What Have We Learned from the Past? An Analysis of Ground Deformations in Urban Areas of Palermo (Sicily, Italy) by Means of Multi-Temporal Synthetic Aperture Radar Interferometry Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Geomorphological Settings
2.2. Urban Development
2.3. SAR Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whittaker, B.N.; Reddish, D.J. Subsidence: Occurrence, Prediction and Control; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land Subsidence of Jakarta (Indonesia) and Its Relation with Urban Development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Grandoni, D.; Battagliere, M.L.; Daraio, M.G.; Sacco, P.; Coletta, A.; Di Federico, A.; Mastracci, F. Space-Based Technology for Emergency Management: The COSMO-SkyMed Constellation Contribution. Procedia Technol. 2014, 16, 858–866. [Google Scholar] [CrossRef]
- Showstack, R. Sentinel Satellites Initiate New Era in Earth Observation. Eos Trans. Am. Geophys. Union 2014, 95, 239–240. [Google Scholar] [CrossRef]
- Kalia, A.C.; Frei, M.; Lege, T. A Copernicus Downstream-Service for the Nationwide Monitoring of Surface Displacements in Germany—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0034425717302158 (accessed on 29 August 2023).
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the Feasibility of a National InSAR Ground Deformation Map of Great Britain with Sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Agostini, A.; Tanteri, L.; Tacconi Stefanelli, C.; Catani, F.; Casagli, N. Subsidence Mapping at Regional Scale Using Persistent Scatters Interferometry (PSI): The Case of Tuscany Region (Italy). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 328–337. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Kaneko, S.; Toyota, T. Long-Term Urbanization and Land Subsidence in Asian Megacities: An Indicators System Approach. In Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities; Taniguchi, M., Ed.; Springer: Tokyo, Japan, 2011; pp. 249–270. ISBN 978-4-431-53904-9. [Google Scholar]
- Bajni, G.; Apuani, T.; Beretta, G.P. Hydro-Geotechnical Modelling of Subsidence in the Como Urban Area. Eng. Geol. 2019, 257, 105144. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking Cities in Indonesia: ALOS PALSAR Detects Rapid Subsidence Due to Groundwater and Gas Extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Dai, L. Preventing and Controlling Land Subsidence in Shanghai—Towards More Integrated and Effective Land Use and Ground Water Governance in the Yangtze Delta. EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016. Available online: https://meetingorganizer.copernicus.org/EGU2016/EGU2016-16451.pdf (accessed on 15 May 2023).
- Figueroa-Miranda, S.; Tuxpan-Vargas, J.; Ramos-Leal, J.A.; Hernández-Madrigal, V.M.; Villaseñor-Reyes, C.I. Land Subsidence by Groundwater Over-Exploitation from Aquifers in Tectonic Valleys of Central Mexico: A Review. Eng. Geol. 2018, 246, 91–106. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Wu, H.-N.; Wang, B.Z.-F.; Yang, T.-L. Dewatering Induced Subsidence during Excavation in a Shanghai Soft Deposit. Environ. Earth Sci. 2017, 76, 351. [Google Scholar] [CrossRef]
- Unlu, T.; Akcin, H.; Yilmaz, O. An Integrated Approach for the Prediction of Subsidence for Coal Mining Basins. Available online: https://www.sciencedirect.com/science/article/pii/S0013795213002329 (accessed on 28 August 2023).
- Nádudvari, Á. Using Radar Interferometry and SBAS Technique to Detect Surface Subsidence Relating to Coal Mining in Upper Silesia from 1993–2000 and 2003–2010. Environ. Socio-Econ. Stud. 2016, 4, 24–34. [Google Scholar] [CrossRef]
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric Changes in Urban Areas Resulting from Multiple Years of Mining Activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.R.; Moro, M.; Saroli, M. Subsidence Induced by Urbanisation in the City of Rome Detected by Advanced InSAR Technique and Geotechnical Investigations. Remote Sens. Environ. 2008, 112, 3160–3172. [Google Scholar] [CrossRef]
- Yang, K.; Yan, L.; Huang, G.; Chen, C.; Wu, Z. Monitoring Building Deformation with InSAR: Experiments and Validation. Sensors 2016, 16, 2182. [Google Scholar] [CrossRef]
- Miele, P.; Di Napoli, M.; Guerriero, L.; Ramondini, M.; Sellers, C.; Annibali Corona, M.; Di Martire, D. Landslide Awareness System (LAwS) to Increase the Resilience and Safety of Transport Infrastructure: The Case Study of Pan-American Highway (Cuenca–Ecuador). Remote Sens. 2021, 13, 1564. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Lee, G.-J.; Choi, S.-K.; Kwon, T.-H.; Kim, Y.-C.; Ryu, H.-H.; Kim, S.; Bae, B.; Hyun, C. Monitoring of Construction-Induced Urban Ground Deformations Using Sentinel-1 PS-InSAR: The Case Study of Tunneling in Dangjin, Korea. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102721. [Google Scholar] [CrossRef]
- Macchiarulo, V.; Milillo, P.; Blenkinsopp, C.; Reale, C.; Giardina, G. Multi-Temporal InSAR for Transport Infrastructure Monitoring: Recent Trends and Challenges. Proc. Inst. Civ. Eng. Bridge Eng. 2023, 176, 92–117. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry: The Landers Earthquake. J. Geophys. Res. Solid Earth 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Iglesias, R.; Mallorqui, J.J.; Monells, D.; López-Martínez, C.; Fabregas, X.; Aguasca, A.; Gili, J.A.; Corominas, J. PSI Deformation Map Retrieval by Means of Temporal Sublook Coherence on Reduced Sets of SAR Images. Remote Sens. 2015, 7, 530–563. [Google Scholar] [CrossRef]
- Vicari, A.; Famiglietti, N.A.; Colangelo, G.; Cecere, G. A Comparison of Multi Temporal Interferometry Techniques for Landslide Susceptibility Assessment in Urban Area: An Example on Stigliano (MT), a Town of Southern of Italy. Geomat. Nat. Hazards Risk 2019, 10, 836–852. [Google Scholar] [CrossRef]
- FGama, F.F.; Mura, J.C.; Paradella, W.R.; de Oliveira, C.G. Deformations Prior to the Brumadinho Dam Collapse Revealed by Sentinel-1 InSAR Data Using SBAS and PSI Techniques. Remote Sens. 2020, 12, 3664. [Google Scholar] [CrossRef]
- Cigna, F.; Esquivel Ramírez, R.; Tapete, D. Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Hanssen, R.F. Satellite Radar Interferometry for Deformation Monitoring: A Priori Assessment of Feasibility and Accuracy. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 253–260. [Google Scholar] [CrossRef]
- Del Soldato, M.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of Works Combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Cappadonia, C.; Di Maggio, C.; Agate, M.; Agnesi, V. Geomorphology of the Urban Area of Palermo (Italy). J. Maps 2020, 16, 274–284. [Google Scholar] [CrossRef]
- Basilone, L.; Di Maggio, C. Geology of Monte Gallo (Palermo Mts, NW Sicily). J. Maps 2016, 12, 1072–1083. [Google Scholar] [CrossRef]
- ISPRA Carta Geologica d’italia Alla Scala 1:50,000 e Note Illustrative Del Foglio 595_Palermo 2013. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/595_Palermo.pdf (accessed on 15 May 2023).
- Agnesi, V.; Di Patti, C.; Truden, B. Giants and Elephants of Sicily. Geol. Soc. Lond. Spec. Publ. 2007, 273, 263–270. [Google Scholar] [CrossRef]
- Maggio, C.D.; Madonia, G.; Vattano, M.; Agnesi, V.; Monteleone, S. Geomorphological Evolution of Western Sicily, Italy. Geol. Carpathica 2017, 68, 80. [Google Scholar] [CrossRef]
- Martorana, R.; Aagate, M.; Patrizia, C.; Cavera, F.; D’Alessandro, A. Seismo-Stratigraphic Model of “La Bandita” Area in the Palermo Plain (Sicily, Italy) through HVSR Inversion Constrained by Stratigraphic Data. Ital. J. Geosci. 2018, 137, 73–86. [Google Scholar] [CrossRef]
- Agnesi, V. La geomorfologia di Palermo; Sapienza Università Editrice: Macerata, Italy, 2021; ISBN 978-88-9377-168-9. [Google Scholar]
- Liguori, V.; Piacentini, U.; Pratini, P.; Valore, C.; Ziccarelli, M. Caratteri Geologici e Geotecnici Del Sottosuolo Di Palermo. In Proceedings of the Convegno Nazionale di Geotecnica, L’Aquila, Italy, 11–14 September 2002; pp. 79–92, ISBN 88-555-2663-4. [Google Scholar]
- Coroneo, R. Storia del Porto di Palermo; Marcello Clausi Editore: Palermo, Italy, 2011. [Google Scholar]
- Pedone, F. La Città Che Non c’era. Lo Sviluppo Urbano Di Palermo Nel Secondo Dopoguerra; Istituto Poligrafico Europeo: Rome, Italy, 2019. [Google Scholar]
- Di Matteo, S. Palermo: Storia Della Città Dalle Origini a Oggi; Kalos: Palermo, Italy, 2002. [Google Scholar]
- Ardizzone, F.; Pezzini, E.; Sacco, V. The Role of Palermo in the Central Mediterranean: The Evolution of the Harbour and the Circulation of Ceramics (10th–11th Centuries). J. Islam. Archaeol. 2016, 2, 229–257. [Google Scholar] [CrossRef]
- Columba, G.M. Per La Topografia Antica Di Palermo. In Centenario della Nascita di Michele Amari; Stabilimento Tipografico Virzì: Palermo, Italy, 1910; Volume 2, pp. 395–426. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-0-7923-6945-5. [Google Scholar]
- Fialko, Y.; Simons, M.; Agnew, D. The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 Mw7. 1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Zhang, K.; Chang, H.-C.; Li, X.; Rizos, C.; Omura, M. Deformation Mapping in Three Dimensions for Underground Mining Using InSAR—Southern Highland Coalfield in New South Wales, Australia. Int. J. Remote Sens. 2011, 32, 7227–7256. [Google Scholar] [CrossRef]
- Dalla Via, G.; Crosetto, M.; Crippa, B. Resolving Vertical and East-West Horizontal Motion from Differential Interferometric Synthetic Aperture Radar: The L’Aquila Earthquake. J. Geophys. Res. Solid Earth 2012, 117, B02310. [Google Scholar] [CrossRef]
- Carta, M. Il Futuro Del Centro Storico Di Palermo; Palermo Rotary: Palermo, Italy, 2010. [Google Scholar]
- Todaro, P. Il Rischio Sismico Nel Centro Storico Di Palermo: Rigidità Sismica e Modelli Geologici Semplificati per Terreni Di Sedime Di Fondazioni Datate. In Archeometria del Costruito. l’Edificato Storico: Materiali, Strutture e Rischio Sismico; Edipuglia s.r.l.: Bari, Italy, 2006; pp. 239–255. [Google Scholar]
Satellite | Orbit | Path | Nr. Scenes |
---|---|---|---|
Sentinel-1 | Ascending | 117 | 46 |
Descending | 22 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Famiglietti, N.A.; Miele, P.; Petti, L.; Guida, D.; Guadagno, F.M.; Moschillo, R.; Vicari, A. What Have We Learned from the Past? An Analysis of Ground Deformations in Urban Areas of Palermo (Sicily, Italy) by Means of Multi-Temporal Synthetic Aperture Radar Interferometry Techniques. Geosciences 2023, 13, 298. https://doi.org/10.3390/geosciences13100298
Famiglietti NA, Miele P, Petti L, Guida D, Guadagno FM, Moschillo R, Vicari A. What Have We Learned from the Past? An Analysis of Ground Deformations in Urban Areas of Palermo (Sicily, Italy) by Means of Multi-Temporal Synthetic Aperture Radar Interferometry Techniques. Geosciences. 2023; 13(10):298. https://doi.org/10.3390/geosciences13100298
Chicago/Turabian StyleFamiglietti, Nicola Angelo, Pietro Miele, Luigi Petti, Domenico Guida, Francesco Maria Guadagno, Raffaele Moschillo, and Annamaria Vicari. 2023. "What Have We Learned from the Past? An Analysis of Ground Deformations in Urban Areas of Palermo (Sicily, Italy) by Means of Multi-Temporal Synthetic Aperture Radar Interferometry Techniques" Geosciences 13, no. 10: 298. https://doi.org/10.3390/geosciences13100298
APA StyleFamiglietti, N. A., Miele, P., Petti, L., Guida, D., Guadagno, F. M., Moschillo, R., & Vicari, A. (2023). What Have We Learned from the Past? An Analysis of Ground Deformations in Urban Areas of Palermo (Sicily, Italy) by Means of Multi-Temporal Synthetic Aperture Radar Interferometry Techniques. Geosciences, 13(10), 298. https://doi.org/10.3390/geosciences13100298