Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Mineralogical and Chemical Characterization
3.2. Environmental Risk Assessment
3.3. Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boente, C.; Baragaño, D.; García-González, N.; Forján, R.; Colina, A.; Gallego, J. A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena 2022, 208, 105730. [Google Scholar] [CrossRef]
- Morita, A.K.M.; Pelinson, N.D.S.; Wendland, E. Persistent impacts of an abandoned non-sanitary landfill in its surroundings. Environ. Monit. Assess. 2020, 192, 463. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Anjum, R.; Raza, S.T.; Bazai, N.A.; Ihtisham, M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere 2022, 288, 132403. [Google Scholar] [CrossRef]
- Lashen, Z.M.; Shams, M.S.; El-Sheshtawy, H.S.; Slaný, M.; Antoniadis, V.; Yang, X.; Sharma, G.; Rinklebe, J.; Shaheen, S.M.; Elmahdy, S.M. Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. J. Hazard. Mater. 2022, 428, 128205. [Google Scholar] [CrossRef]
- Hoang, S.A.; Bolan, N.; Madhubashani, A.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M.; Mickan, B.S.; et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environ. Pollut. 2022, 293, 118564. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Morita, A.K.; Ibelli-Bianco, C.; Anache, J.A.; Coutinho, J.V.; Pelinson, N.S.; Nobrega, J.; Rosalem, L.M.; Leite, C.M.; Niviadonski, L.M.; Manastella, C.; et al. Pollution threat to water and soil quality by dumpsites and non-sanitary landfills in Brazil: A review. Waste Manag. 2021, 131, 163–176. [Google Scholar] [CrossRef]
- Cheela, V.R.S.; Goel, S.; John, M.; Dubey, B. Characterization of municipal solid waste based on seasonal variations, source and socio-economic aspects. Waste Dispos. Sustain. Energy 2021, 3, 275–288. [Google Scholar] [CrossRef]
- Breus, D.; Yevtushenko, O. Modeling of Trace Elements and Heavy Metals Content in the Steppe Soils of Ukraine. J. Ecol. Eng. 2022, 23, 159–165. [Google Scholar] [CrossRef]
- Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Gupta, V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2022, 343, 126154. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste management in the mining industry of metals ores, coal, oil and natural gas—A review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef]
- Meloni, F.; Montegrossi, G.; Lazzaroni, M.; Rappuoli, D.; Nisi, B.; Vaselli, O. Total and Leached Arsenic, Mercury and Antimony in the Mining Waste Dumping Area of Abbadia San Salvatore (Mt. Amiata, Central Italy). Appl. Sci. 2021, 11, 7893. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Gui, H.; Xia, D.; Wang, Y. Physiochemical properties, heavy metal leaching characteristics and reutilization evaluations of solid ashes from municipal solid waste incinerator plants. Waste Manag. 2021, 138, 49–58. [Google Scholar] [CrossRef]
- Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere 2021, 267, 128874. [Google Scholar] [CrossRef]
- Soumahoro, N.S.; Kouassi, N.L.B.; Yao, K.M.; Kwa-Koffi, E.K.; Kouassi, A.M.; Trokourey, A. Impact of municipal solid waste dumpsites on trace metal contamination levels in the surrounding area: A case study in West Africa, Abidjan, Cote d’Ivoire. Environ. Sci. Pollut. Res. 2021, 28, 30425–30435. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K.; Chew, W.; Al-Mutairi, K.A.; Nulit, R.; Ibrahim, M.H.; Wong, K.W.; Bakhtiari, A.R.; Sharifinia, M.; Ismail, M.S.; Leong, W.J.; et al. Assessments of the Ecological and Health Risks of Potentially Toxic Metals in the Topsoils of Different Land Uses: A Case Study in Peninsular Malaysia. Biology 2022, 11, 2. [Google Scholar] [CrossRef]
- Kimani, N. Implications of the Dandora Municipal Dumping Site in Nairobi, Kenya. Environ. Pollut. Impacts Public Health 2012, 1, 14. [Google Scholar]
- Wang, S.; Han, Z.; Wang, J.; He, X.; Zhou, Z.; Hu, X. Environmental risk assessment and factors influencing heavy metal concentrations in the soil of municipal solid waste landfills. Waste Manag. 2022, 139, 330–340. [Google Scholar] [CrossRef]
- Essien, J.P.; Ikpe, D.I.; Inam, E.D.; Okon, A.O.; Ebong, G.A.; Benson, N.U. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS ONE 2022, 17, e0263279. [Google Scholar] [CrossRef] [PubMed]
- El Fadili, H.; Ben Ali, M.; Touach, N.; El Mahi, M.; Lotfi, E.M. Ecotoxicological and pre-remedial risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in morocco. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100640. [Google Scholar] [CrossRef]
- Liao, J.; Cui, X.; Feng, H.; Yan, S. Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water 2022, 14, 51. [Google Scholar] [CrossRef]
- Reimann, C.; Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist; Springer: Berlin, Germany, 1998; ISBN 3540636706. [Google Scholar]
- Serra, C. Da Problemática Ambiental à Mudança: Rumo à um Mundo Melhor; Editora Escolar: Maputo, Mozambique, 2012; ISBN 0A9789896700300. (In Portuguese) [Google Scholar]
- Bernardo, B.; Candeias, C.; Rocha, F. Application of Geophysics in geo-environmental diagnosis on the surroundings of the Hulene-B waste dump, Maputo, Mozambique. J. Afr. Earth Sci. 2022, 185, 104415. [Google Scholar] [CrossRef]
- Vicente, E.; Jermy, C.; Schreiner, H. Urban geology of Maputo, Mozambique. Geol. Soc. London 2006, 338, 1–13. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.7220&rep=rep1&type=pdf (accessed on 10 February 2022).
- Matsinhe, F.; Paulo, M. Estudo Etnográfico sobre os catadores de Lixo da Lixeira de Hulene (Maputo); Cadernos África Contemporânea 3; Universidade Eduardo Mondlane: Maputo, Moçambique, 2020; ISSN 2595-5713. [Google Scholar]
- INE. Boletim de Estatísticas Demográficas e Sociais, Maputo Cidade 2019; Instituto Nacional de Estatistica: Maputo, Mozambique, 2020. Available online: http://www.ine.gov.mz/estatisticas/estatisticas-demograficas-e-indicadores-sociais/boletim-de-indicadores-demograficos-22-de-julho-de-2020.pdf/at_download/file. (accessed on 21 February 2022).
- Palalane, J.; Segala, I. Urbanização e Desenvolvimento Municipal em Moçambique: Gestão de Resíduos Sólidos. Available online: https://limpezapublica.com.br/urbanizacao-e-desenvolvimento-municipal-em-mocambique-capitulo-gestao-de-residuos-solidos/ (accessed on 22 April 2022).
- Ferrão, D. Evaluation of Removal and Disposal of Solid Waste in Maputo City, Mozambique. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2006. Available online: https://open.uct.ac.za/bitstream/handle/11427/4851/thesis_sci_2006_ferrao_d_a_g.pdf?sequence=1 (accessed on 10 February 2022).
- WHO. Global Air Quality Guidelines Particulate matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/345334/9789240034433-eng.pdf (accessed on 10 February 2022).
- Afonso, R. A Geologia de Moçambique—Notícia Explicativa da Carta Geológica de Moçambique 1978, 1:2,000,000; Imprensa Nacional de Moçambique: Maputo, Moçambique, 1978. (In Portuguese) [Google Scholar]
- Momade, F.; Ferrara, M.; Oliveira, J. Notícia Explicativa da Carta Geológica 2532 Maputo (1:50,000); Direção Nacional de Geologia: Maputo, Mozambique, 1996. (In Portuguese) [Google Scholar]
- Cendón, D.I.; Haldorsen, S.; Chen, J.; Hankin, S.; Nogueira, G.; Momade, F.; Achimo, M.; Muiuane, E.; Mugabe, J.; Stigter, T.Y. Hydrogeochemical aquifer characterization and its implication for groundwater development in the Maputo district, Mozambique. Quat. Int. 2020, 547, 113–126. [Google Scholar] [CrossRef]
- Nhantumbo, A.B.; Cambule, A.H. Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil Tillage Res. 2006, 87, 231–239. [Google Scholar] [CrossRef]
- CIAT. Climate-Smart Agriculture in Mozambique. Climate-Smart Agriculture in Mozambique, Center for Tropical Agriculture 2017. Available online: https://climateknowledgeportal.worldbank.org/sites/default/files/2019-06/CSA-in-Mozambique.pdf (accessed on 13 April 2022).
- Muchangos, A. Paisagens e Regiões Naturais de Moçambique; Editora Escolar: Maputo, Mozambique, 1999; Available online: https://docplayer.com.br/47220681-Mocambique-paisagens-e-regioes-naturais.html (accessed on 30 April 2022).
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Candeias, C.; Da Silva, E.F.; Ávila, P.F.; Teixeira, J.P. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal) as an Example. Geosciences 2014, 4, 240–268. [Google Scholar] [CrossRef] [Green Version]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: London, UK, 1966. [Google Scholar]
- Candeias, C.; Ávila, P.F.; Alves, C.; Gama, C.; Sequeira, C.; da Silva, E.F.; Rocha, F. Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde). Minerals 2021, 11, 1275. [Google Scholar] [CrossRef]
- Nazzal, Y.; Bărbulescu, A.; Howari, F.; Al-Taani, A.; Iqbal, J.; Xavier, C.; Sharma, M.; Dumitriu, C. Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics 2021, 9, 95. [Google Scholar] [CrossRef]
- Candeias, C.; Ávila, P.F.; Sequeira, C.; Manuel, A.; Rocha, F. Potentially toxic elements dynamics in the soil rhizospheric-plant system in the active volcano of Fogo (Cape Verde) and interactions with human health. Catena 2022, 209, 105843. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Xi, B.; Chang, Q.; You, S.; Li, J.; Sun, X.; Huang, H.; Li, X. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2021, 269, 116189. [Google Scholar] [CrossRef]
- Candeias, C.; Vicente, E.; Tomé, M.; Rocha, F.; Ávila, P.; Célia, A. Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. Int. J. Environ. Res. Public Health 2020, 17, 1563. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Gao, Z.; Zhang, H.; Zhu, Z.; Jiang, B.; Liu, J.; Dong, H. Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling. Ecotoxicol. Environ. Saf. 2021, 227, 112926. [Google Scholar] [CrossRef] [PubMed]
- Mallongi, A.; Astuti, R.D.P.; Amiruddin, R.; Hatta, M.; Rauf, A.U. Identification source and human health risk assessment of potentially toxic metal in soil samples around karst watershed of Pangkajene, Indonesia. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100634. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual; EPA 540-1-89-002; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- USEPA. Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. U.S.; U.S. Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicological Intervention Values (Partly Revised Edition); Report No. 725201011; National Institute for Public Health and the Environment: Leiderdorp, The Netherlands, 1994. [Google Scholar]
- RAIS. The Risk Assessment Information System (RAIS); U.S. Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2022. Available online: https://rais.ornl.gov/ (accessed on 10 May 2022).
- Ghasera, K.M.; Rashid, S.A. Geochemical characteristics of two contrasting weathering profiles developed at high altitude, NE Lesser Himalaya, India: Implications for controlling factors and mobility of elements. J. Earth Syst. Sci. 2022, 131, 5. [Google Scholar] [CrossRef]
- Han, B.; Weatherley, A.J.; Mumford, K.; Bolan, N.; He, J.-Z.; Stevens, G.W.; Chen, D. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. J. Hazard. Mater. 2022, 421, 126755. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.; Zhang, Y.; Wang, X.; Hu, W. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. 2021, 597, 125771. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, B.; Angove, M. Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Interface Sci. 2005, 290, 28–38. [Google Scholar] [CrossRef]
- Fan, P.; Lu, X.; Yu, B.; Fan, X.; Wang, L.; Lei, K.; Yang, Y.; Zuo, L.; Rinklebe, J. Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environ. Int. 2022, 160, 107073. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S.M. Soil quality of simulated landfill exposure to plastics in context of heavy metal analysis. Environ. Sci. Pollut. Res. 2021, 28, 36904–36910. [Google Scholar] [CrossRef]
- Safonov, A.; Popova, N.; Andrushenko, N.; Boldyrev, K.; Yushin, N.; Zinicovscaia, I. Investigation of materials for reactive permeable barrier in removing cadmium and chromium(VI) from aquifer near a solid domestic waste landfill. Environ. Sci. Pollut. Res. 2021, 28, 4645–4659. [Google Scholar] [CrossRef] [PubMed]
- Fiala, M.; Hwang, H.-M. Influence of Highway Pavement on Metals in Road Dust: A Case Study in Houston, Texas. Water Air Soil Pollut. 2021, 232, 185. [Google Scholar] [CrossRef]
- Islamd, S.; Idris, A.M.; Islam, A.R.M.T.; Phoungthong, K.; Ali, M.M.; Kabir, H. Geochemical variation and contamination level of potentially toxic elements in land-uses urban soils. Int. J. Environ. Anal. Chem. 2021, 1–18. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Aly, A.A.; Ibrahim, H.M. Assessing the environmental impacts of municipal solid waste landfill leachate on groundwater and soil contamination in western Saudi Arabia. Arab. J. Geosci. 2021, 14, 350. [Google Scholar] [CrossRef]
- Gujre, N.; Mitra, S.; Soni, A.; Agnihotri, R.; Rangan, L.; Rene, E.R.; Sharma, M.P. Speciation, contamination, ecological and human health risks assessment of heavy metals in soils dumped with municipal solid wastes. Chemosphere 2021, 262, 128013. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Duah, A.A.; Karikari, A.Y.; Agyekum, W.A.; Manu, E.; Tagoe, R. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment. Chemosphere 2021, 282, 131007. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef] [PubMed]
- Amiri, H.; Daneshvar, E.; Azadi, S. Contamination level and risk assessment of heavy metals in the topsoil around cement factory: A case study. Environ. Eng. Res. 2021, 27, 210313. [Google Scholar] [CrossRef]
- Brtnický, M.; Pecina, V.; Baltazár, T.; Galiová, M.V.; Baláková, L.; Bęś, A.; Radziemska, M. Environmental Impact Assessment of Potentially Toxic Elements in Soils Near the Runway at the International Airport in Central Europe. Sustainability 2020, 12, 7224. [Google Scholar] [CrossRef]
- Perks, C.; Mudd, G.M.; Currell, M. Using corporate sustainability reporting to assess the environmental footprint of titanium and zirconium mining. Extr. Ind. Soc. 2021, 9, 101034. [Google Scholar] [CrossRef]
- Gautam, P.; Kumar, S. Characterisation of Hazardous Waste Landfill Leachate and its Reliance on Landfill Age and Seasonal Variation: A Statistical Approach. J. Environ. Chem. Eng. 2021, 9, 105496. [Google Scholar] [CrossRef]
- Aydi, A.; Mhimdi, A.; Hamdi, I.; Touaylia, S.; Sdiri, A. Application of electrical resistivity tomography and hydro-chemical analysis for an integrated environmental assessment. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100351. [Google Scholar] [CrossRef]
- Aghili, S.; Vaezihir, A.; Hosseinzadeh, M. Distribution and modeling of heavy metal pollution in the sediment and water mediums of Pakhir River, at the downstream of Sungun mine tailing dump, Iran. Environ. Earth Sci. 2018, 77, 128. [Google Scholar] [CrossRef]
- Ceballos, E.; Dubny, S.; Othax, N.; Zabala, M.E.; Peluso, F. Assessment of Human Health Risk of Chromium and Nitrate Pollution in Groundwater and Soil of the Matanza-Riachuelo River Basin, Argentina. Expo. Health 2021, 13, 323–336. [Google Scholar] [CrossRef]
- EU. Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilisers; Final Report for ENV. A. 2./ETU/2001/0024. 2004. Available online: https://ec.europa.eu/environment/pdf/waste/compost/hm_finalreport.pdf (accessed on 15 January 2022).
- Stuckey, J.W.; Neaman, A.; Verdejo, J.; Navarro-Villarroel, C.; Peñaloza, P.; Dovletyarova, E.A. Zinc Alleviates Copper Toxicity to Lettuce and Oat in Copper-Contaminated Soils. J. Soil Sci. Plant Nutr. 2021, 21, 1229–1235. [Google Scholar] [CrossRef]
- Naveed, M.; Bukhari, S.; Mustafa, A.; Ditta, A.; Alamri, S.; El-Esawi, M.; Rafique, M.; Ashraf, S.; Siddiqui, M. Mitigation of Nickel Toxicity and Growth Promotion in Sesame through the Application of a Bacterial Endophyte and Zeolite in Nickel Contaminated Soil. Int. J. Environ. Res. Public Health 2020, 17, 8859. [Google Scholar] [CrossRef] [PubMed]
- Sattar, S.; Jehan, S.; Siddiqui, S. Potentially toxic metals in the petroleum waste contaminated soils lead to human and ecological risks in Potwar and Kohat Plateau, Pakistan: Application of multistatistical approaches. Environ. Technol. Innov. 2021, 22, 101395. [Google Scholar] [CrossRef]
- Li, J.; Smith, R.L.; Xu, S.; Yang, J.; Zhang, K.; Shen, F. Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water. Green Chem. 2022, 24, 315–324. [Google Scholar] [CrossRef]
- Stewart, C.; Damby, D.E.; Horwell, C.J.; Elias, T.; Ilyinskaya, E.; Tomašek, I.; Longo, B.M.; Schmidt, A.; Carlsen, H.K.; Mason, E.; et al. Volcanic air pollution and human health: Recent advances and future directions. Bull. Volcanol. 2022, 84, 11. [Google Scholar] [CrossRef]
- Jones, J.V.; Piatak, N.M.; Bedinger, G.M. Zirconium and hafnium, Chap. V. In Critical Mineral Resources of the United States Economic and Environ Mental Geology and Prospects for Future Supply; Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., Bradley, D.C., Eds.; U.S. Geological Survey Professional: St. Petersburg, FL, USA, 2017; p. 26. Available online: https://doi.org/https://doi.org/10.3133/pp1802V (accessed on 21 February 2022).
- Lian, Z.; Zhao, X.; Gu, X.; Li, X.; Luan, M.; Yu, M. Presence, sources, and risk assessment of heavy metals in the upland soils of northern China using Monte Carlo simulation. Ecotoxicol. Environ. Saf. 2022, 230, 113154. [Google Scholar] [CrossRef] [PubMed]
- Wixson, B.G.; Davies, B.E. Lead in Soil; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
EF | Classification | PERI | Classification |
---|---|---|---|
0 ≤ EF < 40 | Low | PERI < 150 | Low |
40 ≤ EF < 80 | Moderate | 150 ≤ PERI < 300 | Moderate |
80 ≤ EF < 160 | Considerable | 300 ≤ PERI < 60 | Considerable |
160 ≤ EF < 32 | Very high | 600 ≤ PERI | Very high |
320 ≤ EF | Very high |
Var | Soils (n = 71) | Local Background (n = 10) | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | |
Al | 6399 | 24,510 | 11,453 | 3974 | 19,101 | 32,200 | 22,406 | 4061 |
Ba | 64 | 287 | 117 | 41 | 72 | 134 | 106 | 23 |
Br | 0.5 | 12.1 | 3.7 | 2.4 | 1.0 | 3.5 | 2.3 | 0.8 |
Ca | 486 | 31,240 | 9167 | 8630 | 243 | 843 | 471 | 217 |
Cr | 10.3 | 238.0 | 41.3 | 41.1 | 20.0 | 59.4 | 33.5 | 11.5 |
Cu | 3.3 | 1470 | 59.7 | 189 | 6.8 | 14.0 | 9.2 | 2.1 |
Fe | 1364 | 27,839 | 4655 | 4204 | 5316 | 9204 | 6801 | 1255 |
K | 3512 | 10,601 | 6278 | 1719 | 6409 | 14,129 | 9001 | 2263 |
Mg | 10 | 3 028 | 979 | 530 | 609 | 965 | 675 | 104 |
Mn | 23 | 310 | 83 | 57 | 95 | 194 | 140 | 34 |
Na | 386 | 3769 | 1091 | 780 | 519 | 1803 | 974 | 343 |
Ni | 0.5 | 16.1 | 3.4 | 3.3 | 2.8 | 5.2 | 3.9 | 0.7 |
P | 79 | 3 029 | 686 | 677 | 127 | 284 | 197 | 53 |
Pb | 6.4 | 506 | 30.2 | 59.6 | 6.6 | 9.5 | 7.8 | 0.8 |
Rb | 8.0 | 28.8 | 13.1 | 3.4 | 13.9 | 23.8 | 18.0 | 3.8 |
Si | 363,290 | 451,075 | 430,505 | 18,882 | 398,497 | 433,284 | 422,573 | 13,835 |
Sn | 0.5 | 110 | 7.0 | 12.9 | 0.5 | 4.9 | 3.4 | 1.6 |
S | 50 | 3228 | 544 | 578 | 55 | 175 | 103 | 31 |
Sr | 9 | 89 | 29.5 | 21.8 | 10.0 | 18.0 | 13.6 | 2.7 |
Ti | 779 | 2812 | 1624 | 514 | 1121 | 3333 | 1754 | 696 |
V | 3 | 18.4 | 7.3 | 3.3 | 9.6 | 19.9 | 13.6 | 3.3 |
Zn | 2 | 1077 | 92 | 162 | 3 | 4 | 3 | 1 |
Zr | 65 | 341 | 161 | 65 | 81 | 200 | 123 | 40 |
Cr | Cu | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|
Cu | 0.640 ** | 1 | ||||
Mn | 0.747 ** | 0.709 ** | 1 | |||
Ni | 0.770 ** | 0.699 ** | 0.792 ** | 1 | ||
Pb | 0.626 ** | 0.759 ** | 0.669 ** | 0.711 ** | 1 | |
Zn | 0.695 ** | 0.813 ** | 0.791 ** | 0.799 ** | 0.734 ** | 1 |
Zr | 0.377 ** | 0.14 | 0.218 | 0.152 | 0.175 | 0.155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, B.; Candeias, C.; Rocha, F. Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique). Geosciences 2022, 12, 290. https://doi.org/10.3390/geosciences12080290
Bernardo B, Candeias C, Rocha F. Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique). Geosciences. 2022; 12(8):290. https://doi.org/10.3390/geosciences12080290
Chicago/Turabian StyleBernardo, Bernardino, Carla Candeias, and Fernando Rocha. 2022. "Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique)" Geosciences 12, no. 8: 290. https://doi.org/10.3390/geosciences12080290
APA StyleBernardo, B., Candeias, C., & Rocha, F. (2022). Soil Risk Assessment in the Surrounding Area of Hulene-B Waste Dump, Maputo (Mozambique). Geosciences, 12(8), 290. https://doi.org/10.3390/geosciences12080290