Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin
Abstract
:1. Introduction and Geological Setting
2. Stratigraphy at DSDP Sites 346, 347 and 349, Jan Mayen Ridge
2.1. Summary of Previously Published Information
2.2. New Palynological Data
2.2.1. Unit 3b (Middle Eocene)
2.2.2. Unit 3a (Early Oligocene)
2.2.3. Unit 2b (Late Oligocene)
2.2.4. Unit 2a (Middle Miocene)
2.2.5. Unit 1 (Pliocene-Pleistocene)
2.3. Comparison with Previously Published DSDP Ages
2.4. Correlation between Sites 346 and 349
2.5. Depositional Environment
3. Stratigraphy at Kap Brewster, East Greenland
3.1. Summary of Previously Published Information
3.2. New Palynological Data
3.3. Depositional Environment
4. Heavy Mineral Provenance Signatures
4.1. Analytical Methods
4.2. Heavy Mineral Assemblages
4.3. Sites 346 and 347
4.4. Site 349
4.5. Kap Brewster
4.6. Mineral Chemistry
4.6.1. Clinopyroxene
4.6.2. Garnet
4.6.3. Amphibole
4.6.4. Apatite
4.6.5. Zircon
5. Discussion
5.1. Middle Eocene to Early Oligocene
5.2. Late Oligocene
5.3. Middle Miocene
5.4. Pleistocene
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blischke, A.; Gaina, C.; Hopper, J.R.; Péron-Pinvidic, G.; Brandsdóttir, B.; Guarnieri, P.; Erlendsson, Ö.; Gunnarsson, K. The Jan Mayen microcontinent: An update of its architecture, structural development and role during the transition from the Ægir Ridge to the mid-oceanic Kolbeinsey Ridge. In The NE Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and Magmatic Evolution; Péron-Pinvidic, G., Hopper, J.R., Stoker, M.S., Gaina, C., Doornenbal, J.C., Funck, T., Árting, U.E., Eds.; Geological Society: London, UK, 2017; Special Publications Volume 447, pp. 299–337. [Google Scholar]
- Kodaira, S.; Mjelde, R.; Gunnarsson, K.; Shiobara, H.; Shimamura, H. Structure of the Jan Mayen microcontinent and implications for its evolution. Geophys. J. Int. 1998, 132, 383–400. [Google Scholar] [CrossRef]
- Mjelde, R.; Eckhoff, I.; Solbakken, S.; Kodaira, S.; Shimamura, H.; Gunnarsson, K.; Nakanishi, A.; Shiobara, H. Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology. Mar. Geophys. Res. 2007, 28, 27–41. [Google Scholar] [CrossRef]
- Breivik, A.J.; Mjelde, R.; Faleide, J.I.; Murai, Y. The eastern Jan Mayen microcontinent volcanic margin. Geophys. J. Int. 2012, 188, 798–818. [Google Scholar] [CrossRef]
- Kandilarov, A.; Mjelde, R.; Pedersen, R.B.; Hellevang, B.; Papenberg, C.; Petersen, C.J.; Planert, L.; Flueh, E. The northern boundary of the Jan Mayen microcontinent, North Atlantic, determined from ocean bottom seismic, multichannel seismic, and gravity data. Mar. Geophys. Res. 2012, 33, 55–76. [Google Scholar] [CrossRef]
- Polteau, S.; Mazzini, A.; Hansen, C.; Planke, S.; Jerram, D.A.; Millett, J.; Abdelmalak, M.A.; Blischke, A.; Myklebust, R. The pre-breakup stratigraphy and petroleum system of the Southern Jan Mayen Ridge revealed by seafloor sampling. Tectonophysics 2019, 760, 152–164. [Google Scholar] [CrossRef]
- Brandsdóttir, B.; Hooft, E.; Mjelde, R.; Murai, Y. Origin and evolution of the Kolbeinsey Ridge and Iceland Plateau, N-Atlantic. Geochem. Geophys. Geosystems 2015, 16, 612–634. [Google Scholar] [CrossRef]
- Bott, M.H.P. The continental margin of central East Greenland in relation to North Atlantic plate tectonic evolution. J. Geol. Soc. 1987, 144, 561–568. [Google Scholar] [CrossRef]
- Kuvaas, B.; Kodaira, S. The formation of the Jan Mayen microcontinent: The missing piece in the continental puzzle between the Møre-Vøring Basins and East Greenland. First Break 1997, 15, 239–247. [Google Scholar] [CrossRef]
- Scott, R.A. Mesozoic–Cenozoic evolution of East Greenland: Implications of a reinterpreted continent–ocean boundary location. Polarforschung 2000, 68, 83–91. [Google Scholar]
- Gaina, C.; Gernigon, L.; Ball, P. Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the JMMC. J. Geol. Soc. 2009, 166, 601–616. [Google Scholar] [CrossRef]
- Gernigon, L.; Franke, D.; Geoffroy, L.; Schiffer, C.; Foulger, G.R.; Stoker, M. Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea. Earth Sci. Rev. 2019, 193, 102839. [Google Scholar] [CrossRef]
- Schiffer, C.; Peace, A.; Phethean, J.; Gerginon, L.; McCaffrey, K.; Petersen, K.D.; Foulger, G.R. The Jan Mayen microplate complex and the Wilson cycle. In Fifty Years of the Wilson Cycle Concept in Plate Tectonics; Wilson, R.W., Houseman, G.A., McCaffrey, K.J.W., Doré, A.G., Buiter, S.J.H., Eds.; Geological Society: London, UK, 2018; Special Publications Volume 470, pp. 393–414. [Google Scholar]
- Blischke, A.; Stoker, M.S.; Brandsdóttir, B.; Hopper, J.R.; Péron-Pinvidic, G.; Ólavsdóttir, J.; Japsen, P. The Jan Mayen microcontinent’s Cenozoic stratigraphic succession and structural evolution within the NE-Atlantic. Mar. Pet. Geol. 2019, 103, 702–737. [Google Scholar] [CrossRef]
- Talwani, M.; Udintsev, G.B.; Björklund, K.; Caston, V.N.D.; Faas, R.W.; van Hinte, J.E.; Kharin, G.N.; Morris, D.A.; Mueller, C.; Nilsen, T.H.; et al. Sites 346, 347 and 349. Initial. Rep. Deep. Sea Drill. Proj. 1976, 38, 521–592. [Google Scholar]
- Gunnarsson, K.; Sand, M.; Gudlaugsson, S.T. Geology and Hydrocarbon Potential of the Jan Mayen Ridge; Norwegian Petroleum Directorate: Stavanger, Norway, 1989. [Google Scholar]
- Peron-Pinvidic, G.; Gernigon, L.; Gaina, C.; Ball, P. Insights from the Jan Mayen system in the Norwegian-Greenland Sea—I. Mapping of a microcontinent. Geophys. J. Int. 2012, 191, 385–412. [Google Scholar] [CrossRef]
- Peron-Pinvidic, G.; Gernigon, L.; Gaina, C.; Ball, P. Insights from the Jan Mayen system in the Norwegian-Greenland Sea—II. Architecture of a microcontinent. Geophys. J. Int. 2012, 191, 413–435. [Google Scholar] [CrossRef]
- Condon, P.J.; Jolley, D.W.; Morton, A.C. The Eocene succession on the East Shetland Platform, North Sea. Mar. Pet. Geol. 1992, 9, 633–647. [Google Scholar] [CrossRef]
- Evans, D.; Morton, A.C.; Wilson, S.J.; Jolley, D.W.; Barreiro, B. Marine and terrestrial Tertiary sediments in BGS borehole 77/7, north of Scotland. Scott. J. Geol. 1997, 33, 31–42. [Google Scholar] [CrossRef]
- Islam, M.A. A study of Early Eocene palaeoenvironments from the Isle of Sheppey as determined from microplankton assemblage composition. Tert. Res. 1984, 6, 11–21. [Google Scholar]
- Costa, L.I.; Downie, C. Cenozoic dinocyst stratigraphy of Sites 403 to 406 (Rockall Plateau), IPOD, Leg 48. Initial. Rep. Deep. Sea Drill. Proj. 1979, 48, 513–529. [Google Scholar]
- Larsen, L.M.; Pedersen, A.K.; Sørensen, E.V.; Watt, W.S.; Duncan, R.A. Stratigraphy and age of the Eocene Igtertivâ Formation basalts, alkaline pebbles and sediments of the Kap Dalton Group in the graben at Kap Dalton, East Greenland. Geological Society of Denmark. Bulletin 2013, 61, 1–18. [Google Scholar] [CrossRef]
- Storey, M.; Pedersen, A.K.; Stecher, O.; Bernstein, S.; Larsen, H.C.; Larsen, L.M.; Baker, J.A.; Duncan, R.A. Long lived postbreakup magmatism along the East Greenland margin: Evidence for shallow-mantle metasomatism by the Iceland plume. Geology 2004, 32, 173–176. [Google Scholar] [CrossRef]
- Nielsen, T.F.D. Tertiary alkaline magmatism in East Greenland: A review. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geological Society: London, UK, 1987; Special Publications Volume 30, pp. 489–515. [Google Scholar]
- Upton, B.G.J.; Emeleus, C.H.; Beckinsale, R.D.; Macintyre, R.M. Myggbukta and Kap Broer Ruys: The most northerly of the East Greenland Tertiary igneous centres (?). Mineral. Mag. 1984, 48, 323–343. [Google Scholar] [CrossRef]
- Birkenmajer, K. Report on investigations of Tertiary sediments at Kap Brewster, Scoresby Sund, East Greenland. Rapp. Grønland Geol. Undersøgelse 1972, 48, 85–91. [Google Scholar] [CrossRef]
- Soper, N.J.; Costa, L.I. Palynological evidence for the age of Tertiary basalts and post-basaltic sediments at Kap Dalton, central East Greenland. Rapp. Grønland Geol. Undersøgelse 1976, 80, 123–127. [Google Scholar] [CrossRef]
- Birkenmajer, K.; Jednorowska, A. Foraminiferal evidence for the East Greenland current during the Oligocene. Rapp. Grønland Geol. Undersøgelse 1977, 85, 86–89. [Google Scholar] [CrossRef]
- Birkenmajer, K.; Jednorowska, A. Early Oligocene foraminifera from Kap Brewster, East Greenland. Ann. Soc. Geol. Pol. 1997, 67, 155–173. [Google Scholar]
- Soper, N.J.; Downie, C.; Higgins, A.C.; Costa, L.I. Biostratigraphic ages of Tertiary basalts on the East Greenland continental margin and their relationship to plate separation in the northeast Atlantic. Earth Planet. Sci. Lett. 1976, 32, 149–157. [Google Scholar] [CrossRef]
- Wilson, S.J. High Resolution Comparative Palynostratigraphy and Palaeoecology of Oligocene Sequences in the Terrestrial Basins of the Western British Isles and the Marine North Sea Basin. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 1996. [Google Scholar]
- Harland, R. Distribution maps of Recent dinoflagellate cysts in the bottom sediments from the North Atlantic Ocean and adjacent seas. Palaeontology 1983, 26, 321–387. [Google Scholar]
- Eaton, G.L. Dinoflagellate cysts from the Bracklesham Beds (Eocene) of the Isle of Wight, southern England. Bull. Br. Mus. Nat. Hist. 1976, 26, 332. [Google Scholar]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Stoker, M.S.; Kimbell, G.S.; McInroy, D.B.; Morton, A.C. Eocene post-rift tectonostratigraphy of the Rockall Plateau, Atlantic margin of NW Britain: Linking early spreading tectonics and passive margin response. Mar. Pet. Geol. 2012, 30, 98–125. [Google Scholar]
- Garzanti, E.; Padoan, M.; Andó, S.; Resentini, A.; Vezzoli, G.; Lustrino, M. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. J. Geol. 2013, 121, 547–580. [Google Scholar]
- Morton, A.; Frei, D.; Stoker, M.; Ellis, D. Detrital zircon age constraints on basement history on the margins of the northern Rockall Basin. In Exploration and Exploitation West of Shetlands; Cannon, S., Ellis, D., Eds.; Geological Society of London: London, UK, 2014; Special Publications Volume 397, pp. 209–223. [Google Scholar]
- Quintão, D.A.; Caxito, F.A.; Karfunkel, J.; Vieira, F.R.; Seer, H.J.; de Moraes, L.C.; Ribeiro, L.C.B.; Pedrosa-Soares, A.C. Geochemistry and sedimentary provenance of the Upper Cretaceous Uberaba Formation (Southeastern Triângulo Mineiro, MG, Brazil). Braz. J. Geol. 2017, 47, 159–182. [Google Scholar]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Mineral. 1988, 73, 1123–1133. [Google Scholar]
- LeBas, M.J. The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am. J. Sci. 1962, 260, 267–288. [Google Scholar] [CrossRef]
- Morton, A.; Hallsworth, C.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Morton, A.; Mark, C.; Henrichs, I. Integrated apatite geochronology and geochemistry in sedimentary provenance analysis. Geochem. Geophys. Geosystems 2018, 19, 1309–1326. [Google Scholar]
- Morton, A.C.; Yaxley, G. Detrital apatite geochemistry and its application in provenance studies. In Sediment Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Geological Society of America: Boulder, CO, USA, 2007. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 2020, 201, 103044. [Google Scholar]
- Slama, J.; Walderhaug, O.; Fonneland, H.; Kosler, J.; Pedersen, R.B. Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sediment. Geol. 2011, 238, 254–267. [Google Scholar]
- Szulc, A.G.; Morton, A.C.; Whitham, A.G.; Hemming, S.R.; Thomson, S.N. Establishing a provenance framework for sandstones in the Greenland–Norway rift from the composition of moraine/outwash sediments. Geosciences 2022, 12, 73. [Google Scholar] [CrossRef]
- Gilotti, J.; Jones, K.A.; Elvevold, S. Caledonian metamorphic patterns in Greenland. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia; Higgins, A.K., Gilotti, J.A., Smith, M.P., Eds.; Geological Society of America: Boulder, CO, USA, 2008; Special Paper Memoir Volume 208, pp. 201–225. [Google Scholar]
- Nielsen, M.L.; Lee, M.; Ng, H.C.; Rushton, J.C.; Hendry, K.R.; Kihm, J.-H.; Nielsen, A.T.; Park, T.-Y.S.; Vinther, J.; Wilby, P.R. Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland. Geology 2021, 50, 4–9. [Google Scholar]
- Morton, A.C.; Whitham, A.G.; Fanning, C.M. Provenance of Late Cretaceous-Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar]
- Whitham, A.G.; Price, S.P.; Koraini, A.M.; Kelly, S.R.A. Cretaceous (post-Valanginian) sedimentation and rift events in the NE Greenland (71°–77° N). In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference; Fleet, A., Boldy, S.A.R., Eds.; Geological Society of London: London, UK, 1999; pp. 325–336. [Google Scholar]
- Peate, D.W.; Baker, J.A.; Blichert-Toft, J.; Hilton, D.R.; Storey, M.; Kent, A.J.R.; Brooks, C.K.; Hansen, H.; Pedersen, A.K.; Duncan, R.A. The Prinsen of Wales Bjerge Formation Lavas, East Greenland: The transition from tholeiitic to alkalic magmatism during Palaeogene continental break-up. J. Petrol. 2003, 44, 279–304. [Google Scholar]
- Eldrett, J.S.; Harding, I.C.; Wilson, P.A.; Butler, E.; Roberts, A.P. Continental ice in Greenland during the Eocene and Oligocene. Nature 2007, 446, 176–179. [Google Scholar] [PubMed]
- Tripati, A.K.; Eagle, R.A.; Morton, A.; Dowdeswell, J.A.; Atkinson, K.L.; Bahé, Y.; Dawber, C.F.; Khadun, E.; Shaw, R.M.H.; Shorttle, O.; et al. Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett. 2008, 265, 112–122. [Google Scholar]
- Trønnes, R.G.; Planke, S.; Sundvoll, B.; Imsland, P. Recent volcanic rocks from Jan Mayen: Low-degree melt fractions of enriched northeast Atlantic mantle. J. Geophys. Res. 1999, 104, 7153–7168. [Google Scholar]
- Haase, K.M.; Hartmann, M.; Wallrabe-Adams, H.-J. The geochemistry of ashes from Vesterisbanken Seamount, Greenland Basin: Implications for the evolution of an alkaline volcano. J. Volcanol. Geotherm. Res. 1996, 70, 1–19. [Google Scholar]
- Storey, M.; Duncan, R.A.; Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hot spot. Chem. Geol. 2007, 241, 264–281. [Google Scholar]
Sample | Ae | Ag | An | At | Ap | Ca | Cp | Cr | Ct | Ep | Gt | Ky | Mo | Op | Pv | Ru | Sa | Sl | Sp | St | To | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DSDP 346, 18.00 m | R | R | 2.0 | 30.0 | 21.0 | R | 4.0 | 19.5 | 9.5 | 1.0 | R | 2.0 | 2.0 | R | 1.5 | 3.5 | 1.0 | 0.5 | 2.5 | |||
DSDP 346, 37.64 m | R | R | R | 1.5 | 33.5 | 55.5 | 1.5 | 3.0 | 3.5 | R | R | R | R | 1.0 | R | R | 0.5 | |||||
DSDP 346, 66.61 m | R | R | 3.5 | 33.5 | 27.5 | R | 17.0 | 11.0 | 2.5 | 1.0 | R | 0.5 | R | R | 0.5 | 1.5 | R | 0.5 | 1.0 | |||
DSDP 346, 102.60 m | R | R | 1.0 | 35.0 | 33.5 | 10.5 | 12.0 | 3.5 | 0.5 | 2.5 | R | 1.0 | R | R | 0.5 | |||||||
DSDP 346, 108.55 m | 0.5 | 1.5 | 36.5 | 40.0 | 9.0 | 7.5 | 3.0 | 0.5 | R | R | 1.0 | 0.5 | R | |||||||||
DSDP 346, 114.10 m | 2.5 | 39.0 | 19.0 | 18.0 | 12.0 | 5.0 | 0.5 | 1.0 | R | 0.5 | 0.5 | 0.5 | 1.5 | |||||||||
DSDP 346, 140.60 m | 1.0 | 5.0 | R | 76.5 | R | 9.5 | R | R | 1.5 | R | 4.0 | 2.5 | ||||||||||
DSDP 346, 158.70 m | 2.5 | 8.0 | R | 71.5 | 8.0 | R | 2.5 | 0.5 | 2.5 | 4.5 | ||||||||||||
DSDP 346, 160.36 m | 0.5 | 6.5 | R | R | 80.5 | 4.5 | R | R | 0.5 | R | 3.5 | 4.0 | ||||||||||
DSDP 346, 168.86 m | 1.5 | 3.0 | R | 81.0 | 5.5 | R | 1.5 | 0.5 | R | 3.0 | 4.0 | |||||||||||
DSDP 346, 169.11 m | 1.5 | 3.0 | R | 81.0 | 5.5 | R | 1.5 | 0.5 | R | 3.0 | 4.0 | |||||||||||
DSDP 346, 179.18 m | 2.0 | 3.0 | R | 61.0 | 16.5 | 0.5 | 2.5 | 0.5 | 4.5 | 9.5 | ||||||||||||
DSDP 347, 122.41 m | 1.0 | 3.5 | 0.5 | R | 72.0 | 0.5 | 14.0 | 0.5 | R | 0.5 | 2.0 | R | 2.5 | 3.0 | ||||||||
DSDP 347, 131.28 m | 1.0 | 62.0 | R | 1.0 | 27.5 | 0.5 | 3.5 | R | R | R | 1.5 | 2.0 | 1.0 | |||||||||
DSDP 347, 188.77 m | 0.5 | 9.0 | R | R | 82.0 | 3.0 | R | 0.5 | R | 3.5 | 1.5 | |||||||||||
DSDP 349, 58.46 m | 0.5 | R | 98.5 | R | 0.5 | 0.5 | ||||||||||||||||
DSDP 349, 92.13 m | R | R | 1.0 | 30.5 | 31.5 | R | 14.0 | 10.0 | 5.0 | 0.5 | R | 1.0 | 1.5 | R | 1.5 | 0.5 | 1.0 | 2.0 | ||||
DSDP 349, 102.10 m | R | R | 1.0 | 22.5 | 26.0 | R | 17.0 | 17.0 | 5.0 | 0.5 | R | 1.5 | R | 2.0 | 3.0 | 1.0 | 0.5 | 3.0 | ||||
DSDP 349, 114.84 m | 0.5 | R | 1.0 | 31.5 | 23.5 | R | 13.5 | 13.5 | 8.5 | 3.0 | R | R | R | 0.5 | R | 1.0 | 1.0 | 0.5 | 1.5 | 0.5 | ||
DSDP 349, 120.00 m | R | R | R | 0.5 | 10.0 | 78.5 | R | 2.0 | 2.0 | 5.0 | 1.0 | R | 0.5 | R | R | R | 0.5 | |||||
DSDP 349, 135.90 m | 2.0 | R | 0.5 | 0.5 | 28.5 | 28.5 | R | 4.0 | 13.0 | 13.5 | 4.0 | R | 1.0 | 2.0 | 1.0 | 0.5 | 0.5 | 0.5 | ||||
DSDP 349, 195.50 m | 1.5 | R | R | 2.0 | 32.0 | 27.0 | R | 3.0 | 11.5 | 13.0 | 3.5 | R | 2.0 | 2.5 | 0.5 | 1.0 | 0.5 | |||||
DSDP 349, 228.92 m | 3.5 | 4.0 | R | 4.0 | 28.5 | 20.5 | R | 3.0 | 6.5 | 19.5 | 3.5 | R | 0.5 | 3.0 | 1.0 | 1.0 | 1.5 | |||||
DSDP 349, 231.70 m | 3.0 | 4.0 | 0.5 | R | 29.0 | 27.0 | 0.5 | 1.5 | 8.5 | 11.0 | 5.5 | 1.0 | 2.5 | 2.0 | 1.0 | R | 3.0 | |||||
DSDP 349, 269.32 m | 2.5 | 1.0 | 0.5 | 4.5 | 34.5 | 7.5 | R | 5.0 | 13.5 | 19.0 | 5.5 | R | 0.5 | 2.0 | 1.5 | R | 2.5 | |||||
DSDP 349, 318.88 m | 1.0 | R | 0.5 | 5.0 | 24.0 | 0.5 | 0.5 | 16.0 | 20.0 | 15.5 | 5.0 | 0.5 | R | 2.0 | 3.0 | 0.5 | 0.5 | 5.5 | ||||
S3601 (111.5 m) | 0.5 | R | 2.5 | 80.0 | R | R | R | 8.5 | 6.0 | 0.5 | R | 2.0 | R | R | ||||||||
S3599 (108.5 m) | 0.5 | R | 6.0 | 73.0 | 0.5 | 2.0 | 8.0 | 6.0 | R | 0.5 | R | 2.0 | 0.5 | R | 1.0 | |||||||
S3597 (95.0 m) | 0.5 | R | 0.5 | 14.0 | 33.5 | R | R | 9.5 | 26.5 | 5.5 | R | R | 3.5 | R | 3.0 | 0.5 | R | 3.0 | ||||
S3596 (93.6 m) | 3.0 | R | 5.5 | 9.0 | 4.0 | 0.5 | 0.5 | 20.0 | 30.0 | 10.0 | 1.5 | 5.0 | 0.5 | 3.5 | 1.5 | 0.5 | 5.0 | |||||
S3594 (74.0 m) | 0.5 | 3.0 | 6.0 | 6.0 | R | 0.5 | 27.0 | 30.0 | 14.5 | R | 2.5 | 3.5 | 1.5 | 0.5 | 4.5 | |||||||
S3591 (64.6 m) | R | 0.5 | 6.5 | 82.0 | 0.5 | 2.5 | 5.0 | 0.5 | 0.5 | 0.5 | 1.5 | |||||||||||
S3590 (62.0 m) | R | R | 2.5 | 93.0 | 0.5 | 0.5 | 2.0 | 1.0 | 0.5 | R | R | R | ||||||||||
S3588 (34.0 m) | 8.5 | 79.0 | 0.5 | 2.0 | 6.0 | R | 3.0 | R | 1.0 | |||||||||||||
S3586 (23.0 m) | 5.0 | 85.5 | 1.0 | 6.5 | 1.0 | R | R | 1.0 | ||||||||||||||
S3585 (9.6 m) | R | 2.5 | 93.0 | R | 4.0 | 0.5 | R | R | R | R | R | |||||||||||
S3584 (5.1 m) | R | 2.5 | 96.5 | R | R | R | 1.0 | R | R | R | R | R | ||||||||||
S3582 (2.0 m) | 0.5 | 98.0 | 0.5 | 0.5 | 0.5 | R | R | |||||||||||||||
S3580 (1.0 m) | R | 1.5 | 97.0 | 0.5 | 1.0 | R | R | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morton, A.; Jolley, D.W.; Szulc, A.G.; Whitham, A.G.; Strogen, D.P.; Fanning, C.M.; Hemming, S.R. Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin. Geosciences 2022, 12, 326. https://doi.org/10.3390/geosciences12090326
Morton A, Jolley DW, Szulc AG, Whitham AG, Strogen DP, Fanning CM, Hemming SR. Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin. Geosciences. 2022; 12(9):326. https://doi.org/10.3390/geosciences12090326
Chicago/Turabian StyleMorton, Andrew, David W. Jolley, Adam G. Szulc, Andrew G. Whitham, Dominic P. Strogen, C. Mark Fanning, and Sidney R. Hemming. 2022. "Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin" Geosciences 12, no. 9: 326. https://doi.org/10.3390/geosciences12090326
APA StyleMorton, A., Jolley, D. W., Szulc, A. G., Whitham, A. G., Strogen, D. P., Fanning, C. M., & Hemming, S. R. (2022). Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin. Geosciences, 12(9), 326. https://doi.org/10.3390/geosciences12090326