Deformation of the European Plate (58-0 Ma): Evidence from Calcite Twinning Strains
Abstract
:1. Introduction
2. Previous Work
3. Methods
3.1. Calcite Twin Analysis
3.2. Calcite U-Pb Geochronology with LA-ICPMS-MC
4. Results
4.1. Irish Tertiary Province
4.2. Internal Alps
4.3. Alpine Nappes and Molasse
4.4. Alpine Foreland
5. Discussion
5.1. Opening the Atlantic Ocean (Northern Irish Coast)
5.2. The Alpine Nappes and Foreland Deformation
5.3. Implications for Orogenic Collisions and Thrust Mechanics
5.4. Tectonic Evolution of the European Foreland (100–0 Ma)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Comments | U ppm | 238U/206Pb | 2σ | 207Pb/206Pb | 2σ | rho | Intercept Age | 2σ |
---|---|---|---|---|---|---|---|---|
PUE21-44 | 0.008 | 2.86 | 0.70 | 0.809 | 0.023 | 0.03 | 76 | 153 |
PUE21-36 | 0.0004 | 0.40 | 0.45 | 0.890 | 0.025 | 0.03 | −1177 | 1964 |
PUE21-13 | 0.005 | 0.90 | 0.83 | 0.871 | 0.029 | −0.80 | −326 | 639 |
PUE21-40 | 0.023 | 3.26 | 1.00 | 0.846 | 0.031 | −0.36 | −26 | 150 |
PUE21-34 | 0.018 | 4.04 | 2.79 | 0.824 | 0.032 | −0.05 | 23 | 120 |
PUE21-31 | 0.026 | 5.28 | 2.05 | 0.806 | 0.033 | −0.37 | 46 | 92 |
PUE21-7 | 0.011 | 0.84 | 0.96 | 0.826 | 0.033 | 0.37 | 93 | 585 |
PUE21-41 | 0.021 | 3.35 | 1.34 | 0.837 | 0.033 | 0.02 | −3 | 147 |
PUE21-43 | 0.017 | 3.66 | 1.95 | 0.844 | 0.035 | 0.14 | −19 | 138 |
PUE21-5 | 0.017 | 4.14 | 0.65 | 0.841 | 0.036 | −0.06 | −11 | 122 |
PUE21-30 | 0.038 | 13.03 | 2.76 | 0.772 | 0.041 | −0.08 | 40 | 39 |
PUE21-22 | 0.013 | 3.91 | 1.44 | 0.792 | 0.043 | −0.11 | 91 | 136 |
PUE21-47 | 0.025 | 8.95 | 1.85 | 0.784 | 0.046 | −0.45 | 47 | 60 |
PUE21-25 | 0.008 | 1.63 | 0.88 | 0.864 | 0.048 | 0.62 | −143 | 369 |
PUE21-28 | 0.013 | 7.24 | 4.34 | 0.769 | 0.049 | 0.06 | 75 | 87 |
PUE21-3 | 0.018 | 5.81 | 1.27 | 0.823 | 0.051 | −0.39 | 18 | 99 |
PUE21-32 | 0.010 | 3.09 | 2.68 | 0.832 | 0.051 | 0.26 | 10 | 188 |
PUE21-9 | 0.010 | 0.73 | 0.82 | 0.869 | 0.051 | 0.47 | −380 | 954 |
PUE21-46 | 0.009 | 3.01 | 1.85 | 0.852 | 0.054 | 0.82 | −45 | 204 |
PUE21-19 | 0.004 | 0.65 | 1.12 | 0.860 | 0.054 | −0.75 | −311 | 1110 |
PUE21-35 | 0.004 | 0.38 | 0.40 | 0.808 | 0.057 | −0.21 | 579 | 1647 |
PUE21-26 | 0.018 | 11.85 | 7.66 | 0.803 | 0.058 | 0.30 | 22 | 54 |
PUE21-29 | 0.020 | 9.69 | 2.17 | 0.777 | 0.059 | −0.09 | 49 | 64 |
PUE21-49 | 0.007 | 16.52 | 11.17 | 0.810 | 0.064 | 0.42 | 13 | 41 |
PUE21-48 | 0.009 | 3.26 | 1.09 | 0.802 | 0.073 | −0.46 | 84 | 218 |
PUE21-33 | 0.045 | 31.03 | 3.18 | 0.677 | 0.073 | −0.05 | 42 | 22 |
PUE21-21 | 0.027 | 27.27 | 7.63 | 0.605 | 0.079 | −0.08 | 69 | 32 |
PUE21-27 | 0.008 | 0.49 | 0.53 | 0.873 | 0.083 | −0.38 | −648 | 1913 |
PUE21-1 | 0.002 | 1.41 | 0.80 | 0.839 | 0.084 | 1.00 | −20 | 565 |
PUE21-15 | 0.001 | 3.66 | 2.52 | 0.770 | 0.087 | −0.25 | 145 | 238 |
PUE21-16 | 0.019 | 35.54 | 17.25 | 0.739 | 0.093 | −0.84 | 22 | 26 |
PUE21-20 | 0.025 | 33.32 | 7.60 | 0.700 | 0.101 | −0.69 | 33 | 28 |
PUE21-2 | 0.009 | 2.30 | 2.03 | 0.820 | 0.111 | −0.05 | 55 | 432 |
PUE21-39 | 0.006 | 5.58 | 5.05 | 0.810 | 0.121 | −0.64 | 37 | 193 |
PUE21-18 | 0.012 | 43.44 | 19.32 | 0.730 | 0.181 | 0.34 | 20 | 36 |
PUE21-11 | 0.006 | 6.90 | 4.87 | 0.950 | 0.191 | 0.51 | −136 | 258 |
PUE21-17 | 0.008 | 10.66 | 10.66 | 0.840 | 0.231 | 0.31 | −3 | 181 |
PUE21-38 | 0.007 | 31.70 | 26.56 | 0.810 | 0.280 | −0.85 | 7 | 73 |
PUE23-37 | 0.056 | 53.80 | 7.73 | 0.435 | 0.053 | 0.29 | 61 | 12 |
PUE23-38 | 0.024 | 33.99 | 6.83 | 0.637 | 0.072 | −0.17 | 48 | 22 |
PUE23-39 | 0.031 | 46.54 | 8.00 | 0.660 | 0.111 | −0.73 | 31 | 21 |
PUE23-12 | 0.035 | 23.46 | 3.88 | 0.664 | 0.059 | −0.36 | 60 | 26 |
PUE23-30 | 0.014 | 5.19 | 2.28 | 0.775 | 0.044 | 0.22 | 95 | 107 |
PUE23-1 | 0.045 | 6.48 | 1.01 | 0.794 | 0.030 | 0.09 | 52 | 71 |
PUE23-27 | 0.011 | 1.83 | 1.55 | 0.797 | 0.037 | −0.12 | 171 | 299 |
PUE23-50 | 0.013 | 6.90 | 4.06 | 0.799 | 0.074 | −0.28 | 43 | 107 |
PUE23-8 | 0.011 | 4.51 | 2.78 | 0.804 | 0.048 | −0.05 | 57 | 127 |
PUE23-31 | 0.009 | 5.83 | 2.53 | 0.807 | 0.088 | 0.50 | 40 | 140 |
PUE23-28 | 0.031 | 11.17 | 1.93 | 0.809 | 0.060 | 0.42 | 19 | 56 |
PUE23-9 | 0.051 | 4.79 | 0.81 | 0.817 | 0.022 | −0.03 | 32 | 91 |
PUE23-14 | 0.020 | 4.19 | 1.80 | 0.818 | 0.039 | 0.39 | 34 | 122 |
PUE23-49 | 0.019 | 4.46 | 0.42 | 0.819 | 0.050 | −0.34 | 30 | 127 |
PUE23-7 | 0.021 | 6.48 | 1.90 | 0.819 | 0.053 | −0.46 | 21 | 91 |
PUE23-11 | 0.017 | 1.83 | 0.75 | 0.822 | 0.023 | −0.23 | 60 | 241 |
PUE23-6 | 0.038 | 2.21 | 0.59 | 0.826 | 0.028 | −0.59 | 35 | 209 |
PUE23-36 | 0.002 | 2.26 | 1.61 | 0.826 | 0.067 | 0.22 | 35 | 301 |
PUE23-44 | 0.004 | 7.33 | 5.04 | 0.840 | 0.131 | −0.33 | −5 | 156 |
PUE23-26 | 0.007 | 2.86 | 1.88 | 0.840 | 0.151 | 0.31 | −13 | 455 |
PUE23-34 | 0.006 | 13.18 | 8.00 | 0.840 | 0.181 | −0.72 | −3 | 116 |
PUE23-20 | 0.005 | 2.86 | 1.33 | 0.848 | 0.082 | 0.49 | −35 | 276 |
PUE23-32 | 0.007 | 5.19 | 2.11 | 0.850 | 0.151 | −0.69 | −23 | 251 |
PUE23-47 | 0.008 | 0.25 | 0.07 | 0.871 | 0.022 | −0.54 | −1247 | 2210 |
PUE23-19 | 0.010 | 4.89 | 2.24 | 0.872 | 0.100 | 0.08 | −61 | 191 |
PUE23-29 | 0.033 | 0.18 | 0.03 | 0.884 | 0.018 | −0.31 | −2681 | 3809 |
PUE23-5 | 0.048 | 0.08 | 0.01 | 0.905 | 0.019 | 0.29 | 0 | 5882 |
PUE23-35 | 0.001 | 0.05 | 0.10 | 0.910 | 0.151 | 0.13 | 0 | 34,884 |
pue17-17 | 0.060 | 0.53 | 0.32 | 0.851 | 0.023 | 0.68 | −239 | 893 |
pue17-25 | 0.056 | 2.30 | 1.80 | 0.600 | 0.240 | 0.68 | 806 | 1012 |
pue17-2 | 0.031 | 3.66 | 2.18 | 0.794 | 0.026 | 0.35 | 92 | 131 |
pue17-3 | 0.118 | 4.22 | 1.22 | 0.802 | 0.028 | 0.64 | 65 | 108 |
pue17-29 | 0.165 | 4.51 | 1.74 | 0.810 | 0.026 | 0.66 | 46 | 100 |
pue17-24 | 0.060 | 5.86 | 2.88 | 0.769 | 0.041 | 0.66 | 92 | 96 |
pue17-7 | 0.007 | 6.90 | 0.74 | 0.830 | 0.161 | 0.01 | 7 | 199 |
pue17-31 | 0.058 | 6.90 | 7.31 | 0.620 | 0.131 | 0.66 | 252 | 306 |
pue17-11 | 0.212 | 8.38 | 14.36 | 0.550 | 0.150 | 0.66 | 274 | 487 |
pue17-12 | 0.254 | 10.29 | 4.97 | 0.723 | 0.046 | 0.69 | 89 | 65 |
pue17-14 | 0.275 | 10.86 | 8.85 | 0.730 | 0.045 | 0.63 | 79 | 79 |
pue17-10 | 0.270 | 11.97 | 5.74 | 0.736 | 0.045 | 0.67 | 68 | 54 |
pue17-16 | 0.065 | 13.33 | 8.79 | 0.691 | 0.099 | 0.69 | 88 | 87 |
pue17-28 | 0.017 | 18.04 | 18.32 | 0.830 | 0.121 | 0.39 | 3 | 59 |
pue17-21 | 0.292 | 19.88 | 5.74 | 0.691 | 0.049 | 0.61 | 59 | 31 |
pue17-9 | 0.066 | 35.54 | 18.32 | 0.580 | 0.111 | 0.57 | 59 | 40 |
pue17-27 | 0.074 | 48.86 | 20.38 | 0.580 | 0.111 | 0.54 | 43 | 26 |
pue17-8 | 0.051 | 49.07 | 10.93 | 0.483 | 0.093 | 0.19 | 58 | 21 |
pue17-23 | 0.029 | 55.85 | 10.70 | 0.340 | 0.100 | 0.25 | 72 | 20 |
pue17-22 | 0.091 | 66.63 | 13.69 | 0.430 | 0.084 | 0.12 | 50 | 15 |
pue17-19 | 0.166 | 72.39 | 24.17 | 0.308 | 0.086 | 0.48 | 59 | 22 |
pue17-18 | 0.084 | 73.30 | 10.18 | 0.493 | 0.062 | 0.09 | 38 | 9 |
pue17-20 | 0.059 | 77.16 | 33.54 | 0.233 | 0.064 | 0.23 | 64 | 28 |
pue17-13 | 0.104 | 84.37 | 8.66 | 0.305 | 0.023 | 0.30 | 51 | 6 |
pue17-1 | 0.236 | 90.21 | 22.28 | 0.400 | 0.100 | 0.49 | 39 | 13 |
pue17-26 | 0.149 | 111.48 | 10.41 | 0.316 | 0.071 | 0.16 | 38 | 6 |
pue17-4 | 0.136 | 113.97 | 9.69 | 0.253 | 0.093 | 0.15 | 42 | 8 |
pue17-6 | 0.244 | 121.40 | 12.43 | 0.249 | 0.025 | 0.38 | 39 | 4 |
pue17-15 | 0.255 | 127.34 | 7.76 | 0.177 | 0.045 | 0.21 | 42 | 4 |
pue26-3 | 0.019 | 1.50 | 0.85 | 0.850 | 0.029 | 0.20 | −78 | 323 |
pue26-5 | 0.001 | 1.70 | 1.45 | 0.807 | 0.062 | 0.01 | 136 | 390 |
pue26-6 | 0.011 | 4.69 | 4.88 | 0.816 | 0.086 | 0.04 | 34 | 174 |
pue26-8 | 0.082 | 23.74 | 4.16 | 0.694 | 0.042 | 0.33 | 49 | 22 |
pue26-9 | 0.044 | 14.48 | 13.23 | 0.583 | 0.059 | 0.36 | 141 | 134 |
pue26-10 | 0.064 | 15.64 | 2.52 | 0.715 | 0.050 | 0.41 | 63 | 35 |
pue26-11 | 0.021 | 15.43 | 9.95 | 0.760 | 0.131 | 0.26 | 40 | 77 |
pue26-12 | 0.054 | 11.97 | 3.06 | 0.801 | 0.046 | 0.62 | 24 | 45 |
pue26-13 | 0.032 | 4.34 | 1.93 | 0.778 | 0.057 | 0.27 | 108 | 145 |
pue26-15 | 0.002 | 12.09 | 11.10 | 0.870 | 0.141 | 0.01 | −23 | 104 |
pue26-16 | 0.024 | 1.20 | 0.39 | 0.849 | 0.021 | 0.41 | −92 | 381 |
pue26-17 | 0.041 | 3.55 | 1.72 | 0.833 | 0.051 | 0.28 | 6 | 163 |
pue26-18 | 0.018 | 17.00 | 5.43 | 0.730 | 0.121 | 0.13 | 51 | 63 |
pue26-19 | 0.021 | 3.35 | 1.06 | 0.871 | 0.066 | 0.06 | −87 | 209 |
pue26-21 | 0.012 | 6.01 | 0.90 | 0.859 | 0.065 | 0.11 | −32 | 113 |
pue26-25 | 0.007 | 3.01 | 2.01 | 0.810 | 0.131 | 0.04 | 69 | 379 |
pue26-27 | 0.018 | 1.86 | 1.15 | 0.842 | 0.080 | 0.11 | −28 | 416 |
pue26-28 | 0.076 | 68.58 | 14.90 | 0.265 | 0.095 | 0.22 | 68 | 19 |
pue26-29 | 0.037 | 1.17 | 1.64 | 0.812 | 0.028 | 0.23 | 163 | 446 |
pue26-30 | 0.039 | 4.51 | 0.77 | 0.830 | 0.030 | 0.30 | 10 | 105 |
pue26-31 | 0.010 | 1.30 | 2.32 | 0.771 | 0.099 | 0.44 | 397 | 956 |
pue26-32 | 0.019 | 5.10 | 4.21 | 0.580 | 0.150 | 0.45 | 401 | 403 |
pue26-34 | 0.073 | 6.44 | 1.18 | 0.794 | 0.025 | 0.32 | 53 | 68 |
pue26-35 | 0.127 | 8.56 | 1.63 | 0.791 | 0.026 | 0.30 | 42 | 52 |
pue26-37 | 0.076 | 0.88 | 0.23 | 0.857 | 0.020 | 0.19 | −200 | 524 |
pue26-38 | 0.029 | 0.21 | 0.08 | 0.864 | 0.021 | 0.14 | −1210 | 2633 |
pue26-39 | 0.024 | 3.66 | 3.09 | 0.817 | 0.098 | 0.15 | 41 | 246 |
pue26-40 | 0.056 | 0.34 | 0.28 | 0.800 | 0.121 | 0.09 | 812 | 2949 |
pue26-41 | 0.010 | 0.97 | 0.35 | 0.868 | 0.036 | 0.22 | −277 | 561 |
ASH15-1 | 0.76 | 942.73 | 65.66 | 0.496 | 0.086 | 0.54 | 3 | 1 |
ASH15-1 | 0.82 | 1161.15 | 242.54 | 0.388 | 0.060 | 0.09 | 3 | 1 |
ASH15-10 | 1.59 | 1649.45 | 118.37 | 0.201 | 0.046 | −0.01 | 3 | 0 |
ASH15-11 | 0.71 | 1714.56 | 105.97 | 0.082 | 0.059 | 0.17 | 4 | 0 |
ASH15-11 | 1.93 | 1719.59 | 111.34 | 0.251 | 0.087 | 0.18 | 3 | 0 |
ASH15-12 | 1.68 | 1411.26 | 78.29 | 0.304 | 0.059 | 0.29 | 3 | 0 |
ASH15-12 | 0.73 | 1633.37 | 205.08 | 0.264 | 0.051 | 0.60 | 3 | 0 |
ASH15-13 | 0.58 | 1670.59 | 223.83 | 0.310 | 0.160 | 0.57 | 3 | 1 |
ASH15-14 | 0.95 | 1651.77 | 114.22 | 0.256 | 0.069 | 0.10 | 3 | 0 |
ASH15-15 | 1.37 | 1804.24 | 95.87 | 0.194 | 0.049 | −0.03 | 3 | 0 |
ASH15-16 | 0.96 | 1755.62 | 176.98 | 0.257 | 0.076 | −0.15 | 3 | 0 |
ASH15-17 | 1.94 | 746.98 | 77.58 | 0.581 | 0.043 | 0.07 | 3 | 1 |
ASH15-18 | 0.50 | 1183.41 | 112.38 | 0.273 | 0.098 | 0.09 | 4 | 1 |
ASH15-19 | 1.24 | 1628.83 | 133.00 | 0.257 | 0.061 | 0.31 | 3 | 0 |
ASH15-2 | 0.01 | 11.73 | 11.73 | 0.860 | 0.860 | 0.04 | −17 | 601 |
ASH15-2 | 0.65 | 1370.04 | 116.89 | 0.276 | 0.088 | −0.17 | 3 | 1 |
ASH15-20 | 2.72 | 1742.58 | 92.28 | 0.185 | 0.014 | 0.41 | 3 | 0 |
ASH15-3 | 0.68 | 1274.74 | 195.65 | 0.320 | 0.110 | 0.03 | 3 | 1 |
ASH15-3 | 0.92 | 1719.59 | 177.34 | 0.270 | 0.170 | 0.16 | 3 | 1 |
ASH15-4 | 1.20 | 1224.17 | 64.86 | 0.470 | 0.110 | 0.28 | 2 | 1 |
ASH15-4 | 1.14 | 1873.41 | 139.79 | 0.181 | 0.068 | 0.31 | 3 | 0 |
ASH15-5 | 0.83 | 1412.96 | 149.11 | 0.362 | 0.056 | −0.36 | 3 | 0 |
ASH15-5 | 1.75 | 1846.86 | 221.24 | 0.196 | 0.090 | 0.13 | 3 | 1 |
ASH15-6 | 1.98 | 1747.78 | 119.82 | 0.170 | 0.039 | 0.23 | 3 | 0 |
ASH15-6 | 1.02 | 1763.54 | 175.95 | 0.201 | 0.059 | 0.08 | 3 | 0 |
ASH15-7 | 1.03 | 747.93 | 37.90 | 0.543 | 0.051 | 0.22 | 3 | 1 |
ASH15-8 | 0.72 | 1758.26 | 91.39 | 0.306 | 0.069 | 0.11 | 2 | 0 |
ASH15-9 | 1.02 | 360.85 | 36.26 | 0.716 | 0.032 | −0.37 | 3 | 1 |
ASH15-9 | 1.31 | 2008.15 | 206.82 | 0.192 | 0.076 | 0.20 | 3 | 0 |
db-1 | 18.00 | 64.51 | 2.99 | 0.282 | 0.009 | 0.04 | 70 | 4 |
db-1 | 26.20 | 68.26 | 2.10 | 0.267 | 0.008 | 0.51 | 68 | 3 |
db-10 | 17.61 | 57.57 | 3.03 | 0.301 | 0.011 | −0.54 | 75 | 5 |
db-2 | 19.48 | 66.26 | 5.04 | 0.248 | 0.007 | 0.12 | 72 | 6 |
db-2 | 25.37 | 69.35 | 1.77 | 0.259 | 0.007 | 0.55 | 68 | 2 |
db-3 | 16.07 | 56.93 | 3.25 | 0.309 | 0.011 | −0.74 | 75 | 5 |
db-3 | 20.71 | 61.08 | 4.01 | 0.316 | 0.020 | 0.15 | 69 | 6 |
db-4 | 10.08 | 44.42 | 3.00 | 0.418 | 0.017 | −0.66 | 76 | 7 |
db-4 | 19.32 | 47.91 | 1.92 | 0.417 | 0.013 | 0.53 | 71 | 5 |
db-5 | 20.00 | 50.12 | 2.56 | 0.395 | 0.011 | 0.32 | 72 | 5 |
db-5 | 15.88 | 58.35 | 3.40 | 0.303 | 0.016 | −0.70 | 74 | 5 |
db-6 | 22.70 | 65.37 | 3.13 | 0.284 | 0.011 | 0.32 | 69 | 4 |
db-6 | 16.33 | 65.89 | 3.93 | 0.260 | 0.007 | −0.29 | 71 | 5 |
db-7 | 15.17 | 56.11 | 3.67 | 0.325 | 0.011 | −0.65 | 74 | 6 |
db-7 | 29.35 | 70.10 | 3.40 | 0.250 | 0.006 | 0.65 | 68 | 4 |
db-8 | 16.28 | 56.65 | 3.73 | 0.312 | 0.017 | −0.54 | 75 | 6 |
db-8 | 34.60 | 73.16 | 3.02 | 0.254 | 0.006 | 0.59 | 65 | 3 |
db-9 | 18.03 | 65.41 | 2.97 | 0.256 | 0.006 | 0.32 | 72 | 4 |
WC1-1 | 3.78 | 21.80 | 1.56 | 0.109 | 0.007 | −0.12 | 268 | 19 |
WC1-1 | 6.20 | 23.51 | 0.61 | 0.127 | 0.003 | 0.47 | 243 | 6 |
WC1-10 | 3.33 | 20.76 | 0.78 | 0.139 | 0.004 | −0.33 | 270 | 10 |
WC1-2 | 4.02 | 20.08 | 2.95 | 0.130 | 0.041 | −0.65 | 283 | 44 |
WC1-2 | 5.72 | 23.44 | 0.59 | 0.092 | 0.004 | 0.40 | 256 | 7 |
WC1-3 | 5.00 | 21.64 | 0.77 | 0.141 | 0.004 | 0.47 | 259 | 9 |
WC1-3 | 4.01 | 22.17 | 1.82 | 0.100 | 0.010 | −0.55 | 267 | 22 |
WC1-4 | 4.15 | 23.22 | 2.75 | 0.094 | 0.002 | −0.09 | 257 | 30 |
WC1-4 | 4.94 | 23.27 | 0.76 | 0.114 | 0.003 | 0.44 | 250 | 8 |
WC1-5 | 3.36 | 21.80 | 1.68 | 0.095 | 0.004 | 0.04 | 274 | 21 |
WC1-5 | 5.21 | 22.68 | 0.80 | 0.094 | 0.006 | 0.31 | 263 | 9 |
WC1-6 | 4.12 | 21.48 | 1.26 | 0.135 | 0.005 | −0.14 | 263 | 15 |
WC1-6 | 6.54 | 21.80 | 0.85 | 0.141 | 0.009 | 0.14 | 257 | 11 |
WC1-7 | 4.03 | 21.28 | 1.31 | 0.117 | 0.003 | −0.07 | 272 | 17 |
WC1-7 | 6.51 | 23.89 | 1.13 | 0.120 | 0.004 | 0.60 | 242 | 11 |
WC1-8 | 5.63 | 21.60 | 0.80 | 0.133 | 0.004 | 0.37 | 262 | 10 |
WC1-8 | 3.75 | 21.72 | 1.47 | 0.109 | 0.003 | 0.51 | 269 | 18 |
WC1-9 | 3.86 | 20.40 | 0.67 | 0.128 | 0.004 | −0.27 | 279 | 9 |
References
- Chinn, A.A.; Konig, R.H. Stress inferred from calcite twin lamellae in relation to regional structure of northwest Arkansas. Geol. Soc. Am. Bull. 1973, 84, 3731–3736. [Google Scholar] [CrossRef]
- Nickelsen, R.P. Fossil distortion and penetrative rock deformation in the Appalachian plateau, Pennsylvania. J. Geol. 1966, 74, 924–931. [Google Scholar] [CrossRef]
- Engelder, T.; Engelder, R. Fossil distortion and decollement tectonics of the Appalachian plateau. Geology 1977, 5, 457–460. [Google Scholar] [CrossRef]
- Engelder, T.; Geiser, P. One the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian plateau, New York. J. Geophys. Res. 1980, 85, 6319–6341. [Google Scholar] [CrossRef]
- Geiser, P.; Engelder, T. The distribution of layer-parallel shortening fabrics in the Appalachian foreland of New York and Pennsylvania: Evidence for two non-coaxial phases of the Alleghanian orogen. In Contributions to the Tectonics and Geophysics of Mountain Chains; Geological Society of America Memoirs: Boulder, CO, USA, 1983; Volume 158, pp. 161–176. [Google Scholar]
- Craddock, J.P.; van der Pluijm, B.A. Late Paleozoic deformation of the cratonic carbonate cover of eastern North America. Geology 1989, 17, 416–419. [Google Scholar] [CrossRef]
- Lacombe, O.; Angelier, J.; Laurent, P.; Bergerat, F.; Tourneret, C. Joint analyses of calcite twins and fault slips as a key for deciphering polyphase tectonics: Burgundy as a case study. Tectonophysics 1990, 182, 279–300. [Google Scholar] [CrossRef]
- Lacombe, O.; Amrouch, K.; Mouthereau, F.; Dissez, L. Calcite twinning constraints on late Neogene stress patterns and deformation mechanisms in the active Zagros collision belt. Geology 2007, 35, 263–266. [Google Scholar] [CrossRef]
- Lacombe, O. Calcite twins, a tool for tectonic studies in thrust belts and stable orogenic forelands. Oil Gas Sci. Technol. 2010, 65, 809–838. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, N.; Lacombe, O. Recent and future trends in paleopiezometry in the diagenetic domain: Insights into the tectonic paleostress and burial depth history of fold-and-thrust belts and sedimentary basins. J. Struct. Geol. 2018, 114, 357–365. [Google Scholar] [CrossRef]
- Chapple, W.M. Mechanics of thin-skinned fold-and-thrust belts. Geol. Soc. Am. Bull. 1978, 89, 1189–1198. [Google Scholar] [CrossRef]
- Davis, D.; Suppe, J.; Dahlen, F.A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geoph. Res. 1983, 88, 1153–1172. [Google Scholar] [CrossRef]
- Dahlen, F.A.; Suppe, J.; Davis, D. Mechanics of fold-and-thrust belts and Accretionary Wedges: Cohesive Coulomb theory. J. Geophys. Res. 1984, 89, 10087–10101. [Google Scholar] [CrossRef]
- Lacombe, O.; Mouthereau, F. What is the real front of orogens? The Pyrenean orogen as a case study. C.R. Acad. Sci. Ser. IIA Earth Planet. Sci. 1999, 329, 889–896. [Google Scholar]
- Wiltschko, D.V.; Medwedeff, D.A.; Millson, H.E. Distribution and mechanisms of strain within rocks on the northwest ramp of Pine Mountain block, southern Appalachian foreland: A field test of theory. Geol. Soc. Am. Bull. 1985, 96, 426–435. [Google Scholar] [CrossRef]
- Kilsdonk, W.; Wiltschko, D.V. Deformation mechanisms in the southeastern ramp region of the Pine Mountain block, Tennessee. Geol. Soc. Am. Bull. 1988, 100, 644–653. [Google Scholar] [CrossRef]
- Craddock, J.P.; Malone, D.H.; Porter, R.; Luczaj, J.; Konstantinou, A.; Day, J.E.; Johnston, S.T. Paleozoic reactivation structures in the Appalachian-Ouachita-Marathon foreland: Far-field deformation across Pangea. Earth Sci. Rev. 2017, 169, 1–34. [Google Scholar] [CrossRef]
- Craddock, J.P. Transpression during tectonic evolution of the Idaho-Wyoming fold-and-thrust belt. Reg. Geol. East. Ida. West. Wyo. Geol. Soc. Am. Mem. 1992, 179, 125–139. [Google Scholar]
- Craddock, J.P.; van der Pluijm, B.A. Regional stress-strain fields of Sevier-Laramide tectonism from calcite twinning data, west-central North America. Tectonophys. Spec. 1999, 305, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Craddock, J.P.; Malone, D.H. An overview of strains in the Sevier thin-skinned thrust belt, Idaho and Wyoming, USA (latitude 42° N). In Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma); Craddock, J.P., Malone, D.H., Foreman, B.Z., Konstantinou, A., Eds.; Geological Society of America: Boulder, CO, USA, 2021; Volume 555, pp. 133–148. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fugenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Rosenberg, C.L.; Kissling, E. Three-dimensional insight into Central-Alpine collision: Lower-plate or Upper-Plate indentation? Geology 2013, 41, 1219–1222. [Google Scholar] [CrossRef]
- Pfiffner, O.A. Geology of the Alps; Wiley Publishers: Hoboken, NJ, USA, 2014; p. 392. [Google Scholar]
- Price, J.B.; Wernicke, B.P.; Cosca, M.A.; Farley, K.A. Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen—Perpendicular Normal Fault Slip on a Major “Overthrust” and its implications for orogenesis. Tectonics 2018, 37, 724–757. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.M. The Glarus overthrust: Field evidence and mechanical model. Eclogae Geol. Helv. 1975, 68, 251–284. [Google Scholar]
- Pfiffner, O.A.; Lehner, P.; Heitzmann, P.; Müller, S.; Steck, A. (Eds.) Deep Structure of the Swiss Alps: Results of NRP 20; Birkhäuser: Basel, Switzerland, 1997; pp. 101–114. [Google Scholar]
- Pfiffner, O.A.; Schlunegger, F.; Buiter, S.J.H. The Swiss Alps and their peripheral foreland basin: Stratigraphic response to deep crustal processes. Tectonics 2002, 21, 1009. [Google Scholar] [CrossRef] [Green Version]
- Kuhlemann, J.; Kempf, O. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment. Geol. 2002, 152, 45–78. [Google Scholar] [CrossRef]
- Burkhard, M.; Sommurga, A. Evolution of the western Swiss Molasse basin: Structural relations with the Alps and Jura belt: In Cenozoic Foreland Basins of Western Europe. Geol. Soc. Spec. Publ. 1998, 134, 279–298. [Google Scholar] [CrossRef]
- Van der Pluijm, B.A.; Craddock, J.P.; Graham, B.R.; Harris, J.H. Paleostress in cratonic North America: Implications for deformation of continental interiors. Science 1997, 277, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Tavani, S.; Storti, F.; Lacombe, O.; Corradetti, A.; Munoz, J.A.; Mazzoli, S. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the stress in the frontal regions of thrust wedges. Earth-Sci. Rev. 2015, 141, 82–104. [Google Scholar] [CrossRef]
- Lacombe, O.; Bellahsen, N. Thick-Skinned tectonics and basement-involved fold-thrust belts: Insight from selected Cenozoic orogens. Geol. Mag. 2016, 153, 763–810. [Google Scholar] [CrossRef] [Green Version]
- Pfiffner, O.A. Thick-skinned and thin-skinned Tectonics: A global perspective. Geosciences 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Ring, U.; Bohar, R. Tilting, uplift volcanism and disintegration of the South German block. Tectonophysics 2020, 795, 228611. [Google Scholar] [CrossRef]
- Craddock, J.P.; Burkhard, M. Alpine deformation from the internal Austrian Tauren window northwestward to the British foreland and Irish Tertiary province. Geol. Soc. Am. Abstr. Programs 2006, 38, 480. [Google Scholar]
- Tschanz, X.; Sommaruga, A. Deformation associated with folding above frontal and oblique ramps around the rhomb-shaped Val-de-Ruz basin (Jura Mountains. Ann. Tecton. 1993, 3, 53–70. [Google Scholar]
- Ferrill, D.A.; Groshong, R.H. Deformation conditions in the northern Subalpine chain, France, estimated from deformation modes in coarse-grain limestone. J. Struct. Geol. 1993, 15, 995–1006. [Google Scholar] [CrossRef]
- Hindle, D. Quantifying Stresses and Strains from the Jura Arc, and Their Usefulness in Choosing a Deformation Model for the Region. Ph.D. Thesis, Neuchatel University, Neuchâtel, Switzerland, 1996. [Google Scholar]
- Mosar, J. Internal deformation in the Prealpes Medianes, Switzerland. Ecol. Geol. Helv. 1989, 82, 765–793. [Google Scholar]
- Burkhard, M. Deformation des calcaires de L’Helvetique de la Suisse occidentale (phenomènes, mécanismes et interprétations tectoniques). Rev. Geol. Dyn. Geogr. Phys. 1986, 27, 281–301. [Google Scholar]
- Hindle, D.; Burkhard, M. Strain, displacement and rotation associated with the formation of curvature in fold belts: The example of the Jura arc. J. Struct. Geol. 1999, 21, 1089–1101. [Google Scholar] [CrossRef] [Green Version]
- Groshong, R.H., Jr.; Teufel, L.W.; Gasteiger, C.M. Precision and accuracy of the calcite strain-gage technique. Bull. Geol. Soc. Am. 1984, 95, 357–363. [Google Scholar] [CrossRef]
- Handy, M.R.; Zing, A. The tectonic and rheological evolution of an Attenuated cross section of the continental crust: Ivrea crustal section, southern Alps, northwestern Italy and southern Switzerland. Geol. Soc. Am. Bull. 1991, 103, 236–253. [Google Scholar] [CrossRef]
- Kley, J.; Voigt, T. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 2008, 36, 839–842. [Google Scholar] [CrossRef]
- Ring, U.; Gerdes, A. Kinematics of the Alpenrhein—Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics 2016, 35, 1367–1391. [Google Scholar] [CrossRef]
- Navabpour, P.; Malz, A.; Kley, J.; Sieburg, M.; Kasch, N.; Ustaszewski, K. Intraplate brittle deformation and states of paleostress constrained by fault kinematics in the central German platform. Tectonophysiscs 2017, 694, 146–163. [Google Scholar] [CrossRef]
- Craddock, J.P.; Farris, D.; Roberson, A. Calcite-twinning constraints on stress-strain fields along the Mid-Atlantic Ridge, Iceland. Geology 2004, 32, 49–52. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Turco, E.; Hutton, D.H.W.; Knott, S.D. Alpine tectonics. In Alpine Tectonics; Coward, M.P., Dietrich, D., Park, R.G., Eds.; Special Publications; Geological Society: London, UK, 1989; Volume 45, pp. 265–283. [Google Scholar]
- Platt, J.P.; Behrmann, J.H.; Cunningham, P.C.; Wallis, S.; Western, P.J. Kinematics of the Alpine arc and the motion history of Adria. Nature 1993, 337, 158–161. [Google Scholar] [CrossRef]
- Ziegler, P.A.; Cloetingh, S.; van Wees, J.-D. Dynamics of intra-plate Compressional deformation: The Alpine foreland and other examples. Tectonophysics 1995, 252, 7–59. [Google Scholar] [CrossRef]
- Frisch, W. The plate tectonic evolution of the Alps. Tectonophysics 1979, 60, 121–134. [Google Scholar] [CrossRef]
- Escher, A.; Hunziker, J.C.; Marthaler, M.; Masson, H.; Sartori, M.; Steck, A. Geologic framework and structural evolution of the western Swiss-Italian Alps. In Deep Structure of the Swiss Alps: Results of NRP 20; Birkhauser: Basel, Switzerland, 1997; pp. 205–222. [Google Scholar]
- Pfiffner, A.O.; Ellis, S.C.; Beaumont, C. Collisional tectonics in the Swiss Alps: Insights from geodynamic modeling. Tectonics 2000, 19, 1065–1094. [Google Scholar] [CrossRef] [Green Version]
- Ring, U.; Brandon, M.T.; Ramthun, A. Soultion-mass-transfer deformation adjacent to the Glarus Thrust, with implications for the tectonic evolution of the Alpine wedge in eastern Switzerland. J. Struct. Geol. 2001, 23, 1491–1505. [Google Scholar] [CrossRef]
- Carrapa, B. Tracing exhumation and orogenic wedge dynamics in the Alps via detrital thermochronology. Geology 2009, 37, 1127–1130. [Google Scholar] [CrossRef]
- Carrapa, B.; DiGiulio, A.; Mancin, N.; Gupta, S.; Fantoni, R.; Stockli, D. Tectonic significance of Cenozoic deformation, exhumation and basin history in the Western Alps. Tectonics 2016, 35, 1892–1912. [Google Scholar] [CrossRef] [Green Version]
- Mock, S.; von Hagke, C.; Schlunegger, F.; Dunkl, I.; Herwegh, M. Long-wavelength late Miocene thrusting in the north Alpine foreland: Implications for orogenic processes. Solid Earth 2020, 11, 1823–1847. [Google Scholar] [CrossRef]
- Mancktelow, N.S. Neogene lateral extension during convergence in the Central Alps: Evidence from interrelated faulting and backfolding around Simplonpass (Switzerland). Tectonophysics 1992, 215, 295–317. [Google Scholar] [CrossRef]
- Homewood, P.; Allen, P.A.; Williams, G.D. Dynamics of the Molasse Basin of Western Switzerland. In Foreland Basins; Special Publications of the International Association of Sedimentologists; Wiley Online Library: Hoboken, NJ, USA, 1986; Volume 8, pp. 199–217. [Google Scholar]
- Schmid, S.M.; Pfiffner, O.A.; Schönborn, G.; Froitzheim, N.; Kissling, E. Integrated cross section and tectonic evolution of the Alps along the Eastern Traverse. In Deep structure of the Swiss Alps: Results of NRP, 20; Birkhauser Verlag: Basel, Switzerland, 1997; pp. 289–304. [Google Scholar]
- Illies, J.H. Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben rift system. Tectonophysics 1975, 29, 251–264. [Google Scholar] [CrossRef]
- Illies, J.H.; Greiner, G. Rhinegraben and the Alpine system. Bull. Geol. Soc. Am. 1978, 85, 770–782. [Google Scholar] [CrossRef]
- Ziegler, P.A. Cenozoic rift of western and central Europe: An overview. Geol. Mijnb. 1994, 73, 99–127. [Google Scholar]
- Platt, J.P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 1986, 97, 1037–1053. [Google Scholar] [CrossRef]
- Royden, L.H. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 1993, 12, 629–638. [Google Scholar] [CrossRef]
- Wells, M.L.; Hoisch, T.D.; Cruz-Uribe, A.M.; Vervoort, J.D. Geodynamics of synconvergen extension and tectonic mode switching: Constraints from the Sevier-Laramide Orogen. Tectonics 2012, 31, TC1002. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P. Gravitational instability of mantle lithosphere and core complexes. Tectonics 2015, 34, 478–487. [Google Scholar] [CrossRef]
- Siddans, A.W.B. Deformation, metamorphism and texture development in Permian mudstones of the Glarus Alps (eastern Switzerland). Eclogae Geol. Helv. 1979, 72, 601–621. [Google Scholar]
- Ramsay, J.G. Tectonics of the Helvetic Nappes. In Thrust and Nappe Tectonics; The Geological Society of London: London, UK, 1981; pp. 293–309. [Google Scholar]
- Ramsay, J.G.; Huber, M.I. The Techniques of Modern Structural Geology, Volume 1: Strain Analysis; Academic Press: Cambridge, MA, USA, 1983; p. 307. [Google Scholar]
- Pfiffner, A.O. Kinematics and intrabed-strain in mesoscopically folded limestone layers: Examples from the Jura and Helvetic zone of the Alps. Eclogae Geol. Helv. 1990, 83, 585–602. [Google Scholar]
- Badertscher, N.P.; Beaudoin, G.; Therrien, R.; Burkhard, M. Glarus overthrust: A major pathway for the escape of fluids out of the Alpine orogen. Geology 2002, 30, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Groshong, R.H.; Pfiffner, A.O.; Pringle, L.R. Strain partitioning in the Helvetic thrust belt of eastern Switzerland from leading edge to the internal zone. J. Struct. Geol. 1984, 6, 5–18. [Google Scholar] [CrossRef]
- Kligfield, R.; Owens, W.H.; Lowrie, W. Magnetic susceptibility anisotropy, strain and progressive deformation in Permian sediments from the Maritime Alps (France). Earth Planet. Sci. Lett. 1981, 55, 181–189. [Google Scholar] [CrossRef]
- Schmid, S.M.; Casey, M.; Starkey, J. The microfabric of calcite from the Helvetic nappes (Swiss Alps). In Thrust and Nappe Tectonics; McClay, K.R., Price, N.J., Eds.; Special Publications; Geological Society: London, UK, 1981; Volume 9, pp. 151–158. [Google Scholar]
- Heitzmann, P. Calcite mylonites in the central alpine “root zone”. Tectonophysics 1987, 135, 207–215. [Google Scholar] [CrossRef]
- Marret, R.; Allmendinger, R.W. Kinematic analysis of fault-slip data. J. Struct. Geol. 1990, 12, 973–986. [Google Scholar] [CrossRef]
- Allmendinger, R.W.; Cardozo, N.C.; Fisher, D. Structural Geology Algorithms: Vectors & Tensors; Cambridge University Press: Cambridge, UK, 2012; p. 289. [Google Scholar]
- Rocher, M.; Cushing, M.; Lemeille, F.; Lozac’h, Y.; Angelier, J. Intraplate paleostresses reconstructed with calcite twinning and faulting: Improved method and application to the eastern Paris Basin (Lorraine, France). Tectonophysics 2004, 387, 1–21. [Google Scholar] [CrossRef]
- Rocher, M.; Cushing, M.; Lemeille, F.; Baize, S. Stress induced by the Mio-Pliocene Alpine collision in northern France. Bull. Soc. Géol. Fr. 2005, 176, 319–328. [Google Scholar] [CrossRef]
- Larroque, J.M.; Laurent, P. Evolution of the stress field pattern in the south Rhine Graben from the Eocene to the Present. Tectonophysics 1988, 148, 41–58. [Google Scholar] [CrossRef]
- Lacombe, O.; Angelier, J.; Byrne, D.; Dupin, J.M. Eocene-Oligocene Tectonics and Kinematics of the Rhine-Saone Continental Transform Zone (Eastern France). Tectonics 1993, 12, 874–888. [Google Scholar] [CrossRef] [Green Version]
- Groshong, R.H., Jr. Strain calculated from twinning in calcite. Bull. Geol. Soc. Am. 1972, 83, 2025–2038. [Google Scholar] [CrossRef]
- Turner, F.J. Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am. J. Sci. 1953, 251, 276–298. [Google Scholar] [CrossRef]
- Turner, F.J. Compression and tension axes deduced from (0112) Twinning in calcite. J. Geophys. Res. 1962, 67, 1660. [Google Scholar]
- Paulsen, T.S.; Wilson, T.J.; Demosthenous, C.; Millan, C.; Jarrad, R.; Laufer, A. Kinematics of the Neogene Terror rift: Constraints from calcite twinning strains in the ANDRILL McMurdo Ice Shelf (AND-1B) core, Victoria Land Basin, Antarctica. Geosphere 2014, 10, 828–841. [Google Scholar] [CrossRef]
- Engelder, T. The nature of deformation within the outer limits of the central Appalachian foreland fold-and-thrust belt in New York state. Tectonophysics 1979, 55, 289–310. [Google Scholar] [CrossRef]
- Spang, J.H.; Groshong, R.H., Jr. Deformation mechanisms and strain history of a minor fold from the Appalachian Valley and Ridge Province. Tectonophysics 1981, 72, 323–342. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Strain, fractures, and pressure solution in natural single-layer folds. Bull. Geol. Soc. Am. 1975, 86, 1363–1376. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Strain and pressure solution in the Martinsburg slate, Delaware Water Gap, New Jersey. Am. J. Sci. 1976, 276, 1131–1146. [Google Scholar] [CrossRef]
- Ferrill, D.A. Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone. J. Struct. Geol. 1991, 13, 675–677. [Google Scholar] [CrossRef]
- Craddock, J.P.; Jackson, M.; van der Pluijm, B.A.; Versical, R. Regional shortening fabrics in eastern North America: Far-field stress transmission from the Appalachian–Ouachita orogenic belt. Tectonics 1993, 12, 257–264. [Google Scholar] [CrossRef]
- Craddock, J.P.; Neilson, K.J.; Malone, D.H. Calcite twinning strain constraints on Heart Mountain detachment kinematics, Wyoming. J. Struct. Geol. 2000, 22, 983–991. [Google Scholar] [CrossRef]
- Craddock, J.P.; McKiernan, A.; DeWit, M. Calcite twin analysis in synorogenic calcite, Cape Fold Belt: Implications for fold rotation and cleavage formation. J. Struct. Geol. 2007, 27, 1100–1113. [Google Scholar] [CrossRef]
- Amrouch, K.; Lacombe, O.; Bellahsen, N.; Daniel, J.-M.; Callot, J.-P. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics 2010, 29, TC1005. [Google Scholar] [CrossRef] [Green Version]
- Craddock, J.P.; Geary, J.; Malone, D.H. Vertical Injectites of Detachment Carbonate Ultracataclasite at White Mountain, Heart Mountain Detachment, Wyoming. Geology 2012, 40, 463–466. [Google Scholar] [CrossRef]
- Craddock, J.P.; Craddock, S.D.; Konstantinou, A.; Kylander-Clark, A.; Malone, D.H. Calcite Twinning Strain Variations across the Proterozoic Grenville Orogen and Keweenaw-Kapuskasing Inverted Foreland, USA and Canada. Geosci. Front. 2017, 8, 1357–1384. [Google Scholar] [CrossRef]
- Craddock, J.P.; Pearson, A. Non-coaxial horizontal shortening strains preserved in amygdule calcite, DSDP Hole 433C, Suiko Seamount. J. Struct. Geol. 1994, 16, 719–724. [Google Scholar] [CrossRef]
- Craddock, J.P.; Pearson, A.; McGovern, M.; Kropf, E.P.; Moshoian, A.; Donnelly, K. Post-extension shortening strains preserved in calcites of the Keweenawan rift. In Middle Proterozoic to Cambrian Rifting, Central North America; Geological Society of America Special Paper, 213; Ojakgangas, R.W., Dickas, A.B., Green, J.C., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 115–126. [Google Scholar]
- Craddock, J.P.; Anziano, J.; Wirth, K.R.; Vervoort, J.D.; Singer, B.; Zhang, X. Structure, geochemistry and geochronology of a lamprophyre dike swarm, Archean Wawa terrane, Michigan, USA. Precambrian Res. 2007, 157, 50–70. [Google Scholar] [CrossRef]
- Nuriel, P.; Weinberger, R.; Kylander-Clark, A.R.C.; Hacker, B.C.; Craddock, J.P. Calcite U-Pb ages constrain the evolution of the Dead Sea Fault. Geology 2017, 45, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, R.; Nuriel, P.; Kylander-Clark, A.R.; Craddock, J.P. Temporal and spatial relations between large-scale fault systems: Evidence from the Sinai-Negev shear zone and the Dead Sea Fault. Earth-Sci. Rev. 2020, 211, 103377. [Google Scholar] [CrossRef]
- Craddock, J.P.; Nuriel, P.; Kylander-Clark, A.R.; Hacker, B.R.; Luczaj, J.; Weinberger, R. Long-term (7 Ma) Strain Fluctuations within the Dead Sea Transform from High-resolution U-Pb Dating of a Calcite Vein. Bulletin 2022, 134, 1231–1246. [Google Scholar] [CrossRef]
- Lacombe, O.; Parlangeau, C.; Beaudoin, N.; Amrouch, K. Calcite twin formation, measurement ad use as stress-strain indicators: A review of progress over the last decade. Geosciences 2021, 11, 445. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Takeshita, T.; Bechler, E.; Erskine, B.G.; Matthies, S. Pure Shear and Simple Shear Calcite Textures. Comparison of Experimental, Theoretical and Natural Data. J. Struct. Geol. 1987, 9, 731–745. [Google Scholar] [CrossRef]
- Burkhard, M. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: A review. J. Struct. Geol. 1993, 15, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, O.; Laurent, P. Determination of deviatoric stress tensors based on inversion of calcite twin data from experimentally deformed monophase samples: Preliminary results. Tectonophysics 1996, 255, 189–202. [Google Scholar] [CrossRef]
- Ferrill, D.A. Critical re-evaluation of differential stress estimates from calcite twins in coarse-grained limestone. Tectonophysics 1998, 285, 77–86. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Experimental test of least-squares strain calculations using twinned calcite. Bull. Geol. Soc. Am. 1974, 85, 1855–1864. [Google Scholar] [CrossRef]
- Rowe, K.J.; Rutter, E.H. Paleostress estimation using calcite twinning: Experimental calibration and application to nature. J. Struct. Geol. 1990, 12, 1–17. [Google Scholar] [CrossRef]
- Teufel, L.W. Strain analysis of experimental superposed deformation using Calcite twin lamellae. Tectonophysics 1980, 65, 291–309. [Google Scholar] [CrossRef]
- Evans, M.A.; Groshong, R.H. A Computer Program for the Calcite Strain-Gage Technique. J. Struct. Geol. 1994, 16, 277–281. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Morris, A.P.; Evans, M.A.; Burkhard, M.; Groshong, R.H.; Onasch, C.M. Calcite Twin Morphology: A Low-Temperature Deformation Geothermometer. J. Struct. Geol. 2004, 26, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.B.; Stamatakos, J.A.; Ferrill, D.A.; Evans, M.A. Fault-Zone Deformation in Welded Tuffs at Yucca Mountain, Nevada, USA. J. Struct. Geol. 2005, 27, 1873–1891. [Google Scholar] [CrossRef]
- Craddock, J.P.; Malone, D.H.; Wartman, J.; Kelly, M.J.; LJunlai, L.; Bussolotto, M.; Invernizzi, C.; Knott, J.; Porter, R. Calcite Twinning Strains from Syn-faulting Calcite Gouge: Small-Offset Strike-Slip, Normal and Thrust Faults. Int. J. Earth Sci. 2020, 109, 1–42. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Walker, R.J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 2016, 44, 531–534. [Google Scholar] [CrossRef]
- Schulz, B. Deformation, Metamorphose and Petrographie im Ostalpinen Altkristallin Sudlich des Taurenfensters. Ph.D. Thesis, University of Erlangen-Nuremberg, Erlangen, Germany, 1988; p. 133. [Google Scholar]
- Rosenberg, C.L.; Brun, J.-P.; Gapais, D. Indentation model of the eastern Alps and the origin of the Tauren Window. Geology 2004, 32, 997–1000. [Google Scholar] [CrossRef]
- Lacombe, O.; Angelier, J.; Laurent, P. Determining paleostress orientations from faults and calcite twins: A case study near the Sainte-Victoire Range (southern France). Tectonophysics 1992, 201, 141–156. [Google Scholar] [CrossRef]
- Burkhard, M. Aspects of large-scale Miocene deformation in the external part of the Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geol. Helv. 1990, 83, 559–583. [Google Scholar]
- Homberg, C.; Hu, J.C.; Angelier, J.; Bergerat, F.; Lacombe, O. Characterization of stress perturbations near major fault zones: Insights from 2-D distinct-element numerical modeling and field studies (Jura Mountains). J. Struct. Geol. 1997, 19, 703–718. [Google Scholar] [CrossRef]
- Becker, A. In Situ stress data from the Jura Mountains-new results and interpretation. Terra Nova 1999, 11, 9–15. [Google Scholar] [CrossRef]
- Homberg, C.; Lacombe, O.; Angelier, J.; Begerat, F. New constraints for indentation mechanisms in arcuate belts from the Jura Mountains, France. Geology 1999, 27, 827–830. [Google Scholar] [CrossRef]
- House, M.R. The Structure of Weymouth Anticline. Proc. Geol. Assoc. 1961, 72, 211–238. [Google Scholar] [CrossRef]
- House, M.R. Geology of the Dorset Coast. Geologists’ Association Guide, 22; Geologists’ Association: London, UK, 1986. [Google Scholar]
- Sanderson, D.J.; Dix, J.K.; Westhead, K.R.; Collier, J.S. Bathymetric mapping of the coastal and offshore geology and structure of the Jurassic Coast, Weymouth Bay, UK. J. Geol. Soc. Lond. 2017, 174, 498–508. [Google Scholar] [CrossRef]
- Lyle, P. A Geological Excursion Guide to the Giant’s Causeway; Baird Publishers: London, UK, 1998; ISBN 0-9528258-1-3. [Google Scholar]
- Lyle, P. The North of Ireland; Terra Publishing: Arnhem, The Netherlands, 2003; ISBN 1-903544-08-4. [Google Scholar]
- Roberts, N.M.W.; Lee, J.K.; Holdsworth, R.E.; Jeans, C.; Farrant, A.R.; Haslam, R. Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: New field observations and U-Pb calcite dating constraints. Solid Earth 2020, 11, 1931–1945. [Google Scholar] [CrossRef]
- Lacombe, O.; Laurent, P.; Angelier, J. Calcite twins as a key to paleostresses in sedimentary basins: Preliminary results from drill cores of the Paris basin. In Peri-Tethyan Platforms; Roure, F., Ed.; Technip: Paris, France, 1994; pp. 197–210. [Google Scholar]
- Ratschbacher, L. Kinematics of Austro-Alpine cover nappes: Changing translation path due to transpression. Tectonophysics 1986, 125, 335–356. [Google Scholar] [CrossRef]
- Beltrando, M.; Lister, G.; Hermann, J.; Forster, M.; Compagnoni, R. Deformation mode switches in the Penninic units of the Urtier Valley (Western Alps): Evidence for a dynamic orogen. J. Struct. Geol. 2008, 30, 194–219. [Google Scholar] [CrossRef]
- Craddock, J.P.; Klein, T.; Kowalczyk, G.; Zulauf, G. Calcite twinning strains in Alpine orogen flysch: Implications for thrust-nappe mechanics and the geodynamics of Crete. Lithosphere 2009, 1, 174–191. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Craddock, J.P.; Zulauf, G. Constraints on the geodynamical evolution of Crete: Insights from illite crystallinity, Raman spectroscopy and calcite twinning above and below the “Cretan detachment”. Int. J. Earth Sci. 2013, 102, 139–182. [Google Scholar] [CrossRef]
- Burkhard, M. L’Helvétique de la bordure occidentale du massif de l’Aar (évoltion tectonique et métamorphique). Eclogae Geol. Helv. 1988, 81, 63–114. [Google Scholar]
- Craddock, J.P.; McKiernan, A.W. Tectonic implications of finite strain gradient in Baraboo-interval quartzites (ca. 1700 Ma), Mazatzal orogen, Wisconsin and Minnesota, USA. Precambrian Res. 2007, 156, 175–194. [Google Scholar] [CrossRef]
- Craddock, J.P.; Malone, D.H.; Konstantinou, A.; Spruell, J.; Porter, R. Calcite twinning strains associated with Laramide uplifts, Wyoming Province. In Tectonic Evolution of the Sevier-Laramide Hinterland, Thrust Belt, and Foreland, and Postorogenic Slab Rollback (180–20 Ma); Special Paper 555; Craddock, J.P., Malone, D.H., Foreman, B.Z., Konstantinou, A., Eds.; Geological Society of America: Boulder, CO, USA, 2022; pp. 149–192. [Google Scholar] [CrossRef]
- Daly, M.C.; Lawrence, S.R.; Kimun’a, D.; Binga, M. Late Paleozoic deformation in central Africa: A result of distant collision? Nature 1991, 350, 605–607. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C. Plate Tectonics of the Alpine Realm: Ancient Orogens and Modern Analogues; The Geological Society of London: London, UK, 2009; Volume 327, pp. 89–111. [Google Scholar]
- Le Breton, E.; Handy, M.R.; Molli, G.; Ustaszewski, K. Post-20 Ma motion of the Adriatic plate: New constraints from surrounding Orogens and implications for crust-mantle decoupling. Tectonics 2017, 36, 3135–3154. [Google Scholar] [CrossRef] [Green Version]
- Ring, U.; Ratschbacher, L.; Frisch, W.; Biehler, D.; Kralik, M. Kinematics of the Alpine plate margin: Structural styles, strain and motion along the Penninic-Austroalpine boundary in the Swiss-Austrian Alps. J. Geol. Soc. Lond. 1989, 146, 835–849. [Google Scholar] [CrossRef]
- Neubauer, F.; Genser, J.; Handler, R. The Eastern Alps: Result of a two-stage collision process. Mitt. Osterr. Geol. Ges. 1999, 92, 117–134. [Google Scholar]
- Howe, T.C.; Bird, P. Exploratory models of long-term crustal flow and resulting seismicity in the Alpine-Aegean orogen. Tectonics 2010, 29, TC4023. [Google Scholar] [CrossRef]
- Pfiffner, O.A.; Burkhard, M. Determination of paleo-stress axes Orientations from fault, twin and earthquake data. Ann. Tecton. 1987, 1, 48–57. [Google Scholar]
Location | Age | Samples | LS/Vein | Avg. NEV (%) | Avg.—e1 (%) | Avg. e1 (Tr and Plunge) | Avg. ds (Bars) | LNS/LPS | References |
---|---|---|---|---|---|---|---|---|---|
Atlantic Margin (N. Ireland) | 58 Ma | 16 (n = 454) | 0/16 | 8 | −3.41 | 50°, 1° | −387 | 0/16 | This Study; U-Pb ages (Figure 4) |
Alp Foreland | 30 Ma | 32 (n = 1648) | 11/16 | 14 | −4.98 | 310°, 5° | −343 | 4/28 | This Study (Figure 5) |
Jura Mountains | 30 Ma | 10 (n = 612) | 10/0 | 26 | −0.32 | (See Figure 7) | No Data | 0/28 | [36] |
Molasse Basin | 30 Ma | 26 (n = 1292) | 26/0 | 21 | −0.6 | (See Figure 7) | No Data | 1/25 | [36,38] |
Pre-Alps | 30 Ma | 39 (n = 2081) | 26/13 | 30 | −4.88 | (See Figure 7) | No Data | 20/19 | [39] |
Helvetic Nappes | 30 Ma | 17 (n = 112) | 13/4 | 16 | −3.66 | (See Figure 7) | −372 | 10/7 | [45,73] |
Helvetic–Penninic Nappes | 30 Ma | 29 (n = 1450) | 29/0 | 26 | −6.6 | (See Figure 7) | No Data | 13/16 | [40] |
Austroalpine Nappes (Tauren) | 30 Ma | 4 (n = 1000) | Calcsilicate | 26 | −3.84 | Vertical | −338 | 4/0 | This Study (Figure 6 and Figure 8) |
Iceland | Active | 19 (n = 430) | 0/19 | 15 | −6.02 | Ridge-normal | −480 | 3/19 | [47] |
Gubbio Fault, Italy | Active | 17 (n = 840) | 0/17 | 4 | −4.23 | 340°, 5° | −372 | 0/17 | [115] |
TOTALS | 209 (n = 9919) | 119/90 |
Sample | Section ID | Location | Rock Type | Bedding | Vein | Grains (n = ) | e1 | e2 | e3 | e1(%) | NEV (%) | Twins/mm | Ds (Bars) | Fabric (Bedding) | Fabric (Vein) | Orogenic Distance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atlantic Margin (N. Ireland) | ||||||||||||||||
24 (North) | PUE22 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 12 | 58°, 0° | 328°, 2° | 174°, 87° | −6.3 | 8 | 360 | 385.1277 | LPS | VNS | 1250 km |
24 | PUE23 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 22 | 26°, 2° | 296°, 4° | 132°, 86° | −3.4 | 18 | 456 | 402.683 | LPS | VNS | 1250 |
24 | PUE24 | Port Rush, Ireland | Vein in Basalt | Horizontal | ||||||||||||
24 | PUE25 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 24 | 186°, 3° | 276°, 3° | 48°, 85° | −1.9 | 8 | 446 | 401.0363 | LPS | VPS | 1250 |
24 | PUE26 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 24 | 56°, 4° | 146°, 2° | 261°, 85° | −3.4 | 4 | 389 | 390.8814 | LPS | VNS | 1250 |
24 | 22, 23, 25 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 58 | 0°, 0° | 270°, 1° | 155°, 89° | −2.7 | 2 | 432 | 398.6677 | LPS | VPS | 1250 |
24 | 22, 26 | Port Rush, Ireland | Vein in Basalt | Horizontal | N-S, 90° | 36 | 9°, 1° | 279°, 2° | 140°, 87° | −2.5 | 11 | 416 | 395.865 | LPS | VPS | 1250 |
25 | PUE17 | Ballintoy Harbor, Ireland | LS/Vein | 87°, 31° N | N-S, 90° | 26 | 257°, 1° | 347°, 1° | 104°, 88° | −3.6 | 8 | 421 | 396.7522 | LPS | VNS | 1250 |
25 | PUE18 | Ballintoy Harbor, Ireland | LS/Vein | 87°, 31° N | E-W, 90° | 20 | 209°, 1° | 300°, 2° | 88°, 86° | −4.7 | 20 | 295 | 370.3396 | LPS | VNS | 1250 |
25 | PUE19 | Ballintoy Harbor, Ireland | Vein in LS | 87°, 31° N | N-S, 90° | 25 | 211°, 1° | 302°, 1° | 68°, 88° | −6.2 | 0 | 278 | 365.9317 | LPS | VNS | 1250 |
25 | PUE20 | Ballintoy Harbor, Ireland | Vein in Basalt | Horizontal | E-W, 90° | 25 | 40°, 2° | 311°, 1° | 181°, 88° | −4.2 | 12 | 548 | 416.3315 | LPS | VNS | 1250 |
25 | PUE21 | Ballintoy Harbor, Ireland | Vein in Basalt | Horizontal | E-W, 90° | 22 | 12°, 1° | 101°, 3° | 273°, 86° | −4.4 | 0 | 469 | 404.7706 | LPS | VNS | 1250 |
25 | 20,21 | Ballintoy Harbor, Ireland | Vein in Basalt | Horizontal | E-W, 90° | 47 | 28°, 2° | 301°, 3° | 143°, 86° | −4.3 | 6 | 508 | 410.7027 | LPS | VNS | 1250 |
23 | PUE13 | Moneymore, Ireland | LS/Vein | Horizontal | 0°, 90° | 23 | 250°, 19° | 159°, 1° | 65°, 70° | −1.9 | 11 | 407 | 394.2406 | LPS | VNS | 1200 |
23 | PUE14 | Moneymore, Ireland | LS/Vein | Horizontal | ||||||||||||
23 | PUE15 | Moneymore, Ireland | LS/Vein | Horizontal | 0°, 90° | 20 | 252°, 4° | 162°, 1° | 67°, 85° | −1.6 | 20 | 237 | 354.082 | LPS | VPS | 1200 |
23 | PUE16 | Moneymore, Ireland | LS/Vein | Horizontal | 0°, 90° | 25 | 266°, 1° | 354°, 1° | 152°, 88° | −1.8 | 4 | 261 | 361.2455 | LPS | VNS | 1200 |
23 | 15 & 16 | Moneymore, Ireland | Veins | Horizontal | 0°, 90° | 45 | 218°, 1° | 308°, 2° | 85°, 87° | −1.7 | 0 | 252 | 358.6395 | LPS | VNS | 1200 |
454 | −3.4125 | 8.25 | 387.9561 | |||||||||||||
Alpine Foreland (NW) | ||||||||||||||||
PUE1 | Hull, UK | LS/Vein | Horizontal | No twins | ||||||||||||
22 | OSE15 | Gloucester, UK | LS | 22°, 12° SE | 12 | 22°, 8° | 112°, 1° | 206°, 81° | −2.3 | 25 | 312 | 374.5004 | LPS | 800 | ||
22 | OSE16 | Gloucester, UK | Vein in LS | 22°, 12° SE | 72°, 90° | 18 | 340°, 23° | 79°, 5° | 175°, 65° | −8.5 | 11 | 385 | 390.1138 | LPS | VNS | 800 |
22 | 15 & 16 | Gloucester, UK | LS/Vein | 22°, 12° SE | 72°, 90° | 30 | 350°, 10° | 266°, 1° | 176°, 80° | −13.3 | 20 | 373 | 387.7622 | LPS | VNS | 800 |
21 | OSE13 | Bath, UK | LS | 45°, 7° SE | No twins | |||||||||||
21 | OSE14 | Bath, UK | LS | 45°, 7° SE | 13 | 310°, 21 | 213°, 12° | 95°, 65° | −4.3 | 23 | 162 | 325.8271 | LPS | 750 | ||
20 | PUE11 | Cheddar Gorge, UK | Vein | 12°, 15° S | Horizontal | 23 | 219°, 23° | 128°, 1° | 38°, 66° | −5.9 | 11 | 262 | 361.5295 | LPS | VPS | 715 |
20 | PUE12 | Cheddar Gorge, UK | LS | 12°, 15° S | Horizontal | 27 | 334°, 4° | 64°, 1° | 183°, 86° | −3.1 | 11 | 337 | 380.2247 | LPS | 715 | |
20 | PUE12 | Cheddar Gorge, UK | Vein | 12°, 15° S | 61°, 48° S | 26 | 158°, 1° | 68°, 2° | 261°, 88° | −1.9 | 3 | 357 | 384.5063 | LPS | VNS | 715 |
19 | PUE10 | Birdport, UK | LS | Horizontal | No twins | |||||||||||
18 | PUE8 | Lulworth Cove, UK | Vein | Horizontal | Horizontal | 27 | 176°, 4° | 84°, 1° | 303°, 85° | −5.5 | 0 | 307 | 373.3007 | LPS | VPS | 680 |
18 | PUE9 | Lulworth Cove, UK | LS | 90°, 23° N | No twins | |||||||||||
17 | 6&7 PEV | Corfe Castle, UK | Vein | Horizontal | 110°, 82° S | 39 | 120°, 76° | 260°, 10° | 352°, 8° | −1.9 | 0 | 164 | 326.7383 | LNS | VNS | 680 |
17 | 6&7 NEV | Corfe Castle, UK | Vein | Horizontal | 110°, 82° S | 23 | 210°, 75° | 358°, 11° | 90°, 7° | −4.8 | 100 | 125 | 306.5716 | LPS | VNS | 680 |
15 | PUE2 | W. Isle of Wight, UK | LS/Vein | Horizontal | Horizontal | 20 | 153°, 19° | 58°, 7° | 318°, 55° | −8.5 | 15 | 213 | 346.1529 | LPS | VPS | 610 |
15 | PUE3 | W. Isle of Wight, UK | LS/Vein | Horizontal | Horizontal | 9 | 143°, 6° | 234°, 5° | 1°, 81° | −7.9 | 0 | 250 | 358.0477 | LPS | VPS | 610 |
16 | PUE2&3 | W. Isle of Wight, UK | LS/Vein | Horizontal | Horizontal | 29 | 153°, 11° | 61°, 5° | 315°, 71° | −9.4 | 31 | 220 | 348.5543 | LPS | VPS | 610 |
PUE4 | W. Isle of Wight, UK | LS/Vein | Horizontal | No twins | ||||||||||||
PUE5 | E. Isle of Wight, UK | LS/Vein | Horizontal | No twins | ||||||||||||
14 | OSE17 | Audreselles, France | Vein | Horizontal | 341°, 90° | 18 | 260°, 23° | 95°, 65° | 351°, 5° | −2.8 | 0 | 229 | 351.5319 | LPS | VNS | 510 |
14 | OSE18 | Audreselles, France | Vein | Horizontal | 0°, 90° | 18 | 132°, 2° | 41°, 10° | 238°, 79° | −2.8 | 16 | 245 | 356.5474 | LPS | VNS | 510 |
14 | OSE19 | Audreselles, France | Vein | Horizontal | 0°, 90° | 20 | 175°, 29° | 79°, 12° | 339°, 62° | −5.7 | 20 | 173 | 330.7059 | LPS | VPS | 510 |
14 | 18 &19 | Audreselles, France | Veins | Horizontal | 0°, 90° | 54 | 145°, 18° | 53°, 4° | 310°, 70° | −6.2 | 31 | 208 | 344.3888 | LPS | VNS | 480 |
14 | OSE19 | Audreselles, France | LS | Horizontal | 18 | 125°, 1° | 28°, 3° | 223°, 86° | −1.8 | 0 | 246 | 356.8499 | LPS | 480 | ||
13 | OSE20 | Boulogne, France | Vein | Horizontal | 0°, 90° | 23 | 170°, 11° | 269°, 1° | 3°, 78° | −1.8 | 0 | 259 | 360.6743 | LPS | VPS | 480 |
13 | OSE21 | Boulogne, France | Vein | Horizontal | 0°, 90° | 20 | 201°, 5° | 291°, 1° | 32°, 84° | −5.9 | 10 | 172 | 330.2754 | LPS | VPS | 480 |
13 | 20&21 | Boulogne, France | Veins | Horizontal | 0°, 90° | 43 | 193°, 6° | 103°, 1 | 1°, 82° | −5.7 | 2 | 224 | 349.8924 | LPS | VPS | 480 |
OSE22 | Paris, France | LS | Horizontal | No twins | ||||||||||||
OSE23 | Paris, France | LS | Horizontal | No twins | ||||||||||||
12 | OSE12 | Pottenstein, Germany | LS | Horizontal | No twins | |||||||||||
11 | OSE11PEV | Grafenberg, Germany | Vein in LS | Horizontal | 343°, 90° | 31 | 345°, 9° | 77°, 14° | 223°, 73° | −1.3 | 0 | 194 | 339.2141 | LPS | VPS | 230 |
11 | OSE11NEV | Grafenberg, Germany | Vein in LS | Horizontal | 343°, 90° | 19 | 358°, 62° | 99°, 5° | 192°, 27° | −9.6 | 100 | 333 | 379.338 | LNS | VNS | 230 |
5 | OSE5 | Saints-Geosmes, France | LS | Horizontal | 24 | 181°, 1° | 271°, 7° | 81°, 82° | −1.1 | 0 | 210 | 345.0995 | LPS | 160 | ||
6 | OSE6&7N | Chatenois, France | LS | Horizontal | 21 | 11°, 76° | 181°, 12° | 272°, 2° | −2.6 | 100 | 164 | 326.7383 | LNS | 170 | ||
7 | OSE6&7P | Graux, France | LS | Horizontal | 26 | 172°, 7° | 262°, 4° | 22°, 81° | −13.4 | 30 | 204 | 342.9468 | LPS | 140 | ||
8 | OSE8 | Nancy, France | LS | Horizontal | 18 | 132°, 5° | 40°, 10° | 250°, 78° | −3.1 | 5 | 110 | 297.0781 | LPS | 130 | ||
9 | OSE9 | Wiesensteig, Germany | LS | Horizontal | No twins | 100 | ||||||||||
10 | OSE10 | Solnhofen, Germany | LS | Horizontal | No twins | 145 | ||||||||||
4 | OSE3 & 4N | N. Champlitte, France | LS | Horizontal | 19 | 167°, 63° | 16°, 23° | 281°, 11° | −3.14 | 100 | 100 | 290 | LNS | 140 | ||
2 | OSE3 & 4P | Champlitte, France | LS | Horizontal | 25 | 330°, 30° | 48°, 24° | 166°, 46° | −2.94 | 0 | 117 | 301.6598 | LPS | 100 | ||
2 | OSE1 & 2N | Taxenne, France | LS | Horizontal | 27 | 136, 13° | 226°, 1° | 351°, 56° | −1.56 | 100 | 131 | 310.0534 | LPS | 30 | ||
1(South) | OSE1 & 2P | Besancon, France | LS | Horizontal | 20 | 348°, 3° | 252°, 1° | 147°, 86° | −2.54 | 0 | 164 | 326.7383 | LPS | 5 | ||
1648 | −4.88 | 14.25 | 345.276 | |||||||||||||
Jura Mtns.[36] | ||||||||||||||||
5 | Mamirolle, France | Jurassic LS | 62 | 20°, 17° | 177°, 71° | 288°, 7° | −0.5 | 27 | LPS | |||||||
6 | Mamirolle, France | Jurassic LS | 42 | 61°, 40° | 173°, 23° | 284°, 41° | −1.9 | 33 | LPS | |||||||
11 | Mamirolle, France | Jurassic LS | 63 | 345°, 13° | 248°, 27° | 98°, 58° | −0.8 | 30 | LPS | |||||||
19 | Mamirolle, France | Jurassic LS | 57 | 8°, 3° | 270°, 27° | 137°, 86° | −0.6 | 10 | LPS | |||||||
21 | Mamirolle, France | Jurassic LS | 60 | 190°, 37° | 22°, 53° | 284°, 6° | −3.4 | 15 | LPS | |||||||
5 | Dole, France | Jurassic | 43 | 143°, 59 | 245°, 6° | 339°, 29° | 1.1 | 18 | LPS | |||||||
8b | Dole, France | Jurassic | 73 | 344°, 14° | 252°, 1° | 162°, 16° | 1.7 | 31 | LPS | |||||||
8c | Dole, France | Jurassic | 63 | 192°, 13° | 292°, 35° | 85°, 51° | 0.7 | 31 | LPS | |||||||
9 | Dole, France | Jurassic | 71 | 199°, 20° | 316°, 51° | 96°, 31° | 5.1 | 42 | LPS | |||||||
10 | Dole, France | Jurassic | 78 | 191°, 47 | 53°, 33° | 308°, 22° | 1.8 | 26 | LPS | |||||||
612 | 0.32 | 26.3 | ||||||||||||||
Val-de-Ruz area ([36], Molasse Basin) | ||||||||||||||||
1 | Val-de-Ruz, Switzerland | Valanginian | 80, 12S | 30 | 166°, 13° | 262°, 24° | 45°, 31° | 1.2 | 35 | LPS | ||||||
2 | Val-de-Ruz, Switzerland | Malm | 52, 47S | 64 | 5°, 44° | 110°, 16° | 215°, 42° | 2.8 | 28 | LNS | ||||||
3 | Val-de-Ruz, Switzerland | Malm | 92, 8S | 50 | 157°, 16° | 248°, 4° | 32°, 61° | 2.1 | 22 | LPS | ||||||
4 | Val-de-Ruz, Switzerland | Dogger | 73, 82S | 57 | 177°, 64° | 4°, 26° | 312°, 9° | 2.0 | 17 | LPS | ||||||
5 | Val-de-Ruz, Switzerland | Malm | 71, 28S | 45 | 207°, 18° | 60°, 70° | 129°, 12° | 1.1 | 20 | LPS | ||||||
6 | Val-de-Ruz, Switzerland | Malm | Horizontal | 43 | 137°, 5° | 47°, 3° | 302°, 15° | 0.9 | 30 | LPS | ||||||
7 | Val-de-Ruz, Switzerland | Valanginian | 83, 12S | 44 | 311°, 40° | 74°, 33° | 156°, 6° | 2.6 | 34 | LPS | ||||||
Molasse Basin[38] | ||||||||||||||||
dh4 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 87°, 15° | 353°, 14° | 222°, 69° | 0.15 | 20 | LPS | ||||||
dh5 | Neuchatel, Switzerland | Miocene | Horizontal | 53 | 145°, 4° | 235°, 1° | 341°, 86° | 0.14 | 23 | LPS | ||||||
dh8 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 183°, 25° | 321°, 58° | 84°, 19° | 0.16 | 27 | LPS | ||||||
dh12 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 150°, 49° | 241°, 1° | 332°, 41° | 0.12 | 20 | −128 | LPS | |||||
dh15 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 18°, 8° | 286°, 9° | 149°, 78° | 0.14 | 16 | −137 | LPS | |||||
dh17 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 74°, 1° | 344°, 27° | 165°, 63° | 0.09 | 29 | LPS | ||||||
dh2l | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 341°, 15° | 84°, 41° | 235°, 45° | 0.15 | 12 | −191 | LPS | |||||
dh2 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 153°, 3° | 249°, 64° | 62°, 26° | 0.13 | 31 | LPS | ||||||
dh22 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 164°, 20° | 41°, 56° | 264°, 26° | 0.14 | 18 | LPS | ||||||
dh24 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 165°, 19° | 257°, 6° | 5°, 70° | 0.11 | 22 | −161 | LPS | |||||
dh26 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 190°, 34° | 89°, 13° | 344°, 48° | 0.09 | 29 | LPS | ||||||
dh28 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 145°, 4° | 237°, 24° | 47°, 66° | 0.14 | 2 | LPS | ||||||
dh3l | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 145°, 17° | 343°, 72° | 237°, 5° | 0.07 | 25 | LPS | ||||||
dh32 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 144°, 8° | 54°, 4° | 297°, 81° | 0.24 | 10 | LPS | ||||||
dh37 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 116°, 6° | 19°, 50° | 211°, 40° | 0.14 | 12 | LPS | ||||||
dh39 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 108°, 14° | 18°, 2° | 281°, 76° | 0.11 | 25 | LPS | ||||||
dh40 | Neuchatel, Switzerland | Miocene | Horizontal | 39 | 260°, 12° | 352°, 7° | 109°, 76° | 0.11 | 21 | LPS | ||||||
dh4l | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 40°, 2° | 309°, 4° | 153°, 86° | 0.11 | 12 | LPS | ||||||
dh42 | Neuchatel, Switzerland | Miocene | Horizontal | 51 | 232°, 24° | 141°, 3° | 44°, 86° | 0.1 | 10 | −132 | LPS | |||||
1292 | 0.6 | 21.15385 | ||||||||||||||
Pre-Alps[39] | ||||||||||||||||
41 | Pre-Alp Medianes nappe | Malm | 38°, 47° N | 53 | 155°, 78° | 322°, 41° | 41°, 8° | −5.12 | 34 | LNS | ||||||
47 | Pre-Alp Medianes nappe | Malm | 21°, 46° N | 51 | 312°, 33° | 71°, 80° | 212°, 22° | −2.71 | 43 | LPS | ||||||
81 | Pre-Alp Medianes nappe | Malm, vein | 300°, 70° S | ? | 52 | 120°, 23° | 45°, 3° | 302°, 62° | −2.81 | 29 | LPS | ? | ||||
82 | Pre-Alp Medianes nappe | Dogger, vein | 302°, 60° S | ? | 53 | 161°, 12° | 261°, 5° | 348°, 81° | −2.5 | 32 | LNS | ? | ||||
84 | Pre-Alp Medianes nappe | Flysch | 105°, 88° N | 54 | 205°, 31° | 22°, 47° | 111°, 3° | −3.73 | 30 | LNS | ||||||
85V | Pre-Alp Medianes nappe | Flysch, vein | ? | 58 | −3.9 | 31 | LPS | ? | ||||||||
85 | Pre-Alp Medianes nappe | Flysch | 71°, 45°N | 52 | 352°, 41° | 142°, 28° | 251°, 4° | −3.87 | 44 | LPS | ||||||
86 | Pre-Alp Medianes nappe | Neocom | Horizontal | 55 | 201°, 11° | 311°, 41° | 92°, 46° | −2.88 | 18 | LPS | ||||||
87 | Pre-Alp Medianes nappe | Neocom | 88°, 47° S | 55 | 222°, 18° | 20°, 82° S | 142°, 3° | −1.86 | 46 | LPS | ||||||
88 | Pre-Alp Medianes nappe | Neocom, vein | 45°, 22°N | ? | 56 | 118°, 72° | 2°, 3° | 122°, 81° | −7.68 | 20 | LNS | ? | ||||
89 | Pre-Alp Medianes nappe | Lias | 65°, 85°N | 59 | 120°, 82 | 1°, 1° | 270°, 5° | −5.36 | 36 | LPS | ||||||
90 | Pre-Alp Medianes nappe | Malm, vein | 300°, 45° S | ? | 73 | 240°, 38° | 121°, 11° | 12°, 41° | −2.81 | 33 | LPS | ? | ||||
91 | Pre-Alp Medianes nappe | Dogger, vein | 100°, 70° S | ? | 52 | 112°, 22° | 10°, 12° | 255°, 42° | −3.99 | 25 | LPS | ? | ||||
92 | Pre-Alp Medianes nappe | Dogger, vein | 100°, 70° S | ? | 57 | 181°, 88° | 330°, 2° | 64°, 1° | −1.95 | 19 | LPS | ? | ||||
93 | Pre-Alp Medianes nappe | Dogger | Horizontal | 54 | 271°, 58° | 92°, 11° | 190°, 1° | −3.21 | 32 | LNS | ||||||
98 | Pre-Alp Medianes nappe | Dogger | 52°, 88°N | 51 | 51°, 35° | 202°, 41° | 305°, 12° | −4.23 | 29 | LPS | ||||||
100 | Pre-Alp Medianes nappe | Lias, vein | Horizontal | ? | 46 | 185°, 72° | 88°, 4° | 351°, 5° | −3.35 | 35 | LNS | ? | ||||
102 | Pre-Alp Medianes nappe | Dogger | 81°, 70°N | 53 | 168°, 5° | 271°, 45° | 72°, 5° | −4.91 | 11 | LNS | ||||||
105 | Pre-Alp Medianes nappe | Flysch | 91°, 80°N | 99 | 182°, 7° | 351°, 79° | 101°, 4° | −5.61 | 24 | LNS | ||||||
105V | Pre-Alp Medianes nappe | Flysch, vein | ? | 51 | −6.17 | 10 | LPS | ? | ||||||||
53 | Pre-Alp Medianes nappe | Vein | 5°, 70°W | ? | 57 | 123°, 47° | 227°, 44° | 352°, 41° | −2.46 | 39 | LNS | ? | ||||
94 | Pre-Alp Medianes nappe | Lias | 338°, 75° | 50 | 331°, 51° | 153°, 62° | 247°, 5° | −6.26 | 28 | LNS | ||||||
64 | Pre-Alp Rigid nappe | Malm | 38°, 31° S | 41 | 41°, 35° | 242°, 31° | 138°, 1° | −3.75 | 44 | LNS | ||||||
72 | Pre-Alp Rigid nappe | Trias | 51°, 20° S | 52 | 162°, 31° | 270°, 1° | 2°, 47° | −1.85 | 25 | LPS | ||||||
73 | Pre-Alp Rigid nappe | Trias, vein | 44°, 21° S | ? | 51 | 122°, 20° | 203°, 2° | 303°, 62° | −2.72 | 33 | LPS | ? | ||||
76 | Pre-Alp Rigid nappe | Flysch, vein | 21°, 62° S | ? | 57 | 242°, 18° | 342°, 31° | 106°, 58° | −2 | 32 | LNS | ? | ||||
106 | Pre-Alp Rigid nappe | Trias | Horizontal | 50 | 135°, 6° | 267°, 82° | 44°, 2° | −5.48 | 34 | LPS | ||||||
109 | Pre-Alp Rigid nappe | Malm, vein | 45°, 6° S | ? | 46 | 135°, 88° | 272°, 2° | 22°, 3° | −13.05 | 35 | LNS | ? | ||||
110 | Pre-Alp Rigid nappe | Malm | 45°, 23° S | 45 | 342°, 31° | 182°, 41° | 83°, 5° | −8.38 | 42 | LPS | ||||||
129 | Pre-Alp Rigid nappe | Dogger | 2°, 47° E | 47 | 273°, 14° | 182°, 1° | 88°, 42° | −9.7 | 21 | LNS | ||||||
132 | Pre-Alp Rigid nappe | Malm | 18°, 41° E | 48 | 233°, 51° | 26°, 21° | 131°, 3° | −9.05 | 23 | LNS | ||||||
133 | Pre-Alp Rigid nappe | Malm | 21°, 12° E | 48 | 282°, 62° | 177°, 6° | 83°, 12° | −9.48 | 13 | LNS | ||||||
135 | Pre-Alp Rigid nappe | Malm | Horizontal | 48 | 186°, 9° | 311°, 41° | 82°, 22° | −7.33 | 38 | LPS | ||||||
136 | Pre-Alp Rigid nappe | Trias, vein | 38°, 28° S | ? | 48 | 251°, 22° | 347°, 12° | 117°, 33° | −3.04 | 31 | LNS | ? | ||||
137 | Pre-Alp Rigid nappe | Trias | 41°, 25° E | 46 | 252°, 47° | 87°, 30° | 352°, 8° | −7.54 | 26 | LNS | ||||||
78 | Gurnigel nappe | Flysch | 53 | −2.17 | 26 | LPS | ||||||||||
74 | Gurnigel nappe | Breche nappe | Horizontal | 54 | 136°, 2° | 52°, 5° | 302°, 83° | −3.2 | 35 | LPS | ||||||
61 | Gurnigel nappe | Flysch | 51°, 46° S | 50 | 350°, 43° | 161°, 44° | 258°, 2° | −7.05 | 35 | LNS | ||||||
69 | Gurnigel nappe | Flysch | 12°, 41° E | 56 | 183°, 41° | 73°, 11° | 322°, 26° | −7.14 | 27 | LNS | ||||||
2081 | −4.8795 | 29.94872 | LNS = 20/ LPS = 19 | |||||||||||||
Helvetic Nappes[73] | ||||||||||||||||
80-21 | Santis Thrust | K limestone | 181°, 1° | −4.2 | 20 | LNS | ||||||||||
80-23 | Santis Thrust | K limestone | 172°, 5° | −0.5 | 19 | LPS | ||||||||||
80-24 | Santis Thrust | K limestone | 205°, 22° | −2.9 | 9 | LNS | ||||||||||
80-25 | Santis Thrust | K limestone | 172°, 12° | −3.4 | 13 | LPS | ||||||||||
80-15 | Santis Thrust | K limestone | 153°, 30° | −2 | 16 | LPS | ||||||||||
80-14 | Glarus Thrust | K limestone | 342°, 82° | −1.1 | 12 | LNS | ||||||||||
80-11 | Murtschen Thrust | K limestone | 0°, 82° | −5.7 | 8 | LNS | ||||||||||
80-12 | Murtschen Thrust | K limestone | 340°, 81° | −5.7 | 25 | LNS | ||||||||||
80-13 | Murtschen Thrust | K limestone | 276°, 84° | −8.9 | 17 | LPS | ||||||||||
80-16 | Glarus Footwall | K limestone | 284°, 77° | −1.9 | 11 | LPS | ||||||||||
80-17 | Glarus Footwall | K limestone | 78°,82° | −5.3 | 16 | LPS | ||||||||||
80-19 | Glarus Footwall | K limestone | 330°, 45° | −3 | 18 | LPS | ||||||||||
80-20 | Glarus Footwall | K limestone | 271°, 33° | −3 | 27 | LNS | ||||||||||
−3.6615 | 16.23077 | LNS = 6/LPS = 7 | ||||||||||||||
Helvetic Nappes (this study) | ||||||||||||||||
BE-2416 | BE-2416 | Alpenrhein Graben | Vein (striated) | 48° E, 42° S | 6°, 82°W | 22 | 348°, 5° | 269°, 4° | 153°, 88° | −6.3 | 9 | 276 | 365.395 | LNS | VNS | 0 |
H2 | H2 | Alpenrhein Graben | Vein (striated) | 73° E, 33° S | 63°, 79° E | 36 | 171°, 3° | 274°, 13° | 47°, 78° | −1.63 | 11 | 179 | 333.238 | LNS | VNS | 0 |
H3 | H3 | Alpenrhein Graben | Vein (striated) | 69° E, 24° S | 349°, 86°W | 18 | 157°, 4° | 27°, 7° | 246°, 86° | −6.43 | 22 | 366 | 386.355 | LNS | VNS | 0 |
H4 | H4 | Alpenrhein Graben | Vein (striated) | 87° E, 16° S | 7°, 55° E | 36 | 168°, 8° | 281°, 27° | 96°, 41° | −3.34 | 8 | 483 | 406.955 | LNS | VPS | 0 |
n = 112 | −4.43 | 12.5 | −372.25 | LNS = 4/LPS = 0 | ||||||||||||
Helvetic–Penninic Nappes [40] | ||||||||||||||||
J20 | Dolden–Wildhorn nappes | Valanginian | 0, 0 | 50 | 352°, 16° | 234°, 16° | 90°, 26° | 5.0 | 25 | No plot; LPS | ||||||
J30V | Dolden–Wildhorn nappes | Valanginian | 180, 30 | 50 | 298°, 8° | 40°, 56° | 203°, 33° | 6.0 | 10 | No plot; LPS | ||||||
J30M | Dolden–Wildhorn nappes | Valanginian | 180, 30 | 50 | 195°, 24° | 99°, 14° | 340°, 62° | 5.0 | 25 | No plot; LPS | ||||||
J31V | Dolden–Wildhorn nappes | Valanginian | 180, 30 | 50 | 313°, 37° | 186°, 38° | 69°, 29° | 3.0 | 29 | No plot; LPS | ||||||
G1M | Dolden–Wildhorn nappes | Valanginian | 240, 22 | 50 | 303°, 45° | 151°, 42° | 47°, 14° | 6.0 | 18 | LPS | ||||||
G1V | Dolden–Wildhorn nappes | Valanginian | 240, 22 | 50 | 271°, 39° | 132°, 43° | 20°, 22° | 5.0 | 18 | LPS | ||||||
Ge1 | Dolden–Wildhorn nappes | Malm | 290, 20 | 50 | 64°, 41° | 320°, 16° | 213°, 45° | 6.0 | 30 | LNS | ||||||
A3 | Dolden–Wildhorn nappes | dogger | 308, 46 | 50 | 8°, 16° | 115°, 45° | 265°, 40° | 3.0 | 42 | LPS | ||||||
L13V | Dolden–Wildhorn nappes | Malm | 190, 40 | 50 | 16°, 25° | 240°, 56° | 116°, 20° | 7.0 | 43 | LNS | ||||||
L13M | Dolden–Wildhorn nappes | Malm | 190, 40 | 50 | 118°, 40° | 14°, 17° | 265°, 45° | 9.0 | 30 | LPS | ||||||
W17 | Dolden–Wildhorn nappes | Malm | 234, 14 | 50 | 126°, 13° | 321°, 76° | 217°, 3° | 3.0 | 17 | LPS | ||||||
W50 | Dolden–Wildhorn nappes | Malm | 240, 18 | 50 | 273°, 6° | 19°, 70° | 181°, 20° | 5.0 | 32 | LPS | ||||||
W68 | Dolden–Wildhorn nappes | Malm | 310, 56 | 50 | 265°, 67° | 134°, 16° | 39°, 17° | 9.0 | 32 | LPS | ||||||
W72 | Dolden–Wildhorn nappes | Barremian | 225, 50 | 50 | 276°, 77° | 82°, 13° | 172°, 3° | 4.0 | 35 | LPS | ||||||
W77 | Dolden–Wildhorn nappes | Barremian | 110, 75 | 50 | 359°, 41° | 169°, 49° | 265°, 5° | 2.0 | 22 | LNS | ||||||
W90 | Dolden–Wildhorn nappes | Barremian | 310, 56 | 50 | 354°, 48° | 258°, 6° | 163°, 41° | 15.0 | 16 | LPS | ||||||
M129 | Dolden–Wildhorn nappes | Valanginan | 350, 9 | 50 | 274°, 70° | 156°, 9° | 63°, 17° | 18.0 | 20 | LNS | ||||||
M130 | Dolden–Wildhorn nappes | Valanginan | 300, 16 | 50 | 134°, 58° | 30°, 8° | 295°, 30° | 2.0 | 29 | LNS | ||||||
M133 | Dolden–Wildhorn nappes | Eocene | 290, 40 | 50 | 312°, 32° | 143°, 58° | 45°, 58° | 2.0 | 30 | LPS | ||||||
M156 | Dolden–Wildhorn nappes | Eocene | 316, 44 | 50 | 325°, 37° | 186°, 45° | 73°, 22° | 6.0 | 8 | LPS | ||||||
M170 | Dolden–Wildhorn nappes | Malm | 328, 35 | 50 | 106°, 46° | 235°, 31° | 344°, 27° | 8.0 | 20 | LNS | ||||||
M174 | Dolden–Wildhorn nappes | Barremian | 28, 50 | 50 | 182°, 52° | 334°, 35° | 73°, 14° | 6.0 | 29 | LNS | ||||||
M175 | Dolden–Wildhorn nappes | Barremian | 30, 30 | 50 | 201°, 49° | 0°, 40° | 99°, 11° | 4.0 | 30 | LNS | ||||||
M186 | Dolden–Wildhorn nappes | Barremian | 0,0 | 50 | 142°, 40° | 33°, 21° | 282°, 43° | 6.0 | 17 | LPS | ||||||
M191 | Dolden–Wildhorn nappes | Valanginan | 286, 25 | 50 | 354°, 51° | 145°, 35° | 245°, 15° | 14.0 | 25 | LNS | ||||||
M199 | Dolden–Wildhorn nappes | Valanginian | 296, 11 | 50 | 37°, 78° | 269°, 10° | 177°, 7° | 9.0 | 27 | LNS | ||||||
M220 | Dolden–Wildhorn nappes | Dogger | 304, 40 | 50 | 152°, 68° | 56°, 3° | 325°, 21° | 9.0 | 28 | LNS | ||||||
M245 | Dolden–Wildhorn nappes | Eocene | 160, 40 | 50 | 136°, 71° | 324°, 19° | 234°, 3° | 5.0 | 29 | LNS | ||||||
M356 | Dolden–Wildhorn nappes | Dogger | 0,0 | 50 | 190°, 71° | 299°, 3° | 30°, 11° | 8.0 | 35 | LNS | ||||||
1450 | 6.6 | 25.89655 | LNS = 13/ LPS = 16 | |||||||||||||
Tauren Window, Austria | ||||||||||||||||
17,651/17,653 | NEV | Tauren Window, Austria | Calcsilicate | N-S Sheath fold | 78 | 1°, 72° | 192°, 1° | 263°, 8° | −2.21 | 100 | 140 | 314.988 | LNS | |||
289a6/298a7 | NEV | Tauren Window, Austria | Calcsilicate | N-S Sheath fold | 62 | 38°, 83° | 171°, 12° | 84°, 2° | −1.74 | 100 | 108 | 295.715 | LNS | |||
72,664/74,664 | NEV | Tauren Window, Austria | Calcsilicate | N-S Sheath fold | 73 | 183°, 87° | 145°,6° | 86°, 5° | −1.83 | 100 | 221 | 348.891 | LNS | |||
801a1/801a2 | NEV | Tauren Window, Austria | Calcsilicate | N-S Sheath fold | 66 | 231°, 69° | 133°,6° | 88°, 4° | −2.57 | 100 | 240 | 355.016 | LNS | |||
279 | −2.08 | −328 | ||||||||||||||
Avg. of all Tauren samples | 1000 | −3.612 | 29.1 | −337.351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craddock, J.P.; Ring, U.; Pfiffner, O.A. Deformation of the European Plate (58-0 Ma): Evidence from Calcite Twinning Strains. Geosciences 2022, 12, 254. https://doi.org/10.3390/geosciences12060254
Craddock JP, Ring U, Pfiffner OA. Deformation of the European Plate (58-0 Ma): Evidence from Calcite Twinning Strains. Geosciences. 2022; 12(6):254. https://doi.org/10.3390/geosciences12060254
Chicago/Turabian StyleCraddock, John P., Uwe Ring, and O. Adrian Pfiffner. 2022. "Deformation of the European Plate (58-0 Ma): Evidence from Calcite Twinning Strains" Geosciences 12, no. 6: 254. https://doi.org/10.3390/geosciences12060254
APA StyleCraddock, J. P., Ring, U., & Pfiffner, O. A. (2022). Deformation of the European Plate (58-0 Ma): Evidence from Calcite Twinning Strains. Geosciences, 12(6), 254. https://doi.org/10.3390/geosciences12060254