. Rim Lithologies
- Lithic silica breccia (Agate–jasper Breccia)
- 2.
- Quartzite
- 3.
- Silica iron-rich breccia
- 4.
- Iron oxide
3.3. XRD Analysis
3.4. Geochemistry
3.5. Hydrothermal Alteration
3.6. Geophysical Survey
4. Discussion
5. Conclusions
- The Mahout structure can be recognized as the first possible impact structure Oman, based on the occurrence of shatter cones and the presence of shock deformation features in quartz, feldspar, and calcite clasts in several rock samples.
- The structure was formed in mixed sedimentary–igneous strata of late Proterozoic age (sandstones, siltstones, shales, carbonate, and volcanic and basement rocks).
- The structure has most features of a simple impact crater associated with an oblique impact (<30°), such as sub-elliptical bowl shape, the ejecta blanket distribution (extending to the immediate northeast and east of the structure with a bilateral shape), high-pressure minerals (coesite) and deformation features (common planar fractures (PFs), feather features (FFs), and shatter cones),melt-rich polymict breccia, and metamorphosed rim lithologies.
- The date of the crater-forming impact event is estimated to be during the K-Pg, based on the late Cretaceous age proposed for the peneplanation of the central desert of Oman and Cenozoic faulting cutting through the crater area.
- No traces of meteoritic material have been found so far.
- Alternative source processes such as salt dome, volcanic, and tectonic origin of the Mahout structure can be excluded as its origin of formation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engelhardt, W.V. Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany—A review. Tectonophysics 1990, 171, 259–273. [Google Scholar] [CrossRef]
- Engelhardt, W.V. Suevite breccia of the Ries impact crater, Germany: Petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteorit. Planet. Sci. 1997, 32, 545–554. [Google Scholar] [CrossRef]
- Osinski, G.R.; Grieve, R.A.F.; Ferrière, L.; Losiak, A.; Pickersgill, A.E.; Cavosie, A.J.; Hibbard, S.M.; Hill, P.J.A.; Bermudez, J.J.; Marion, C.L.; et al. Impact earth: A review of the Terrestrial Impact Record. Earth-Sci. Rev. 2022, 232, 104112. [Google Scholar] [CrossRef]
- Impact Crater Database: November 2023. Available online: www.passc.net/EarthImpactDatabase/ (accessed on 23 October 2023).
- Bland, P.A.; Artemieva, N.A. The rate of small impacts on Earth. Meteorit. Planet. Sci. 2006, 41, 607–631. [Google Scholar] [CrossRef]
- Dence, M.R. The extraterrestrial origin of Canadian craters. Ann. N. Y. Acad. Sci. 1965, 123, 941–969. [Google Scholar] [CrossRef]
- Dence, M.R. The nature and significance of terrestrial impact structures. Int. Geol. Congr. Proc. 1972, 24, 77–89. [Google Scholar]
- Halliday, I.; Griffin, A.A.; Blackwell, A.T. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteorit. Planet. Sci. 1996, 31, 185–217. [Google Scholar] [CrossRef]
- Nemtchinov, I.V.; Svetsov, V.V.; Kosarev, I.B.; Golub’, A.P.; Popova, O.P.; Shuvalov, V.V.; Spalding, R.E.; Jacobs, C.; Tagliaferri, E. Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 1997, 130, 259–274. [Google Scholar] [CrossRef]
- Kenkmann, T.; Poelchau, M.; Wulf, G. Structural geology of impact craters. J. Struct. Geol. 2014, 62, 156–182. [Google Scholar] [CrossRef]
- Morbidelli, A.; Jedicke, R.; Bottke, W.F.; Michel, P.; Tedesco, E.F. From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard. Icarus 2002, 158, 329–342. [Google Scholar] [CrossRef]
- French, B.M.; Cordua, W.S.; Plescia, J. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz. Geol. Soc. Am. Bull. 2004, 116, 200–218. [Google Scholar] [CrossRef]
- Ferriere, L.; Morrow, J.R.; Amgaa, T.; Koeberl, C. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results. Meteorit. Planet. Sci. 2009, 44, 925–940. [Google Scholar] [CrossRef]
- Losiak, A.; Wild, E.M.; Huber, M.S.; Wisniowski, T.; Paavel, K.; Joeleht, A.; Välja, R.; Plado, J.; Kriiska, A.; Wilk, J.; et al. Dating Kaali Crater (Estonia) based on Charcoal emplaced within proximal ejecta blanket. Meteorit. Planet. Sci. 2016, 51, 681–695. [Google Scholar] [CrossRef]
- Losiak, A.; Jõeleht, A.; Plado, J.; Szyszka, M.; Kirsimäe, K.; Wild, E.M.; Steier, P.; Belcher, C.M.; Jazwa, A.M.; Helde, R. Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia). Meteorit. Planet. Sci. 2020, 55, 274–293. [Google Scholar] [CrossRef]
- Losiak, A.; Belcher, C.M.; Plado, J.; Jõeleht, A.; Herd, C.D.K.; Kofman, R.S.; Szokaluk, M.; Szczuciński, W. Small impact cratering processes produce distinctive charcoal assemblages. Geology 2022, 50, 1276–1280. [Google Scholar] [CrossRef]
- French, B.M. Sudbury structure, Ontario: Some petrographic evidence for an origin by meteorite impact. In Shock Metamorphism of Natural Materials; French, B.M., Short, N.M., Eds.; Mono Book Corporation: Baltimore, MD, USA, 1968; pp. 383–412. [Google Scholar]
- Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes: II. Physical properties of shocked minerals. Fortschr. Miner. 1974, 51, 256–289. [Google Scholar]
- Von Engelhardt, W.; Stoffler, D. Stages of shock metamorphism in crystalline rocks of the Ries Basin, Germany. In Shock Metamorphism of Natural Materials; French, B.M., Short, N.M., Eds.; Mono Book Corporation: Baltimore, MD, USA, 1968; pp. 159–168. [Google Scholar]
- Stöffler, D.; Langenhorst, F. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 1994, 29, 155–181. [Google Scholar] [CrossRef]
- Grieve, R.A.F.; Pilkington, M. The signature of terrestrial impacts. J. Aust. Geol. Geophys. 1996, 16, 399–420. [Google Scholar]
- French, B.M. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Craters; Contribution CB-954; Lunar and Planetary Institute: Houston, TX, USA, 1998; p. 120. [Google Scholar]
- French, B.M.; Koeberl, C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Sci. Rev. 2010, 98, 123–170. [Google Scholar] [CrossRef]
- Glikson, A.; Uysal, I.T.; Gerald, J.D.F.; Sayg, E. Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 2013, 589, 57–76. [Google Scholar] [CrossRef]
- Poelchau, M.H.; Kenkmann, T. Feather features: A low-shock-pressure indicator in quartz. J. Geophys. Res. 2011, 116, B02201. [Google Scholar] [CrossRef]
- Levell, B.; Richard, P.; Hoogendijk, F. Apossible Albian impact craterat Murshid, southern Oman. GeoArabia 2002, 7, 721–730. [Google Scholar] [CrossRef]
- Olds, P. Evidence in Oman for Mantle Excavating Hypervelocity Impact at the Cenomanian-Turonian Boundary? Acta Geol. Sin. 2020, 4 (Suppl. S1), 44. [Google Scholar] [CrossRef]
- Kenkmann, T.; Afifi, A.; Stewart, S.; Michael HPoelchau, M.; Cook, D.; Nevelle, A. Saqqar: A 34 km diameter impact structure in Saudi Arabia. Meteorit. Planet. Sci. 2015, 50, 1925–1940. [Google Scholar] [CrossRef]
- Prescott, J.R.; Robertson, G.B.; Shoemaker, C.; Shoemaker, E.M.; Wynn, J. Luminescence dating of the Wabar meteorite craters, Saudi Arabia. J. Geophys. Res. 2004, 109, 1–8. [Google Scholar] [CrossRef]
- Fazio, A.; Folco, A.; D’Orazio, M.; Frezzotti, M.; Cordier, C. Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt. Meteorit. Planet. Sci. 2014, 49, 2175–2200. [Google Scholar] [CrossRef]
- Kenkmann, T.; Sturm, S.; Krüger, T.; Salameh, E.; Al-Raggad, M.; Konsul, K. The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan. Meteorit. Planet. Sci. 2017, 52, 1351–1370. [Google Scholar] [CrossRef]
- Loosveld, R.; Bell, A.; Terken, J. The tectonic evolution of interior Oman. GeoArabia 1996, 1, 28–51. [Google Scholar] [CrossRef]
- Reuning, L.; Shoenherr, J.; Hermann, A. Constraints on the diagenesis, stratigraphy and internal dynamics of the surface-piercing salt domes in the Ghaba Salt Basin (Oman): A comparison to the Ara Group in the South Oman Salt Basin. GeoArabia 2009, 14, 83–120. [Google Scholar] [CrossRef]
- Allen, P.A.; Leather, J. Post-Marinoan marine siliciclastic sedimentation: The Masirah Bay Formation, Neoproterozoic Huqf Supergroup of Oman. Precambrian Res. 2006, 144, 167–198. [Google Scholar] [CrossRef]
- Allen, P.A.; Leather, J.; Brasier, M.D. The Neoproterozoic Fiq glaciation and its aftermath, Huqf Supergroup of Oman. Basin Res. 2004, 16, 507–534. [Google Scholar] [CrossRef]
- Rieu, R.; Allen, P.A.; Cozzi, A.; Kosler, J.; Bussy, F. A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: Integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman. J. Geol. Soc. 2007, 164, 997–1009. [Google Scholar] [CrossRef]
- Dubreuilh, J.; Platel, J.P.; Le M’etour, J.; Roger, J.; Wyns, R.; Bechennec, F.; Berthiaux, A. Geological Map of Khaluf, Sheet NF 40-15, Scale 1:250,000; Directorate General of Minerals, Oman Ministry of Petroleum and Minerals: Muscat, Oman, 1992. [Google Scholar]
- Jaret, S.J.; Kah, L.C.; Harris, R.S. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania. Meteorit. Planet. Sci. 2014, 49, 1007–1022. [Google Scholar] [CrossRef]
- Jaret, S.J.; Johnson, J.R.; Sims, M.; DiFrancesco, N.; Glotch, T.D. Microspectroscopic and petrographic comparison of experimentally shocked albite, andesine, and bytownite. J. Geophys. Res. 2018, 123, 1701–1722. [Google Scholar] [CrossRef]
- Pickersgill, A.E.; Jaret, S.J.; Pittarello, L.; Fritz, J.; Harris, R.S. Shock effects in feldspars: An overview. In Large Meteorite Impacts and Planetary Evolution VI; Reimold, W.U., Koeberl, C., Eds.; Geological Society of America: Boulder, CO, USA, 2021; Volume 550, pp. 507–535. [Google Scholar]
- Graup, G. Carbonate-silicate liquid immiscibility upon impact melting: Ries Crater, Germany. Meteorit. Planet. Sci. 1999, 34, 425438. [Google Scholar] [CrossRef]
- Mittlefehldt, D.W.; Horz, F.; See, T.H.; Scott, E.R.D.; Mertzman, S.A. Geochemistry of target rocks, impact melt particles, and metallic spherules from Meteor Crater, Arizona: Empirical evidence on the impact process. Geol. Soc. Am. Spec. Pap. 2005, 384, 367–390. [Google Scholar]
- Hagerty, J.J.; Newsom, H.E. Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars. Meteorit. Planet. Sci. 2003, 38, 365–381. [Google Scholar] [CrossRef]
- Naumov, M.V. Principal features of impact-generated hydrothermal circulation systems: Mineralogical and geochemical evidence. Geofluids 2005, 5, 165–184. [Google Scholar] [CrossRef]
- Osinski, G.R.; Spray, J.G. Impact-generated carbonate melts: Evidence from the Haughton Structure, Canada. Earth Planet. Sci. Lett. 2001, 194, 17–29. [Google Scholar] [CrossRef]
- Osinski, G.R.; Lee, P.; Spray, J.G.; Parnell, J.; Lim, D.S.S.; Bunch, T.E.; Cockell, C.S.; Glass, B.J. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteorit. Planet. Sci. 2005, 40, 1759–1776. [Google Scholar] [CrossRef]
- Osinski, G.; Grieve, R.; Collins, S.; Marion, C.; Sylveter, P. The effect of target lithology on the products of impact melting The effect of target lithology on the products of impact melting. Meteorit. Planet. Sci. 2008, 43, 1939–1954. [Google Scholar] [CrossRef]
- Grieve, R.A.F.; Dence, M.R.; Robertson, P.B. Cratering processes: As interpreted from the occurrences of impact melts. In Impact and Explosion Cratering; Roddy, D.J., Pepin, R.O., Merrill, R.B., Eds.; Pergamon Press: New York, NY, USA, 1977; pp. 791–814. [Google Scholar]
- Grieve, R.A.F.; Cintala, M.J. An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 1992, 27, 526–538. [Google Scholar] [CrossRef]
- Hughes, D.W. The approximate ratios between the diameters of terrestrial impact craters and the causative incident asteroids. Mon. Not. R. Astron. Soc. 2003, 338, 999–1003. [Google Scholar] [CrossRef]
- Marchia, S.; Barbieria, C.; Kueppers, M.; Marzaric, F.; Davidssond, B.; Keller, H.U.; Besse, S.P.; Lamy, F.; Mottolag, S.; Massironih, M.; et al. The Cratering History of Asteroid (2867) Steins. Planet. Space Sci. 2010, 58, 1116–1123. [Google Scholar] [CrossRef]
- Gault, D.E.; Wedekind, J.A. Experimental studies of oblique impact. In Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; pp. 3843–3875. [Google Scholar]
- Herrick, R.R.; Forsberg-Taylor, N.K. The shape and appearance of craters formed by oblique impact on the Moon and Venus. Meteorit. Planet. Sci. 2003, 38, 1551–1578. [Google Scholar] [CrossRef]
- Herrick, R.R.; Hessen, K.K. The planforms of low-angle impact craters in the northern hemisphere of Mars. Meteor. Planet. Sci. 2006, 41, 1483–1495. [Google Scholar] [CrossRef]
- Bottke, W.F.; Love, S.G.; Tytell, D.; Glotch, T. Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus 2000, 145, 108–121. [Google Scholar] [CrossRef]
- Poelchau, M.H.; Kenkmann, T. Asymmetric signatures in simple craters as an indicator for an oblique impact direction. Meteorit. Planet. Sci. 2008, 43, 2059–2072. [Google Scholar] [CrossRef]
- Bryan, J.B.; Burton, D.E.; Lettis, L.A.; Morris, L.K.; Johnson, W.E. Calculations of Impact Crater Size Versus Meteorite Velocity. Lunar Planet. Sci. XI P 1980, 11, 112–114. [Google Scholar]
- Melosh, H.; Collins, G. Meteor Crater formed by low-velocity impact. Nature 2005, 434, 157. [Google Scholar] [CrossRef]
- Stöffler, D. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J. Geophys. Res. 1971, 76, 5541–5551. [Google Scholar] [CrossRef]
- Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes: I. Behavior of minerals under shock compression. Fortschr. Mineral. 1972, 49, 50.e113. [Google Scholar]
- Stöffler, D.; Hamann, C.; Metzler, K. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci. 2018, 53, 5–49. [Google Scholar] [CrossRef]
- Kieffer, S.W.; Phakey, P.P.; Christie, J.M. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contrib. Mineral. Petrol. 1976, 59, 41–93. [Google Scholar] [CrossRef]
- Kowitz, A.; Guldemeister, N.; Reimold, W.U.; Schmitt, R.T.; Wunnemann, K. Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling. Earth Planet. Sci. Lett. 2013, 384, 17–26. [Google Scholar] [CrossRef]
- McDonnell, A.; Loucks, R.G.; Dooley, T. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration? AAPG Bull. 2007, 91, 1295–1318. [Google Scholar] [CrossRef]
- Bertoni, C.; Cartwright, J. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. J. Geol. Soc. 2005, 162, 909–926. [Google Scholar] [CrossRef]
- Stewart, S. Seismic interpretation of circular geological structures. Pet. Geosci. 1999, 5, 273–285. [Google Scholar] [CrossRef]
- Worthing, M.; Nasir, S. Cambro-Ordovician potassic (alkaline) magmatism in Central Oman: Petrological and geochemical constraints on petrogenesis. Lithos 2008, 106, 25–38. [Google Scholar] [CrossRef]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef]
- Nicholson, Y.; Bray, V.; Gulick, S.P.; Aduomahor, B. The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure. Sci. Adv. 2022, 8, eabn3096. [Google Scholar] [CrossRef] [PubMed]
- Pickersgill, A.E.; Mark, D.F.; Lee, M.R.; Kelley, S.P.; Jolley, D.W. The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction. Sci. Adv. 2021, 7, eabe6530. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, M.; Grieve, R.A.F. The geophysical signature of terrestrial impact craters. Rev. Geophys. 1992, 30, 161–181. [Google Scholar] [CrossRef]
Sample * | Type A Breccia | Type B Breccia | Type C Breccia | Black Glasses | Yellow Glasses | Brown Glasses | Silica Breccia | Si-Fe Breccia | Iron Oxide | Silica Glasses |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 wt.% | 48.69 | 47.24 | 37.05 | 62.44 | 51.50 | 57.72 | 86.9 | 51.1 | 5.8 | 98.5 |
TiO2 | 2.75 | 2.69 | 2.10 | 0.47 | 2.3 | 0.01 | 0.039 | 0.06 | 1.52 | ND |
Al2O3 | 16.23 | 16.52 | 11.0 | 17.05 | 16.22 | 12.53 | 0.78 | 1.19 | 2.95 | 1.1 |
Fe2O3 | 9.50 | 4.54 | 9.12 | 4.52 | 8.10 | 27.05 | 9.84 | 42.88 | 74.84 | 0.3 |
MnO | 0.14 | 0.19 | 0.29 | 0.07 | 0.03 | 0.03 | 0.10 | 0.04 | 0.16 | ND |
MgO | 3.39 | 2.14 | 5.76 | 0.84 | 4.91 | 0.28 | 0.29 | 0.29 | 0.65 | ND |
CaO | 10.60 | 15.31 | 22.69 | 0.41 | 6.93 | 0.58 | 1.179 | 3.12 | 12.13 | ND |
Na2O | 2.73 | 2.73 | 0.70 | 0.62 | 1.66 | 0.1 | 0.12 | 0.16 | 0.35 | ND |
K2O | 4.1 | 6.51 | 4.99 | 11.89 | 6.03 | 0.13 | 0.64 | 0.54 | 0.73 | ND |
Cr ppm | 132 | 137 | 90 | 51 | 70 | 62 | 366 | 308 | 83 | Glass analyzed by EMPA Breccia analyzed by XRF |
Co | 45 | 64 | 35 | 5.2 | 20.4 | 9.9 | 16.8 | 27.6 | 59 | |
Ni | 63.7 | 55 | 65 | 43 | 54 | 34 | 23 | 31 | 266 | |
Zn | 437 | 857 | 59 | ND | ND | ND | 35.7 | 236 | 920 | |
Ga | 15.5 | 13.6 | 12.6 | ND | ND | ND | 0.9 | 5.4 | 8 | |
As | 1.7 | 2.4 | 17.5 | ND | ND | ND | 6.97 | 84.4 | 53 | |
Se | 0.5 | 0.16 | 2.2 | ND | ND | ND | 1.0 | 8.2 | 16. | |
Rb | 30 | 30. | 25 | 169 | 97 | 195 | 12.7 | 13.6 | 5.6 | |
Sr | 356. | 270 | 142 | 116 | 129 | 124 | 224 | 455 | 504 | |
Y | 22.6 | 21.1 | 16.1 | 20.2 | 18.1 | 18.5 | 2.7 | 4.4 | 6.1 | |
Zr | 187 | 159 | 111 | 234 | 173 | 201 | 14.2 | 38.6 | 52 | |
Nb | 17.4 | 16.9 | 11.6 | 9.50 | 10.5 | 10 | 1.2 | 2.3 | 12 | |
Ba | 268 | 295 | 159 | 441 | 300 | 411 | 400 | 308 | 300 | |
W | 1.1 | 1.0 | 1.1 | ND | ND | ND | 167 | 13.4 | 12 | |
Pb | 3.0 | 2.8 | 1.7 | ND | ND | ND | 11.8 | 38.2 | 49 | |
Th | 2.8 | 2.9 | 3.2 | 15.7 | 9.5 | 17.5 | ND | ND | 6.1 | |
U | 2.38 | 1.40 | 1.22 | 1.53 | 1.37 | 1.40 | 1.23 | 5.99 | 8.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasir, S.; Economou, N.; Al Hooti, K.; Al Hosni, T.; Spratley, S.; Spratley, B. The Mahout Structure in the Central Desert of Oman: A Possible Simple Impact Crater. Geosciences 2023, 13, 363. https://doi.org/10.3390/geosciences13120363
Nasir S, Economou N, Al Hooti K, Al Hosni T, Spratley S, Spratley B. The Mahout Structure in the Central Desert of Oman: A Possible Simple Impact Crater. Geosciences. 2023; 13(12):363. https://doi.org/10.3390/geosciences13120363
Chicago/Turabian StyleNasir, Sobhi, Nikos Economou, Khalil Al Hooti, Talal Al Hosni, Sean Spratley, and Brian Spratley. 2023. "The Mahout Structure in the Central Desert of Oman: A Possible Simple Impact Crater" Geosciences 13, no. 12: 363. https://doi.org/10.3390/geosciences13120363
APA StyleNasir, S., Economou, N., Al Hooti, K., Al Hosni, T., Spratley, S., & Spratley, B. (2023). The Mahout Structure in the Central Desert of Oman: A Possible Simple Impact Crater. Geosciences, 13(12), 363. https://doi.org/10.3390/geosciences13120363