The Petrology and Geochemistry of REE-Enriched, Alkaline Volcanic Rocks of Ambitle Island, Feni Island Group, Papua New Guinea
Abstract
:1. Introduction
2. Alkaline Magmatism in PNG
3. Materials and Methods
4. Results
4.1. Alkali vs. Silica Volcanic Rock Classification
4.2. Petrography and Mineral Chemistry
4.2.1. Mafic Volcanic Lava Suite
Olivine–Clinopyroxene Basalt
Clinopyroxene Basalt
Pyroxene-Olivine Phonotephrite
4.2.2. Intermediate and Felsic Subvolcanic Suite
Clinopyroxene-Hornblende Phonotephrite
Hornblende Trachyandesite
Biotite Trachydacite
Olivine Mineral Chemistry
Clinopyroxene Mineral Chemistry
Feldspar Plagioclase Mineral Chemistry
Amphibole Mineral Chemistry
Mica Mineral Chemistry
Accessory Mineral Chemistry-Ti Magnetite, Magnetite, and Apatite
4.3. Whole-Rock Geochemistry
4.3.1. Major Elements
4.3.2. Trace Elements
4.3.3. Normalized Trace Element Patterns
4.3.4. Rare Earth Elements of Feni vs. Other Arcs
4.3.5. Rare Earth Elements of Feni Volcanic Rocks
4.3.6. Discrimination and Classification Diagrams Using Trace Elements
5. Discussion
- Olivine
- Clinopyroxene
- Feldspathoid
- Hornblende
- Plagioclase and feldspar
- Biotite
- Apatite
5.1. Major Element Geochemistry
- (1)
- Olivine, clinopyroxene, and amphibole fractionation removes MgO and Fe2O3 from the melt.
- (2)
- Clinopyroxene, amphibole, anorthite, and apatite fractionation removes CaO from the melt.
- (3)
5.2. Trace Element Geochemistry
6. Conclusions
- The main process controlling the major elemental variation in the alkaline lavas of Ambitle is fractional crystallization. High LILE (i.e., Ba, Sr, K) and depleted HFSE (Nb, Ti, Y, Th) values are typical arc signatures of the Feni rocks. The presence of LREE enrichment and depletions in MREE and HREE are signatures indicative of hornblende and clinopyroxene fractionation in the source region.
- Clinopyroxene fractionation is dominant in the mafic lavas, whereas hornblende fractionation is a major petrologic process within the phonotephrite and trachyandesite suites. Due to the presence of more feldspathoids in the primitive lavas relative to the evolved rocks, it is concluded that the addition of hornblende to the fractionating assemblage of trachyandesite (and phonotephrite) suites inhibits the crystallization of feldspathoid.
- Although plagioclase is a dominant mineral phase, REE plots lack a negative Eu anomaly, implying that there was limited or no plagioclase fractionation in the source region or that it fractionated later, potentially as a result of high-water content in the melt. Earlier higher-pressure fractionation would also inhibit plagioclase fractionation.
- The typical signatures of olivine fractionation are not observed in the REE spidergram plots of Feni. We interpret olivine as a largely xenocrystic phase with forsteritic or Mg-rich compositions and appreciable concentrations of Ni and Cr. This signifies a mantle origin for the forsterite olivine xenocrysts in the Feni basalts. Most of the mafic or basaltic rock types of Feni analyzed in this study are clinopyroxene-rich with minor olivine.
- As a result of the abundance of clinopyroxene and feldspathoids at the expense of olivine in the mafic, basaltic rocks, we are proposing the limestone assimilation model offered by Iacono Marziano et al. [48] and references therein. We believe that due to the abundance of older carbonate-rich limestone within New Ireland, NIB, and the TLTF, assimilation or incorporation during extensional periods may also contribute to the formation of localized silica undersaturated magmas. A negative Ce anomaly in basalts also supports the involvement of sediment assimilation into the melt. Magmatic SCHARM may also be responsible for contributing additional carbonate and alkali elements into the magmas [37].
- The presence of clinopyroxene is also an important precursor to the formation of amphibole as observed texturally under the optical microscope with hornblende replacing clinopyroxene. This also implies open system processes whereby fluids percolate into the magma chamber and interact with clinopyroxene crystals to form amphibole. The presence of OH-bearing mafic minerals such as amphibole and biotite, and the late fractionation of plagioclase signifies a hydrous or high-water magma content.
- Hornblende fractionation was polybaric as deduced from the compositional variation of amphibole in trachyandesite and phonotephrite. Magnesiohastingsite is the main amphibole species in both rock types but phonotephrite has pargasitic composition and formed at greater depths and higher temperatures with less melt H2O, whereas the trachyandesite primarily contained magnesiohastingsite and was formed at shallower depths and lower temperatures with higher H2O content. Hornblende, Ti-magnetite, and apatite are observed to occur in clusters within the trachyandesite suite.
- The abundance of apatite and the appearance of other accessory mineral phases (e.g., titanite or other phosphate minerals) in the alkaline Feni magmas past the 52 wt% SiO2 mark also has an influence on REE and HFSE fractionation and enrichment. REE is elevated in Feni and the TLTF in contrast to the other neighboring arcs and poses an opportunity for REE mineral exploration in the TLTF (in addition to Au and Cu). Thus, apatite fractionation may also control the behavior of trace and rare earth elements in alkaline lavas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponyalou, O.L.; Petterson, M.G.; Espi, J.O. The Geological and Tectonic Evolution of Feni, Papua New Guinea. Geosciences 2023, 13, 257. [Google Scholar] [CrossRef]
- Wallace, D.; Johnson, R.; Chappell, B.; Arculus, R.; Perfit, M.; Crick, I. Cainozoic Volcanism of the Tabar, Lihir, Tanga and Feni Islands, Papua New Guinea: Geology, Whole-Rock Analyses and Rock-Forming Mineral Compositions; Australian Government Publishing Service for the Bureau of Mineral Resources: Canberra, Australia, 1983. Available online: https://nla.gov.au/nla.cat-vn1276195 (accessed on 27 September 2021).
- Rytuba, J.J.; McKee, E.H.; Cox, D.P. Geochronology and geochemistry of the Ladolam gold deposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua New Guinea. US Geol. Surv. Bulletin. 1993, 2039, 119–126. [Google Scholar]
- Gleeson, K.; Butt, S.; O’Callaghan, J.; Jones, C. Lihir Operations Aniolam Island Papua New Guinea NI 43-101 Technical Report; Newcrest Mining Limited: Melbourne, Australia, 2020; p. 116. [Google Scholar]
- St Barbara Limited. Ore Reserves and Mineral Resources Statements as at 30 June 2020. In ASX Release/24 August 2020; St Barbara Limited: Melbourne, Australia, 2020. [Google Scholar]
- Lindley, I.D. Late Quaternary geology of Ambitle Volcano, Feni Island Group, Papua New Guinea. Aust. J. Earth Sci. 2015, 62, 529–545. [Google Scholar] [CrossRef]
- Lindley, I.D. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar–Lihir–Tanga–Feni alkalic province, New Ireland Basin, Papua New Guinea. Tectonophysics 2016, 677–678, 312–323. [Google Scholar] [CrossRef]
- Lindley, I.D. Matangkaka manganese deposit, Ambitle Island, Feni Island Group, Papua New Guinea: A Quaternary epithermal stratabound manganese oxide deposit. Aust. J. Earth Sci. 2022, 69, 26–46. [Google Scholar] [CrossRef]
- Brandl, P.; Hannington, M.; Geersen, J.; Petersen, S.; Gennerich, H. The submarine tectono-magmatic framework of Cu-Au endowment in the Tabar-to-Feni island chain, PNG. Ore Geol. Rev. 2020, 121, 103491. [Google Scholar] [CrossRef]
- O’Kane, T.P. 3-D Structure and Tectonic Evolution of the Papua New Guinea and Solomons Island Region and Its Relationship to Cu-Au Mineralisation. Unpublished B.Sc. Honours’ Thesis, Research School of Earth Sciences, Australian National University, Canberra, Australia, 2008. [Google Scholar]
- Mackenzie, D.E.; Chappell, B.W. Shoshonitic and calc-alkaline lavas from the Highlands of Papua New Guinea. Contrib. Mineral. Petrol. 1972, 35, 50–62. [Google Scholar] [CrossRef]
- Zhang, J.; Davidson, J.P.; Humphreys, M.C.S.; Macpherson, C.G.; Neill, I. Magmatic Enclaves and Andesitic Lavas from Mt. Lamington, Papua New Guinea: Implications for Recycling of Earlier-fractionated Minerals through Magma Recharge. J. Petrol. 2015, 56, 2223–2256. [Google Scholar] [CrossRef]
- Holm, R.; Poke, B. Petrology and crustal inheritance of the Cloudy Bay Volcanics as derived from a fluvial conglomerate, Papuan Peninsula (Papua New Guinea): An example of geological inquiry in the absence of in-situ outcrop. Cogent Geosci. 2018, 4, 1450198. [Google Scholar] [CrossRef]
- Leslie, R. Primitive Shoshonites from Fiji: Mineralogy, Melt Inclusions and Geochemistry; University of Tasmania: Hobart, Australia, 2004. [Google Scholar] [CrossRef]
- Leslie, R.A.J.; Danyushevsky, L.V.; Crawford, A.J.; Verbeeten, A.C. Primitive shoshonites from Fiji: Geochemistry and source components. Geochem. Geophys. Geosyst. 2009, 10, 1–24. [Google Scholar] [CrossRef]
- Cooke, D.R.; Wilson, A.J.; House, M.J.; Wolfe, R.C.; Walshe, J.L.; Lickfold, V.; Crawford, A.J. Alkalic porphyry Au—Cu and associated mineral deposits of the Ordovician to Early Silurian Macquarie Arc, New South Wales. Aust. J. Earth Sci. 2007, 54, 445–463. [Google Scholar] [CrossRef]
- Holwell, D.A.; Fiorentini, M.; McDonald, I.; Lu, Y.; Giuliani, A.; Smith, D.J.; Keith, M.; Locmelis, M. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat. Commun. 2019, 10, 3511. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Wallace, D.A.; Ellis, D.J. Feldspathoid-bearing potassic rocks and associated types from volcanic islands off the coast of New Ireland, Papua New Guinea: A preliminary account of geology and petrology. In Volcanism in Australasia: A Collection of Papers in Honour of the Late G.A.M. Taylor, G.C.; Johnson, R.W., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 297–316. [Google Scholar]
- Heming, R. Undersaturated lavas from Ambittle Island, Papua New Guinea. Lithos 1979, 12, 173–186. [Google Scholar] [CrossRef]
- Licence, P.S.; Terrill, J.E.; Fergusson, L.J. Epithermal gold mineralization, Ambitle Island, Papua New Guinea. In Proceedings of the Pacific Rim Congress 87, Gold Coast, Australia, 26–29 August 1987; The Australasian Institute of Mining & Metallurgy: Carlton, Melbourne, 1987; pp. 273–278. [Google Scholar]
- Carter, K.E. P. A. 567-BABASE Annual Report to December 12, 1988; Geological Survey of Papua New Guinea: Port Moresby, Papua New Guinea, 1988. [Google Scholar]
- Esso PNG Company Report, 1983; Esso Highlands PNG Limited: Port Moresby, Papua New Guinea, 1983; unpublished.
- Scott, E. The Petrogenesis of Feni Islands Volcanoes, Papua New Guinea: Post Subduction Volcanic Rocks? University of Leicester: Leicester, UK, 2011. [Google Scholar]
- Leake, B.; Woolley, A.; Birch, W.; Grice, J.; Hawthorne, F.; Kato, A.; Kisch, H.; Vladimir, K.; Laird, J.; Mandarino, J.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Petterson, M.G.; Haldane, M.I.; Smith, D.J.; Billy, D.; Jordan, N.J. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific, and geotectonic implications. Lithos 2011, 125, 915–927. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Eggins, S.M.; Johnson, R.W. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. J. Petrol. 1998, 39, 1641–1668. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Bateman, P.; Dudek, A.; Keller, J.; Lameyre, P.; Le Bas, M.J.; Sabine, P.A.; Schmid, R.; Soerensen, H.; Streckeisen, A. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks; Blackwell: Singapore, 1989. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Ponyalou, L.K.O. The Volcanic Rocks & Sinters of Ambitle Island, Feni Island, New Ireland Province, Papua New Guinea. Unpublished B.Sc. Honours’ Thesis, University of Papua New Guinea, Port Moresby, Papua New Guinea, 2013. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An introduction to the Rock-forming Minerals; Pearson Education Ltd.: London, UK, 2005. [Google Scholar]
- Speer, J.A. Micas in igneous rocks. Rev. Mineral. Geochem. 1984, 13, 299–356. [Google Scholar]
- Loader, M. Mineral Indicators of Porphyry Cu Fertility. Ph.D.′s Thesis, Imperial College London, London, UK, 2017. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Stead, C.V.; Tomlinson, E.L.; McKenna, C.A.; Kamber, B.S. Rare earth element partitioning and subsolidus exchange behaviour in olivine. Chem. Geol. 2017, 475, 1–13. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- McInnes, B.I.A.; Cameron, E.M. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth Planet. Sci. Lett. 1994, 122, 125–141. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Richards, J.P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Ahmed, A.; Crawford, A.J.; Leslie, C.; Phillips, J.; Wells, T.; Garay, A.; Hood, S.B.; Cooke, D.R. Assessing copper fertility of intrusive rocks using field portable X-ray fluorescence (pXRF) data. Geochem. Explor. Environ. Anal. 2019, 20, 81–97. [Google Scholar] [CrossRef]
- Halley, S. Mapping Magmatic and Hydrothermal Processes from Routine Exploration Geochemical Analyses. Econ. Geol. 2020, 115, 489–503. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Grove, T.L.; Johnson, R.W. Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib. Mineral. Petrol. 1990, 104, 722–734. [Google Scholar] [CrossRef]
- Ellis, D.J. A Preliminary Report on the Petrography and Mineralogy of the Feldspathoid-Bearing Potassic Lavas from the Tabar, Lihir, Tanga, and Feni Islands, off the Coast of New Ireland, PNG; 1975/29; Department of Minerals and Energy: Canberra, Australia, 1975. [Google Scholar]
- Gill, R. Igneous Rocks and Processes: A Practical Guide; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Tyler, R.C.; King, B.C. The pyroxenes of the alkaline igneous complexes of eastern Uganda. Mineral. Mag. J. Mineral. Soc. 1967, 36, 5–21. [Google Scholar] [CrossRef]
- Dobosi, G.; Schultz-Güttler, R.; Kurat, G.; Kracher, A. Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria. Mineral. Petrol. 1991, 43, 275–292. [Google Scholar] [CrossRef]
- Iacono Marziano, G.; Gaillard, F.; Pichavant, M. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contrib. Mineral. Petrol. 2008, 155, 719–738. [Google Scholar] [CrossRef]
- Baldridge, W.S.; Carmichael, I.S.E.; Albee, A.L. Crystallization paths of leucite-bearing lavas: Examples from Italy. Contrib. Mineral. Petrol. 1981, 76, 321–335. [Google Scholar] [CrossRef]
- Smith, D. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun. 2014, 5, 4329. [Google Scholar] [CrossRef]
- Cooper, G.F.; Davidson, J.P.; Blundy, J.D. Plutonic xenoliths from Martinique, Lesser Antilles: Evidence for open system processes and reactive melt flow in island arc crust. Contrib. Mineral. Petrol. 2016, 171, 87. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Chelle-Michou, C. Geochronologic and Petrologic Evolution of the Magmatic Suite Associated with the Eocene Coroccohuayco Deposit, and Its Role in the Genesis of the Associated Cu (-Au) Porphyry-Skarn Mineralization, Tintaya District, Peru; University of Geneva: Geneva, Switzerland, 2013. [Google Scholar]
- Holm, R.J.; Spandler, C.; Richards, S.W. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics 2013, 603, 189–212. [Google Scholar] [CrossRef]
Sample | OPN7 | OPN7 | OPN7 | OPN7 |
---|---|---|---|---|
Point | 12 | 13 | 14 | 59 |
Job | emc02 | emc02 | emc02 | emc02 |
SiO2 wt% | 40.01 | 41.86 | 39.88 | 41.30 |
Cr2O3 wt% | 0.10 | 0.06 | 0.00 | 0.07 |
FeO wt% | 6.90 | 7.00 | 10.78 | 6.79 |
MnO wt% | 0.06 | 0.10 | 0.55 | 0.14 |
MgO wt% | 50.19 | 50.42 | 45.58 | 51.63 |
CaO wt% | 0.10 | 0.07 | 0.30 | 0.06 |
NiO wt% | 0.29 | 0.27 | 0.10 | 0.32 |
Total | 97.64 | 99.79 | 97.20 | 100.32 |
Ni (ppm) | 2278.82 | 2145.234 | 777.942 | 2545.992 |
Mg# | 93 | 93 | 88 | 93 |
Te (mole%) | 0.061 | 0.000 | 0.601296 | 0.110 |
Fo (mole%) | 92.6 | 93.8 | 87.4 | 94.02 |
Fa (mole%) | 7.146 | 6.105 | 11.5952 | 5.8 |
Ca-Ol (mole%) | 0.127 | 0.079 | 0.414751 | 0.071 |
Sample Number | OPNA5 | OPNA5 | OPNA5 | OPNA5 | OPN8B | OPN8B | OPN8B |
---|---|---|---|---|---|---|---|
Point | 18 | 19 | 20 | 21 | 7 | 8 | 8 |
Job | 7 | 7 | 7 | 7 | 8 | 8 | 9 |
SiO2 | 40.78 | 40.6 | 40.18 | 40.28 | 38.697 | 40.193 | 39.923 |
TiO2 | 2.26 | 1.84 | 1.94 | 2.12 | 2.805 | 2.654 | 2.601 |
Al2O3 | 12.36 | 12.96 | 13.41 | 12.79 | 14.028 | 13.382 | 13.984 |
Cr2O3 | 0 | 0 | 0.01 | 0.01 | 0 | 0.02 | 0.004 |
FeO | 12.86 | 11.49 | 12.21 | 12.25 | 11.067 | 10.556 | 11.169 |
MnO | 0.28 | 0.12 | 0.16 | 0.22 | 0.229 | 0.197 | 0.189 |
MgO | 13.18 | 14.48 | 13.58 | 13.45 | 13.052 | 13.831 | 13.428 |
CaO | 12.08 | 12.27 | 12.29 | 12.18 | 12.344 | 12.088 | 12.107 |
Na2O | 2.6 | 2.73 | 2.64 | 2.75 | 2.288 | 2.404 | 2.355 |
K2O | 1.4 | 1.28 | 1.23 | 1.29 | 1.615 | 1.635 | 1.553 |
Total | 97.8 | 97.77 | 97.65 | 97.34 | 96.125 | 96.971 | 97.339 |
Mineral | Zoned Hb | Zoned Hb | Zoned Hb | Zoned Hb | Hb spindle | Hb megacryst | Hb megacryst |
Mode of occurrence | Phenocryst | Phenocryst | Phenocryst | Phenocryst | Phenocryst | Phenocryst | Phenocryst |
Species | Magnesiohastingsite | Magnesiohastingsite | Magnesiohastingsite | Magnesiohastingsite | Pargasite | Pargasite | Magnesiohastingsite |
Sample | OPN8B | F12 | F12 | F12 |
---|---|---|---|---|
Point | 10 | 1 | 5 | 7 |
Job | 8 | 3 | 3 | 3 |
SiO2 | 35.26 | 38.57 | 38.44 | 40.65 |
TiO2 | 3.53 | 2.89 | 2.07 | 2.38 |
Al2O3 | 17.47 | 11.41 | 11.26 | 11.46 |
Cr2O3 | 0.07 | 0.03 | 0.05 | 0.07 |
FeO | 12.35 | 12.86 | 13.49 | 12.72 |
MnO | 0.19 | 0.15 | 0.18 | 0.21 |
MgO | 16.08 | 18.03 | 18.02 | 18.98 |
CaO | 0.06 | 0.00 | 0.02 | 0.01 |
Na2O | 1.47 | 0.82 | 1.14 | 0.71 |
K2O | 7.98 | 9.48 | 8.67 | 8.67 |
NiO | 0.02 | 0.02 | 0.00 | 0.00 |
Total | 94.49 | 94.25 | 93.34 | 95.86 |
Al (apfu) | 2.749838089 | 2.022636188 | 2.015425253 | 1.974545278 |
Fe/(Fe + Mg) | 0.3010823 | 0.285744138 | 0.295720045 | 0.273201555 |
Mineral | Biotite | Phlog | Phlog | Phlog |
Mode of occurrence | Inclusion in hornblende phenocryst | Microphenocryst | Microphenocryst | Microphenocryst |
Sample | OPN3 | OPN3 | OPN3 | F12 | F12 | OPNA5 | OPNA5 |
---|---|---|---|---|---|---|---|
Litho | Phon | Phon | Phon | TD | TD | TA | TA |
Point | 28 | 29 | 30 | 8 | 9 | 24 | 25 |
Job | 8 | 8 | 8 | 3 | 3 | 7 | 7 |
SiO2 | 0.1 | 0.13 | 2.69 | 0 | 0 | 0.50 | 0.31 |
TiO2 | 5.79 | 5.69 | 0.04 | 0 | 0 | 0 | 0 |
Al2O3 | 7.83 | 7.32 | 0.37 | 0 | 0 | 0 | 0 |
Cr2O3 | 0.04 | 0.03 | 0.02 | 0 | 0.05 | 0.01 | 0 |
FeO | 68.44 | 68.04 | 0.85 | 0.12 | 0.1 | 0.40 | 0.16 |
MnO | 0.81 | 1.07 | 0.08 | 0.08 | 0.09 | 0.08 | 0.07 |
MgO | 4.23 | 2.97 | 0.95 | 0.05 | 0.04 | 0.14 | 0.09 |
CaO | 0.07 | 1.94 | 50.07 | 52.67 | 52.92 | 54.23 | 54.45 |
Na2O | 0 | 0.06 | 0.02 | 0.26 | 0.10 | 0.09 | 0.06 |
K2O | 0.01 | 0 | 0.04 | 0.01 | 0.01 | ||
Total | 87.31 | 87.31 | 55.12 | 53.22 | 53.29 | 55.50 | 55.13 |
Mineral | Magnetite | Magnetite | Apatite | Apatite | Apatite | Apatite | Apatite |
ID | Rock 1 | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | TiO2 | P2O5 | Cr2O3 or SO3 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F4 | Ba | 46.7 | 9.3 | 16.6 | 9.6 | 10.3 | 1.9 | 1.5 | 0.6 | 0.2 | 0.0 | 0.9 | 97.9 |
F5 | TBa | 48.3 | 15.3 | 11.5 | 10.6 | 6.4 | 3.5 | 2.4 | 0.9 | 0.5 | 0.0 | 0.4 | 100.0 |
F6 | PhoT | 49.1 | 17.8 | 9.0 | 9.8 | 3.8 | 4.7 | 3.7 | 0.8 | 0.6 | 0.0 | 3.0 | 102.6 |
F7 | Ba | 44.8 | 14.2 | 12.8 | 10.4 | 7.3 | 1.7 | 2.0 | 1.0 | 0.4 | 0.0 | 3.5 | 98.4 |
F9 | PhoT | 49.0 | 18.8 | 6.9 | 6.4 | 2.5 | 4.4 | 3.9 | 0.6 | 0.4 | 0.0 | 3.1 | 96.1 |
F11 | Ol-Ba | 47.2 | 10.0 | 15.5 | 10.6 | 10.2 | 2.1 | 1.6 | 0.7 | 0.4 | 0.0 | 1.3 | 99.9 |
F12 | TD | 67.0 | 16.0 | 0.5 | 1.5 | 0.9 | 5.6 | 5.8 | 0.2 | 0.1 | 0.0 | 1.8 | 99.3 |
F16 | Ba | 45.5 | 14.3 | 12.5 | 10.5 | 6.3 | 2.6 | 1.8 | 1.0 | 0.5 | 0.0 | 3.4 | 98.5 |
F19 | Ol-Ba | 44.8 | 13.0 | 14.1 | 9.9 | 8.0 | 1.6 | 1.3 | 1.0 | 0.4 | 0.0 | 1.6 | 95.9 |
F23 | TBa | 49.1 | 18.9 | 8.2 | 7.7 | 2.7 | 3.4 | 2.7 | 0.7 | 0.5 | <0.001 | 2.5 | 96.4 |
OP-N3 | PhoT | 46.3 | 16.8 | 9.7 | 10.3 | 4.3 | 4.8 | 3.9 | 0.9 | 0.8 | 0.1 | 1.7 | 99.8 |
OP-N4C | TD | 65.4 | 16.7 | 0.3 | 2.8 | 1.1 | 7.0 | 2.8 | 0.2 | 0.1 | 0.0 | 2.2 | 99.4 |
OP-N5 | TA | 57.7 | 16.9 | 2.0 | 7.7 | 4.0 | 5.0 | 4.0 | 0.5 | 0.4 | 0.0 | 1.8 | 100.2 |
OP-N8A | Ol-Ba | 46.7 | 13.2 | 13.0 | 11.1 | 7.4 | 2.8 | 2.0 | 0.7 | 0.5 | 0.1 | 2.8 | 100.5 |
OP-N8B | PhoT | 48.1 | 17.7 | 7.2 | 10.0 | 4.3 | 3.8 | 4.3 | 0.8 | 0.7 | 0.1 | 3.0 | 100.1 |
OP-NA1 | TA | 54.1 | 18.3 | 5.9 | 7.6 | 3.2 | 4.5 | 4.2 | 0.7 | 0.3 | 0.0 | 1.0 | 100.1 |
OP-NA5 | TA | 54.4 | 19.5 | 4.5 | 7.4 | 3.2 | 4.9 | 3.7 | 0.6 | 0.4 | 0.1 | 1.1 | 99.9 |
OP-BA1 | TBa | 49.7 | 18.0 | 9.9 | 9.0 | 4.5 | 3.6 | 1.8 | 0.9 | 0.5 | 0.0 | 2.0 | 100.1 |
ID | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F4 | 9.34 | 21.2 | 3.136 | 17.046 | 3.747 | 1.258 | 3.57 | 0.46 | 2.508 | 0.446 | 1.16 | 0.164 | 1.01 | 0.16 | 0.83 | 0.64 |
F5 | 15.2 | 34.6 | 5.084 | 25.516 | 5.57 | 1.834 | 5.3 | 0.697 | 3.905 | 0.739 | 1.98 | 0.282 | 1.75 | 0.28 | 1.11 | 0.82 |
F6 | 22.4 | 46.8 | 6.474 | 31.516 | 6.445 | 2.057 | 6.03 | 0.767 | 4.026 | 0.722 | 1.96 | 0.31 | 1.75 | 0.26 | 2.11 | 1.5 |
F7 | 14.4 | 31.2 | 4.444 | 22.916 | 5.034 | 1.769 | 5.02 | 0.706 | 4.165 | 0.791 | 2.11 | 0.337 | 1.93 | 0.32 | 1.35 | 0.85 |
F9 | 22.3 | 44.5 | 6.071 | 29.016 | 5.811 | 1.797 | 4.93 | 0.697 | 3.506 | 0.636 | 1.87 | 0.282 | 1.67 | 0.28 | 2.21 | 1.77 |
F11 | 12.9 | 29.4 | 4.462 | 23.086 | 5.007 | 1.537 | 4.63 | 0.566 | 2.872 | 0.541 | 1.41 | 0.21 | 1.1 | 0.16 | 0.78 | 0.65 |
F12 | 3.69 | 6.02 | 0.649 | 3.046 | 0.602 | 0.228 | 0.62 | <0.1 | 0.538 | <0.1 | 0.23 | <0.1 | 0.21 | <0.1 | 0.33 | 1.14 |
F14 | 13.4 | 23.2 | 3.566 | 17.586 | 3.291 | 1.221 | 3.86 | 0.513 | 2.985 | 0.576 | 1.62 | 0.228 | 1.38 | 0.23 | 1.2 | 1.03 |
F16 | 14.5 | 31.5 | 4.544 | 23.676 | 5.194 | 1.732 | 5.26 | 0.697 | 3.861 | 0.739 | 2.04 | 0.301 | 1.82 | 0.26 | 1.15 | 0.96 |
F19 | 10.8 | 24.2 | 3.603 | 18.836 | 4.533 | 1.528 | 4.24 | 0.592 | 3.636 | 0.705 | 1.99 | 0.291 | 1.71 | 0.26 | 0.88 | 0.68 |
F23 | 28 | 52 | 7.214 | 33.526 | 6.499 | 2.149 | 6.21 | 0.916 | 5.31 | 1.084 | 3.18 | 0.492 | 3.02 | 0.51 | 2.68 | 1.9 |
OP-N3 | 22.3 | 52.4 | 6.613 | 28.871 | 6.59 | 2.307 | 6.18 | 0.778 | 3.98 | 0.767 | 2.15 | 0.237 | 1.66 | 0.26 | 2 | 1.54 |
OP-N4C | 3.38 | 10.9 | 0.857 | 4.463 | 1.152 | 0.523 | 1.03 | 0.194 | 0.854 | 0.168 | 0.44 | <0.1 | 0.47 | <0.1 | 0.39 | 0.88 |
OP-N5 | 9.59 | 20.5 | 2.762 | 10.893 | 2.754 | 0.871 | 2.37 | 0.364 | 1.959 | 0.336 | 0.97 | 0.156 | 0.86 | 0.16 | 0.91 | 0.92 |
OP-N8A | 15 | 34.2 | 4.756 | 20.324 | 5.049 | 1.627 | 4.42 | 0.607 | 2.946 | 0.528 | 1.46 | 0.221 | 1.32 | 0.18 | 1.39 | 1.1 |
OP-N8B | 19.4 | 42.2 | 5.292 | 22.86 | 5.828 | 1.817 | 4.79 | 0.616 | 3.369 | 0.671 | 1.87 | 0.246 | 1.71 | 0.22 | 1.99 | 1.4 |
OP-NA1 | 13.7 | 29.5 | 3.563 | 14.953 | 3.249 | 1.12 | 3.32 | 0.47 | 2.405 | 0.551 | 1.23 | 0.213 | 1.72 | 0.25 | 1.59 | 1.34 |
OP-NA5 | 20.7 | 41.7 | 4.748 | 19.392 | 4.127 | 1.469 | 3.6 | 0.543 | 2.781 | 0.504 | 1.52 | 0.205 | 1.16 | 0.22 | 2.61 | 1.91 |
OP-BA1 | 16.2 | 35.6 | 4.46 | 18.302 | 4.653 | 1.494 | 4.84 | 0.624 | 3.878 | 0.791 | 2.16 | 0.311 | 2.16 | 0.32 | 1.76 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponyalou, O.L.; Petterson, M.G.; Espi, J.O. The Petrology and Geochemistry of REE-Enriched, Alkaline Volcanic Rocks of Ambitle Island, Feni Island Group, Papua New Guinea. Geosciences 2023, 13, 339. https://doi.org/10.3390/geosciences13110339
Ponyalou OL, Petterson MG, Espi JO. The Petrology and Geochemistry of REE-Enriched, Alkaline Volcanic Rocks of Ambitle Island, Feni Island Group, Papua New Guinea. Geosciences. 2023; 13(11):339. https://doi.org/10.3390/geosciences13110339
Chicago/Turabian StylePonyalou, Olive L., Michael G. Petterson, and Joseph O. Espi. 2023. "The Petrology and Geochemistry of REE-Enriched, Alkaline Volcanic Rocks of Ambitle Island, Feni Island Group, Papua New Guinea" Geosciences 13, no. 11: 339. https://doi.org/10.3390/geosciences13110339
APA StylePonyalou, O. L., Petterson, M. G., & Espi, J. O. (2023). The Petrology and Geochemistry of REE-Enriched, Alkaline Volcanic Rocks of Ambitle Island, Feni Island Group, Papua New Guinea. Geosciences, 13(11), 339. https://doi.org/10.3390/geosciences13110339