Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling
Abstract
:1. Introduction
2. Seismic Interferometry Method
Data Processing
3. Results
3.1. Land Acquisition below the Weathered Layer (Surface Wave Impact)
3.2. Zero-Offset VSP Acquisition Scheme
3.3. Crosswell Seismic Acquisition Geometry
4. Discussions
5. Conclusions
- (1)
- In a weathered layer: We found when the area is contaminated by ambient noise (e.g., from anthropologic activities, winds, traffics), putting the geophones below the weathered layer can significantly improve the results although surface multiples are generated.
- (2)
- In a borehole crosswell: We created a target (coal layer) zone and tried to determine under which conditions the surface seismic method or zero-offset VSP method can detect the coal layer more successfully by using a few numbers of sources. In addition, VSP can give complementary information to that of surface data acquisition in particular when the geology is complex. In real conditions, noise distribution is not wide (limited), and we would not have many sources, therefore, VSP survey for ANSI is preferred.
- (3)
- In VSP application: We showed that for crosswell data, the application of cross-correlation to seismic traces is an ineffective means to obtain reflection events due to the non-similarity of ray paths from the noise sources to the (virtual) source and receiver locations, and the narrow stationary-phase region for those reflections are insufficiently sampled.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, G.T.; Yu, J.; Sheng, J.; Rickett, J. Interferometric/daylight seismic imaging. Geophys. J. Int. 2004, 157, 838–852. [Google Scholar] [CrossRef]
- Wapenaar, K.; Fokkema, J. Green’s function representations for seismic interferometry. Geophysics 2006, 71, SI33–SI46. [Google Scholar] [CrossRef]
- Claerbout, J.F. Synthesis of a layered medium from its acoustic transmission response. Geophysics 1968, 33, 264–269. [Google Scholar] [CrossRef]
- Wapenaar, K. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys. Rev. Lett. 2004, 93, 254301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wapenaar, K.; van der Neut, J.; Ruigrok, E. Passive seismic interferometry by multidimensional deconvolution. Geophysics 2008, 73, A51–A56. [Google Scholar] [CrossRef] [Green Version]
- Paap, B.; Verdel, A.; Meekes, S.; Steeghs, P.; Vandeweijer, V.; Neele, F. Four Years of Experience with a Permanent Seismic Monitoring Array at the Ketzin CO2 Storage Pilot Site. Energy Procedia 2014, 63, 4043–4050. [Google Scholar] [CrossRef] [Green Version]
- Boullenger, B.; Verdel, A.; Paap, B.; Thorbecke, J.; Draganov, D. Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany. Geophysics 2015, 80, Q1–Q13. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Juhlin, C.; Gudmundsson, O.; Zhang, F.; Yang, C.; Kashubin, A.; Lüth, S. Reconstruction of subsurface structure from ambient seismic noise: An example from Ketzin, Germany. Geophys. J. Int. 2012, 189, 1085–1102. [Google Scholar] [CrossRef] [Green Version]
- Cheraghi, S.; White, D.J.; Draganov, D.; Bellefleur, G.; Craven, J.A.; Roberts, B. Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada. Geophysics 2017, 82, B79–B93. [Google Scholar] [CrossRef] [Green Version]
- Weaver, R.L.; Lobkis, O.I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett. 2001, 87, 134301. [Google Scholar] [CrossRef]
- Snieder, R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E 2004, 69, 046610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, N.M.; Campillo, M.; Stehly, L.; Ritzwoller, M.H. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science 2005, 307, 1615–1618. [Google Scholar] [CrossRef] [Green Version]
- Sabra, K.G.; Gerstoft, P.; Roux, P.; Kuperman, W.A.; Fehler, M.C. Surface wave tomography from microseisms in Southern California. Geophys. Res. Lett. 2005, 32, L14311. [Google Scholar] [CrossRef] [Green Version]
- Nakata, N.; Boué, P.; Brenguier, F.; Roux, P.; Ferrazzini, V.; Campillo, M. Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophys. Res. Lett. 2016, 43, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, Y.; Li, T.; He, Y.; Du, Y.; Luo, Y. Inversion of vehicle-induced signals based on seismic interferometry and recurrent neural networks. Geophysics 2021, 86, Q37–Q45. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.E.; Ku, T. Soil/rock interface profiling using a new passive seismic survey: Autocorrelation seismic interferometry. Tunn. Undergr. Space Technol. 2021, 115, 104045. [Google Scholar] [CrossRef]
- Nakata, N.; Snieder, R.; Tsuji, T.; Larner, K.; Matsuoka, T. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 2011, 76, SA97–SA106. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.; Sabra, K.G.; Gerstoft, P.; Kuperman, W.A.; Fehler, M.C. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett. 2005, 32, L19303. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Reflection images from ambient seismic noise. Geophysics 2009, 74, A63–A67. [Google Scholar] [CrossRef] [Green Version]
- Poli, P.; Campillo, M.; Pedersen, H.; LAPNET Working Group. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science 2012, 338, 1063–1065. [Google Scholar] [CrossRef]
- Nishida, K. Global propagation of body waves revealed by cross-correlation analysis of seismic hum. Geophys. Res. Lett. 2013, 40, 1691–1696. [Google Scholar] [CrossRef]
- Panea, I.; Draganov, D.; Vidal, C.A.; Mocanu, V. Retrieval of reflections from ambient noise recorded in the Mizil area, Romania. Geophysics 2014, 79, Q31–Q42. [Google Scholar] [CrossRef] [Green Version]
- Polychronopoulou, K.; Lois, A.; Draganov, D. Body-wave passive seismic interferometry revisited: Mining exploration using the body waves of local microearthquakes. Geophys. Prospect. 2020, 68, 232–253. [Google Scholar] [CrossRef] [Green Version]
- Dangwal, D.; Behm, M. Interferometric body-wave retrieval from ambient noise after polarization filtering: Application to shallow reflectivity imaging. Geophysics 2021, 86, Q47–Q58. [Google Scholar] [CrossRef]
- Halliday, D.; Curtis, A. Seismic interferometry, surface waves and source distribution. Geophys. J. Int. 2008, 175, 1067–1087. [Google Scholar] [CrossRef] [Green Version]
- Poletto, F.; Farina, B. Synthesis of a seismic virtual reflector. Geophys. Prospect. 2010, 58, 375–387. [Google Scholar] [CrossRef]
- Xu, Z.; Mikesell, T.D.; Xia, J.; Cheng, F. A comprehensive comparison between the refraction microtremor and seismic interferometry methods for phase-velocity estimation. Geophysics 2017, 82, EN99–EN108. [Google Scholar] [CrossRef]
- Lomas, A.; Singh, S.; Curtis, A. Imaging vertical structures using Marchenko methods with vertical seismic-profile data. Geophys. 2020, 85, S103–S113. [Google Scholar] [CrossRef]
- Thorbecke, J.; Draganov, D. Finite-difference modeling experiments for seismic interferometry. Geophysics 2011, 76, H1–H18. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, I.; Snieder, R. Interferometry by deconvolution: Part 2—Theory for elastic waves and application to drill-bit seismic imaging. Geophysics 2008, 73, S129–S141. [Google Scholar] [CrossRef]
- Snieder, R.; Miyazawa, M.; Slob, E.; Vasconcelos, I.; Wapenaar, K. A Comparison of Strategies for Seismic Interferometry. Surv. Geophys. 2009, 30, 503–523. [Google Scholar] [CrossRef]
- Nishitsuji, Y.; Rowe, C.A.; Wapenaar, K.; Draganov, D. Reflection imaging of the Moon’s interior using deep-moonquake seismic interferometry. J. Geophys. Res. Planets 2016, 121, 695–713. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Askari, R.; Wang, Y.; Liu, J.; Liu, R.; Guo, R.; Feng, D. Comparison of seismic interferometry techniques for the retrieval of seismic body waves in CO2 sequestration monitoring. J. Geophys. Eng. 2019, 16, 1094–1115. [Google Scholar] [CrossRef]
- Xu, L.; Chen, H.; Zhang, X.; Wang, X. Green’s function retrieval with Marchenko and inter-source seismic interferometry method for drill-bit seismic while drilling. J. Geophys. Eng. 2018, 15, 2047–2059. [Google Scholar] [CrossRef] [Green Version]
- Naghadeh, D.H.; Bean, C.J.; Brenguier, F.; Smith, P.J. Retrieving reflection arrivals from passive seismic data using Radon correlation. J. Geophys. Eng. 2021, 18, 177–191. [Google Scholar] [CrossRef]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz). J. Geophys. Res. Solid Earth 2013, 118, 4345–4360. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Wapenaar, K.; Mulder, W.; Singer, J.; Verdel, A. Retrieval of reflections from seismic background-noise measurements. Geophys. Res. Lett. 2007, 34, L04305. [Google Scholar] [CrossRef] [Green Version]
- Minato, S.; Matsuoka, T.; Tsuji, T.; Draganov, D.; Hunziker, J.; Wapenaar, K. Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell seismic reflection data without borehole sources. Geophysics 2011, 76, SA19–SA34. [Google Scholar] [CrossRef] [Green Version]
Step | Processing |
---|---|
1 | Band-pass filtering between 6 Hz and 24 Hz |
2 | Frequency-wavenumber filtering |
3 | Energy normalization per trace in each panel |
4 | Cross-correlation of master trace with other traces |
5 | Summation of casual and acausal parts |
6 | Retrieved virtual common-source gather |
7 | Sort to CMP |
8 | NMO correction and stacking |
9 | F-X deconvolution |
Layer Number | Velocity (m/s) | Density (kg/m3) | Layer Thickness (m) | TWT (s) |
---|---|---|---|---|
1 | 1500 | 1000 | 250 | 0.33 |
2 | 2000 | 1400 | 850 | 0.85 |
3 | 3000 | 1500 | 500 | 0.33 |
4 | 4000 | 2000 | 1000 | 0.50 |
5 | 5500 | 2200 | 1500 | Na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Apatay, E.; Crane, G.; Wu, B.; Gao, K.; Askari, R. Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling. Geosciences 2022, 12, 270. https://doi.org/10.3390/geosciences12070270
Cao H, Apatay E, Crane G, Wu B, Gao K, Askari R. Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling. Geosciences. 2022; 12(7):270. https://doi.org/10.3390/geosciences12070270
Chicago/Turabian StyleCao, Haitao, Erdi Apatay, Garvie Crane, Boming Wu, Ke Gao, and Roohollah Askari. 2022. "Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling" Geosciences 12, no. 7: 270. https://doi.org/10.3390/geosciences12070270
APA StyleCao, H., Apatay, E., Crane, G., Wu, B., Gao, K., & Askari, R. (2022). Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling. Geosciences, 12(7), 270. https://doi.org/10.3390/geosciences12070270