Squeezing Data from a Rock: Machine Learning for Martian Science
Abstract
:1. Introduction
Scope and Audience
2. Machine Learning Studies on Mars
2.1. Supervised Learning
2.1.1. Classification
Transfer Learning
Classification Applications on Mars
2.1.2. Regression
2.2. Unsupervised Learning
2.2.1. Clustering
2.2.2. Anomaly Detection
2.2.3. Dimensionality Reduction
2.3. Semi-Supervised Learning
Classification
2.4. Self-Supervised Learning
3. The State and Future of Machine Learning on Mars
3.1. Why Use Machine Learning at All?
3.2. Future Machine Learning Studies on Mars
3.2.1. Mission Planning and Landing
3.2.2. Boulder Sampling Strategies
3.2.3. Identify Shorelines and Deltas
3.2.4. Map Unusual Aeolian Features
3.2.5. Map Inverted Channels
3.2.6. Map Small Channels
3.2.7. Locate and Characterize Chaotic Terrain
3.2.8. Locate Ice/Water
3.2.9. Identify Glacial Landforms
3.2.10. Detect Novel or Rare Mineral Phases
3.3. Leverage Generative Adversarial Networks
3.3.1. Generating Synthetic Imagery
3.3.2. Feature Extraction from DTMs
3.4. Develop Standardized Datasets
3.4.1. Unlabeled Data
3.4.2. Expert Labeling
3.4.3. Crowd-Sourced Data Labels
3.5. Unify Geographic Data and Analysis Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, J.S.; Li, Y.P. The Planetary Data System Data Model. In Proceedings of the Twelfth IEEE Symposium on Mass Storage Systems, Monterey, CA, USA, 26–29 April 1993; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1993; pp. 183–189. [Google Scholar]
- McMahon, S.K. Overview of the Planetary Data System. Planet. Space Sci. 1996, 44, 3–12. [Google Scholar] [CrossRef]
- Arviset, C.; Dowson, J.; Ortiz, I.; Parrilla, E.; Salgado, J.; Zender, J. ESA Planetary Science Archive. In Astronomical Data Analysis Software and Systems XVI.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 376, p. 163. [Google Scholar]
- Macfarlane, A.J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; de Marchi, G.; et al. Improving Accessibility and Discovery of ESA Planetary Data through the New Planetary Science Archive. Planet. Space Sci. 2018, 150, 104–110. [Google Scholar] [CrossRef]
- Estlin, T.A.; Bornstein, B.J.; Gaines, D.M.; Anderson, R.C.; Thompson, D.R.; Burl, M.; Castano, R.; Judd, M. Aegis Automated Science Targeting for the Mer Opportunity Rover. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–19. [Google Scholar] [CrossRef]
- Francis, R.; Estlin, T.; Doran, G.; Johnstone, S.; Gaines, D.; Verma, V.; Burl, M.; Frydenvang, J.; Montaño, S.; Wiens, R.C. AEGIS Autonomous Targeting for ChemCam on Mars Science Laboratory: Deployment and Results of Initial Science Team Use. Sci. Robot. 2017, 2, eaan4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estlin, T.; Castano, R.; Bornstein, B.; Gaines, D.; Anderson, R.C.; de Granville, C.; Thompson, D.; Burl, M.; Judd, M.; Chien, S. Automated Targeting for the MER Rovers. In Proceedings of the 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, CA, USA, 19–23 July 2009; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2009; pp. 257–263. [Google Scholar]
- Johnson, A.E.; Cheng, Y.; Montgomery, J.F.; Trawny, N.; Tweddle, B.; Zheng, J.X. Real-Time Terrain Relative Navigation Test Results from a Relevant Environment for Mars Landing. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 5–9 January 2015; p. 851. [Google Scholar]
- Wolf, A.A.; Acikmese, B.; Cheng, Y.; Casoliva, J.; Carson, J.M.; Ivanov, M.C. Toward Improved Landing Precision on Mars. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 1–8. [Google Scholar]
- Owens, C.; Macdonald, K.; Hardy, J.; Lindsay, R.; Redfield, M.; Bloom, M.; Bailey, E.; Cheng, Y.; Clouse, D.; Villalpando, C.Y. Development of a Signature-Based Terrain Relative Navigation System for Precision Landing. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–22 January 2021; p. 376. [Google Scholar]
- Johnson, A.; Aaron, S.; Chang, J.; Cheng, Y.; Montgomery, J.; Mohan, S.; Schroeder, S.; Tweddle, B.; Trawny, N.; Zheng, J. The Lander Vision System for Mars 2020 Entry Descent and Landing. In Proceedings of the AAS Guidance Navigation and Control Conference, Breckenridge, CO, USA, 2–8 February 2017. [Google Scholar]
- Brugarolas, P. Guidance, Navigation and Control for the Entry, Descent, and Landing of the Mars 2020 Mission. In Proceedings of the 40th Annual Guidance and Control Conference, Breckenridge, CO, USA, 2–8 February 2017. [Google Scholar]
- Shao, W.; Cao, L.; Guo, W.; Xie, J.; Gu, T. Visual Navigation Algorithm Based on Line Geomorphic Feature Matching for Mars Landing. Acta Astronaut. 2020, 173, 383–391. [Google Scholar] [CrossRef]
- Nelessen, A.; Sackier, C.; Clark, I.; Brugarolas, P.; Villar, G.; Chen, A.; Stehura, A.; Otero, R.; Stilley, E.; Way, D. Mars 2020 Entry, Descent, and Landing System Overview. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 1–20. [Google Scholar]
- Johnson, A.E.; Aaron, S.B.; Ansari, H.; Bergh, C.; Bourdu, H.; Butler, J.; Chang, J.; Cheng, R.; Cheng, Y.; Clark, K. Mars 2020 Lander Vision System Flight Performance. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1214. [Google Scholar]
- Diniega, S.; Bramson, A.; Buratti, B.; Buhler, P.; Burr, D.; Chojnacki, M.; Conway, S.; Daubar, I.; Dinwiddie, C.L.; Galofre, A.G.; et al. Mars as a “Natural Laboratory” for Studying Surface Activity on a Range of Planetary Bodies. Bull. Am. Astron. Soc. 2021, 53, 123. [Google Scholar]
- Diniega, S.; Bramson, A.M.; Buratti, B.; Buhler, P.; Burr, D.M.; Chojnacki, M.; Conway, S.J.; Dundas, C.M.; Hansen, C.J.; McEwen, A.S.; et al. Modern Mars’ Geomorphological Activity, Driven by Wind, Frost, and Gravity. Geomorphology 2021, 380, 107627. [Google Scholar] [CrossRef]
- Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; de La Rubia, L.A.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; Naud, M.-E.; Paulino-Lima, I.G.; et al. The Astrobiology Primer v2. 0. Astrobiology 2016, 16, 561. [Google Scholar]
- Changela, H.G.; Chatzitheodoridis, E.; Antunes, A.; Beaty, D.; Bouw, K.; Bridges, J.C.; Capova, K.A.; Cockell, C.S.; Conley, C.A.; Dadachova, E.; et al. Mars: New Insights and Unresolved Questions. Int. J. Astrobiol. 2021, 20, 394–426. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, B.; Iten, M.; Silva, R.G. Monitoring Sustainable Development by Means of Earth Observation Data and Machine Learning: A Review. Environ. Sci. Eur. 2020, 32, 120. [Google Scholar] [CrossRef]
- Lary, D.J.; Zewdie, G.K.; Liu, X.; Wu, D.; Levetin, E.; Allee, R.J.; Malakar, N.; Walker, A.; Mussa, H.; Mannino, A.; et al. Machine Learning Applications for Earth Observation; Springer: Cham, Switzerland, 2018; ISBN 9783319656328. [Google Scholar]
- Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.; Mosavi, A.; Camps-Valls, G. Machine Learning Information Fusion in Earth Observation: A Comprehensive Review of Methods, Applications and Data Sources. Inf. Fusion 2020, 63, 256–272. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667. [Google Scholar] [CrossRef]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; ben Dor, E. Land Use/Land Cover in View of Earth Observation: Data Sources, Input Dimensions, and Classifiers—A Review of the State of the Art. Geocarto Int. 2021, 36, 957–988. [Google Scholar] [CrossRef]
- Selva, D.; Krejci, D. A Survey and Assessment of the Capabilities of Cubesats for Earth Observation. Acta Astron. 2012, 74, 50–68. [Google Scholar] [CrossRef]
- Secades, C.; O’Connor, B.; Brown, C.; Walpole, M.; Skidmore, A.; Wang, T.; Groen, T.A.; Herkt, K.M.B.; Niamir, A. Earth observation for biodiversity monitoring, Canadian Electronic Library. Available online: https://policycommons.net/artifacts/1189083/earth-observation-for-biodiversity-monitoring/1742209/ (accessed on 8 June 2022).
- Merchant, C.J.; Paul, F.; Popp, T.; Ablain, M.; Bontemps, S.; Defourny, P.; Hollmann, R.; Lavergne, T.; Laeng, A.; de Leeuw, G. Uncertainty Information in Climate Data Records from Earth Observation. Earth Syst. Sci. Data 2017, 9, 511–527. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Ouma, Y.O. Advancements in Medium and High Resolution Earth Observation for Land-Surface Imaging: Evolutions, Future Trends and Contributions to Sustainable Development. Adv. Space Res. 2016, 57, 110–126. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Mauser, W.; Atzberger, C. Derivation of Biophysical Variables from Earth Observation Data: Validation and Statistical Measures. J. Appl. Remote Sens. 2012, 6, 63557. [Google Scholar] [CrossRef]
- Pfeifer, M.; Disney, M.; Quaife, T.; Marchant, R. Terrestrial Ecosystems from Space: A Review of Earth Observation Products for Macroecology Applications. Glob. Ecol. Biogeogr. 2012, 21, 603–624. [Google Scholar] [CrossRef] [Green Version]
- Kansakar, P.; Hossain, F. A Review of Applications of Satellite Earth Observation Data for Global Societal Benefit and Stewardship of Planet Earth. Space Policy 2016, 36, 46–54. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Gallaun, H.; Dees, M.; Datta, P.; Deutscher, J.; Koutsias, N.; Schardt, M. Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data: A Review. Curr. For. Rep. 2017, 3, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shan, J.; Gong, J. Geospatial Technology for Earth Observation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; ISBN 1441900500. [Google Scholar]
- Sąsiadek, J. Space Robotics and Its Challenges. In Aerospace Robotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–8. [Google Scholar]
- Lumia, R.; Albus, J.S. Teleoperation and Autonomy for Space Robotics. Robot. Auton. Syst. 1988, 4, 27–33. [Google Scholar] [CrossRef]
- Hambuchen, K.A.; Roman, M.C.; Sivak, A.; Herblet, A.; Koenig, N.; Newmyer, D.; Ambrose, R. NASA’s Space Robotics Challenge: Advancing Robotics for Future Exploration Missions. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5120. [Google Scholar]
- Meshka, L. Risk Considerations for Autonomy Software. In Proceedings of the 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 27–30 January 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Gao, Y.; Chien, S. Review on Space Robotics: Toward Top-Level Science through Space Exploration. Sci. Robot. 2017, 2, eaan5074. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Alarcos, A.; Beßler, D.; Khamis, A.; Goncalves, P.; Habib, M.K.; Bermejo-Alonso, J.; Barreto, M.; Diab, M.; Rosell, J.; Quintas, J. A Review and Comparison of Ontology-Based Approaches to Robot Autonomy. Knowl. Eng. Rev. 2019, 34, e29. [Google Scholar] [CrossRef] [Green Version]
- Read, N.; Woods, M.; Karachalios, S. Novelty or Anomaly Hunter–Driving Next Generation Science Autonomy With Large High Quality Dataset Collection. In Proceedings of the ESA AI and Robotics at i-SAIRAS 2020, Virtual, 19–23 October 2020. [Google Scholar]
- Volpe, R. Rover Functional Autonomy Development for the Mars Mobile Science Laboratory. In Proceedings of the 2003 IEEE Aerospace Conference, Big Sky, MT, USA, 8–15 March 2003; Volume 2, pp. 643–652. [Google Scholar]
- Volpe, R. Rover Technology Development and Mission Infusion beyond MER. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 971–981. [Google Scholar]
- Munoz, P.; R-Moreno, M.D.; Martınez, A. A First Approach for the Autonomy of the Exomars Rover Using a 3-Tier Architecture. In Proceedings of the 11th ESA Symposium on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 14 April 2011. [Google Scholar]
- Shaukat, A.; Blacker, P.C.; Spiteri, C.; Gao, Y. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis. Sensors 2016, 16, 1952. [Google Scholar] [CrossRef] [Green Version]
- Schenker, P.S.; Huntsberger, T.L.; Pirjanian, P.; Baumgartner, E.T.; Tunstel, E. Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization. Auton. Robot. 2003, 14, 103–126. [Google Scholar] [CrossRef]
- Nesnas, I.A.D.; Fesq, L.M.; Volpe, R.A. Autonomy for Space Robots: Past, Present, and Future. Curr. Robot. Rep. 2021, 2, 251–263. [Google Scholar] [CrossRef]
- Woods, M.; Shaw, A.; Barnes, D.; Price, D.; Long, D.; Pullan, D. Autonomous Science for an ExoMars Rover–like Mission. J. Field Robot. 2009, 26, 358–390. [Google Scholar] [CrossRef] [Green Version]
- Rybus, T. Obstacle Avoidance in Space Robotics: Review of Major Challenges and Proposed Solutions. Prog. Aerosp. Sci. 2018, 101, 31–48. [Google Scholar] [CrossRef]
- Jasiobedzki, P.; Anders, C. Computer Vision for Space Robotics: Applications, Role and Performance. IFAC Proc. Vol. 1998, 31, 95–102. [Google Scholar] [CrossRef]
- Rabideau, G.; Benowitz, E. Prototyping an Onboard Scheduler for the Mars 2020 Rover. In Proceedings of the 10th International Workshop on Planning and Scheduling for Space (IWPSS 2017), Pittsburgh, PA, USA, 15–17 June 2017. [Google Scholar]
- Daftry, S.; Abcouwer, N.; del Sesto, T.; Venkatraman, S.; Song, J.; Igel, L.; Byon, A.; Rosolia, U.; Yue, Y.; Ono, M. MLNav: Learning to Safely Navigate on Martian Terrains. IEEE Robot. Autom. Lett. 2022, 7, 5461–5468. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: London, UK, 2002. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Ayodele, T.O. Types of Machine Learning Algorithms. New Adv. Mach. Learn. 2010, 3, 19–48. [Google Scholar]
- Ray, S. A Quick Review of Machine Learning Algorithms. In Proceedings of the 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), Faridabad, India, 14–16 February 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 35–39. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Day, O.; Khoshgoftaar, T.M. A Survey on Heterogeneous Transfer Learning. J. Big Data 2017, 4, 1–42. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berling, Germany, 2018; pp. 270–279. [Google Scholar]
- Bozinovski, S. Reminder of the First Paper on Transfer Learning in Neural Networks, 1976. Informatica 2020, 44. [Google Scholar] [CrossRef]
- Kaboli, M. A Review of Transfer Learning Algorithms. [Research Report] Technische Universität München. 2017. hal-01575126. Available online: https://hal.archives-ouvertes.fr/hal-01575126 (accessed on 8 June 2022).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-Cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting Similarities among Languages for Machine Translation. arXiv 2013, arXiv:1309.4168. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Zhang, X.; Zou, J.; He, K.; Sun, J. Accelerating very Deep Convolutional Networks for Classification and Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1943–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hou, X.; Koch, C.; Rehg, J.M.; Yuille, A.L. The Secrets of Salient Object Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 280–287. [Google Scholar]
- Movahedi, V.; Elder, J.H. Design and Perceptual Validation of Performance Measures for Salient Object Segmentation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2010; pp. 49–56. [Google Scholar]
- Chien, S.-Y.; Ma, S.-Y.; Chen, L.-G. Efficient Moving Object Segmentation Algorithm Using Background Registration Technique. IEEE Trans. Circuits Syst. Video Technol. 2002, 12, 577–586. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Sun, J. Implicit Feature Pyramid Network for Object Detection. arXiv 2020, arXiv:2012.13563. [Google Scholar]
- Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J. Parallel Feature Pyramid Network for Object Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 234–250. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 2117–2125. [Google Scholar]
- Deng, C.; Wang, M.; Liu, L.; Liu, Y.; Jiang, Y. Extended Feature Pyramid Network for Small Object Detection. IEEE Trans. Multimed. 2021, 24, 1968–1979. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, R.; Rao, Y. A New Feature Pyramid Network for Object Detection. In Proceedings of the 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Jishou, China, 14–15 September 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 428–431. [Google Scholar]
- Bland, P. Crater Counting. Astron. Geophys. 2003, 44, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Öpik, E.J. Cratering and the Moon’s Surface. In Advances in Astronomy and Astrophysics; Elsevier: Amsterdam, The Netherlands, 1971; Volume 8, pp. 107–337. ISBN 0065-2180. [Google Scholar]
- Tyrie, A. Age Dating of Mare in the Lunar Crater Tsiolkovsky by Crater-Counting Method. Earth Moon Planets 1988, 42, 245–264. [Google Scholar] [CrossRef]
- Neukum, G.; König, B.; Fechtig, H.; Storzer, D. Cratering in the Earth-Moon System-Consequences for Age Determination by Crater Counting. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1975; Volume 6, pp. 2597–2620. [Google Scholar]
- Neukum, G.; Wise, D.U. Mars: A Standard Crater Curve and Possible New Time Scale: Cratering Links to Lunar Time Suggest That Mars Died Long Ago. Science 1976, 194, 1381–1387. [Google Scholar] [CrossRef]
- Baldwin, R.B. Mars: An Estimate of the Age of Its Surface. Science 1965, 149, 1498–1499. [Google Scholar] [CrossRef]
- Yang, S.; Cai, Z. High-Resolution Feature Pyramid Network for Automatic Crater Detection on Mars. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4601012. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, T. Automatic Detection of Impact Craters on Mars Using a Modified Adaboosting Method. Planet. Space Sci. 2014, 99, 112–117. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Ding, W.; Vilalta, R. Detecting Impact Craters in Planetary Images Using Machine Learning. In Intelligent Data Analysis for Real-Life Applications: Theory and Practice; IGI Global: Hershey, PA, USA, 2012; pp. 146–159. [Google Scholar]
- DeLatte, D.M.; Crites, S.T.; Guttenberg, N.; Tasker, E.J.; Yairi, T. Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2944–2957. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Li, W.; Wang, S. Knowledge-Driven Geoai: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars Crater Detection. Remote Sens. 2021, 13, 2116. [Google Scholar] [CrossRef]
- AlMarzooqi, M.; AlNaqbi, A.; AlMheiri, A.; Bezawada, S.; Mohamed, E.A.; Zaki, N. Increase the Exploitation of Mars Satellite Images Via Deep Learning Techniques. In Proceedings of the 2018 International Conference on Robotics, Control and Automation Engineering, Beijing, China, 26–28 December 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 171–175. [Google Scholar]
- Stepinski, T.F.; Mendenhall, M.P.; Bue, B.D. Machine Cataloging of Impact Craters on Mars. Icarus 2009, 203, 77–87. [Google Scholar] [CrossRef]
- Lee, C. Automated Crater Detection on Mars Using Deep Learning. Planet. Space Sci. 2019, 170, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Plesko, C.; Brumby, S.; Asphaug, E.; Chamberlain, D.; Engel, T. Automatic Crater Counts on Mars. Lunar Planet. Inst. Conf. Abstr. 2004, 35, 1935. [Google Scholar]
- Vinogradova, T.; Burl, M.; Mjolsness, E. Training of a Crater Detection Algorithm for Mars Crater Imagery. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 2002; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2002; Volume 7, p. 7. [Google Scholar]
- DeLatte, D.M.; Crites, S.T.; Guttenberg, N.; Tasker, E.J.; Yairi, T. Exploration of Machine Learning Methods for Crater Counting on Mars. In Proceedings of the 49th Lunar and Planetary Science Conference 2018, The Woodlands, TX, USA, 19–23 March 2018; Volume 49. [Google Scholar]
- Bouley, S.; Craddock, R.A.; Mangold, N.; Ansan, V. Comparison of Different Crater Counting Methods Applicated to Parana Valles. In Proceedings of the 40th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 1097. [Google Scholar]
- Werner, S.C.; Tanaka, K.L.; Skinner Jr, J.A. Mars: The Evolutionary History of the Northern Lowlands Based on Crater Counting and Geologic Mapping. Planet. Space Sci. 2011, 59, 1143–1165. [Google Scholar] [CrossRef]
- Lagain, A.; Servis, K.; Benedix, G.K.; Norman, C.; Anderson, S.; Bland, P.A. Model Age Derivation of Large Martian Impact Craters, Using Automatic Crater Counting Methods. Earth Space Sci. 2021, 8, e2020EA001598. [Google Scholar] [CrossRef]
- Di, K.; Li, W.; Yue, Z.; Sun, Y.; Liu, Y. A Machine Learning Approach to Crater Detection from Topographic Data. Adv. Space Res. 2014, 54, 2419–2429. [Google Scholar] [CrossRef]
- Christoff, N.; Jorda, L.; Viseur, S.; Bouley, S.; Manolova, A.; Mari, J.-L. Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling. Earth Moon Planets 2020, 124, 51–72. [Google Scholar] [CrossRef]
- Benedix, G.K.; Lagain, A.; Chai, K.; Meka, S.; Anderson, S.; Norman, C.; Bland, P.A.; Paxman, J.; Towner, M.C.; Tan, T. Deriving Surface Ages on Mars Using Automated Crater Counting. Earth Space Sci. 2020, 7, e2019EA001005. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Daubar, I.J.; Wexler, D.; Wagstaff, K.L.; Bickel, V.; Doran, G. Using Machine Learning to Complement New Martial Crater Inventories. In Proceedings of the 52nd Lunar and Planetary Science Conference, Virtual, 15–19 March 2021. [Google Scholar]
- Hartmann, W.K. Martian Cratering 8: Isochron Refinement and the Chronology of Mars. Icarus 2005, 174, 294–320. [Google Scholar] [CrossRef]
- Xiao, Z.; Strom, R.G. Problems Determining Relative and Absolute Ages Using the Small Crater Population. Icarus 2012, 220, 254–267. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M.; Lillis, R.J.; Bottke, W.F. Large Impact Crater Histories of Mars: The Effect of Different Model Crater Age Techniques. Icarus 2013, 225, 173–184. [Google Scholar] [CrossRef]
- Edwards, C.S.; Nowicki, K.J.; Christensen, P.R.; Hill, J.; Gorelick, N.; Murray, K. Mosaicking of Global Planetary Image Datasets: 1. Techniques and Data Processing for Thermal Emission Imaging System (THEMIS) Multi-spectral Data. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Albee, A.L.; Arvidson, R.E.; Palluconi, F.; Thorpe, T. Overview of the Mars Global Surveyor Mission. J. Geophys. Res. Planets 2001, 106, 23291–23316. [Google Scholar] [CrossRef] [Green Version]
- De, K.; Ruj, T.; Kundu, A.; Dasgupta, N.; Kawai, K. Evolution of Pyrrhae Fossae, Mars: An Explication from the Age Estimation Using the Buffered Crater Counting Technique. Curr. Sci. 2021, 121, 906. [Google Scholar] [CrossRef]
- Fassett, C.I.; Head, J.W., III. The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting. Icarus 2008, 195, 61–89. [Google Scholar] [CrossRef]
- Fergason, R.L.; Hare, T.M.; Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m V2; Astrogeology PDS Annex, US Geological Survey; USGS Astrogeology Science Center: Flagstaff, AZ, USA, 2018. [Google Scholar]
- Li, G.; Geng, Y.; Xiao, X. Multi-Scale Rock Detection on Mars. Sci. China Inf. Sci. 2018, 61, 102301. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Gui, C.; Barnes, D.; Shang, C. Mars Multispectral Image Classification Using Machine Learning Techniques. In Proceedings of the Thirty-First Annual Conference on Innovative Applications of Artificial Intelligence, Honolulu, HI, USA, 28–30 January 2013. [Google Scholar]
- Shang, C.; Barnes, D. Fuzzy-Rough Feature Selection Aided Support Vector Machines for Mars Image Classification. Comput. Vis. Image Underst. 2013, 117, 202–213. [Google Scholar] [CrossRef]
- Rashno, A.; Nazari, B.; Sadri, S.; Saraee, M. Effective Pixel Classification of Mars Images Based on Ant Colony Optimization Feature Selection and Extreme Learning Machine. Neurocomputing 2017, 226, 66–79. [Google Scholar] [CrossRef]
- Haq, A.U.; Leitner, J.; Harding, S.; Forster, A.; Schmidhuber, J. Mars Terrain Image Classification Using Cartesian Genetic Programming. In Proceedings of the 11th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS 2012, Turin, Italy, 4–6 September 2012; European Space Agency (ESA): Paris, France, 2012; pp. 1–8. [Google Scholar]
- Rothrock, B.; Papon, J.; Kennedy, R.; Ono, M.; Heverly, M.; Cunningham, C. SPOC: Deep Learning-Based Terrain Classification for Mars Rover Missions. In Proceedings of the AIAA Space and Astronautics Forum and Exposition, SPACE 2016, Long Beach, CA, USA, 13–16 September 2016; pp. 1–12. [Google Scholar] [CrossRef]
- Chakravarthy, A.S.; Roy, R.; Ravirathinam, P. MRSCAtt: A Spatio-Channel Attention-Guided Network for Mars Rover Image Classification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2021, Nashville, TN, USA, 19–25 June 2021; pp. 1961–1970. [Google Scholar] [CrossRef]
- Shang, C.; Barnes, D.; Shen, Q. Facilitating Efficient Mars Terrain Image Classification with Fuzzy-Rough Feature Selection. Int. J. Hybrid Intell. Syst. 2011, 8, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Yang, L.; Cai, Y.; Zhang, D. Terrain Classification-Based Rover Traverse Planner with Kinematic Constraints for Mars Exploration. Planet. Space Sci. 2021, 209, 105371. [Google Scholar] [CrossRef]
- Hu, S.; Liu, J.; Kang, Z. DeepLabV3+/Efficientnet Hybrid Network-Based Scene Area Judgment for the Mars Unmanned Vehicle System. Sensors 2021, 21, 8136. [Google Scholar] [CrossRef] [PubMed]
- Ogohara, K.; Gichu, R. Automated Segmentation of Textured Dust Storms on Mars Remote Sensing Images Using an Encoder-Decoder Type Convolutional Neural Network. Comput. Geosci. 2022, 160, 105043. [Google Scholar] [CrossRef]
- Gichu, R.; Ogohara, K. Segmentation of Dust Storm Areas on Mars Images Using Principal Component Analysis and Neural Network. Prog. Earth Planet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Sakimoto, S.E.H.; Lewis, D.D.; Dileep, S.; Memon, P.; Beveridge, J.R.; Blanchard, N.T.; Gregg, T.K.P.; Carley, T.L.; Azari, A.; Biersteker, J.B.; et al. Deep Learning for an Inventory of Small to Midsize Volcanic Edifices on Mars. In Proceedings of the Lunar and Planetary Science Conference, Virtual, 15–19 March 2021; Volume 53, p. 1626. [Google Scholar]
- Palafox, L.F.; Hamilton, C.W.; Scheidt, S.P.; Alvarez, A.M. Automated Detection of Geological Landforms on Mars Using Convolutional Neural Networks. Comput. Geosci. 2017, 101, 48–56. [Google Scholar] [CrossRef]
- Bue, B.; Wagstaff, K.; Stillman, D. Automated Mapping and Characterization of RSL from HiRISE Data with MAARSL. In Proceedings of the AAS/Division for Planetary Sciences Meeting Abstracts# 49, Provo, Utah, 15–20 October 2017; Volume 49, pp. 400–402. [Google Scholar]
- Tao, Y.; Muller, J.-P. Automated Dynamic Feature Tracking of RSLs on the Martian Surface through HiRISE Super-Resolution Restoration and 3D Reconstruction Techniques. Eur. Planet. Sci. Congr. 2017, 11, 774. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.-P. Automated Feature Detection and Tracking of RSLs at Valles Marineris through Super-Resolution Restoration and Deep Learning Using HiRISE Images and 3D Terrain Models. In Proceedings of the European Planetary Science Congress, Berlin, Germany, 16–21 September 2018; p. EPSC2018-509. [Google Scholar]
- Fanara, L.; Gwinner, K.; Hauber, E.; Oberst, J. Automated Detection of Block Falls in the North Polar Region of Mars. Planet. Space Sci. 2020, 180, 104733. [Google Scholar] [CrossRef]
- Bickel, V.T.; Conway, S.J.; Tesson, P.-A.; Manconi, A.; Loew, S.; Mall, U. Deep Learning-Driven Detection and Mapping of Rockfalls on Mars. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2831–2841. [Google Scholar] [CrossRef]
- Nagle-Mcnaughton, T.; McClanahan, T.; Scuderi, L. PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on Mars. Remote Sens. 2020, 12, 3607. [Google Scholar] [CrossRef]
- Rubanenko, L.; Perez-Lopez, S.; Schull, J.; Lapotre, M.G.A. Automatic Detection and Segmentation of Barchan Dunes on Mars and Earth Using a Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9364–9371. [Google Scholar] [CrossRef]
- Wagstaff, K.L.; Lu, Y.; Stanboli, A.; Grimes, K.; Gowda, T.; Padams, J. Deep Mars: CNN Classification of Mars Imagery for the PDS Imaging Atlas. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA, 2–7 February 2018; pp. 7867–7872. [Google Scholar]
- Barrett, A.M.; Balme, M.R.; Woods, M.; Karachalios, S.; Petrocelli, D.; Joudrier, L.; Sefton-Nash, E. NOAH-H, a Deep-Learning, Terrain Classification System for Mars: Results for the ExoMars Rover Candidate Landing Sites. Icarus 2022, 371, 114701. [Google Scholar] [CrossRef]
- Wilhelm, T.; Geis, M.; Püttschneider, J.; Sievernich, T.; Weber, T.; Wohlfarth, K.; Wöhler, C. DoMars16k: A Diverse Dataset for Weakly Supervised Geomorphologic Analysis on Mars. Remote Sens. 2020, 12, 3981. [Google Scholar] [CrossRef]
- Gupta, V.; Gupta, S.K.; Kim, J. Automated Discontinuity Detection and Reconstruction in Subsurface Environment of Mars Using Deep Learning: A Case Study of SHARAD Observation. Appl. Sci. 2020, 10, 2279. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Xu, W.; Tan, Y.; Zhang, Y.; Yue, Z.; Zou, L.; Shabbir, S.; Wu, M.; Chen, F.; Yu, J. From Machine Learning to Transfer Learning in Laser-Induced Breakdown Spectroscopy Analysis of Rocks for Mars Exploration. Sci. Rep. 2021, 11, 21379. [Google Scholar] [CrossRef]
- Fabre, C.; Maurice, S.; Wiens, R.; Sautter, V. ChemCam LIBS Instrument: Complete Characterization of the Onboard Calibration Silicate Targets (MSL Rover). In Proceedings of the 41st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; Volume 1533, p. 1835. [Google Scholar]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F.; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Clegg, S.M.; Wiens, R.C.; Anderson, R.; Forni, O.; Frydenvang, J.; Lasue, J.; Cousin, A.; Payre, V.; Boucher, T.; Dyar, M.D. Recalibration of the Mars Science Laboratory ChemCam Instrument with an Expanded Geochemical Database. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 64–85. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A. Pre-Flight Calibration and Initial Data Processing for the ChemCam Laser-Induced Breakdown Spectroscopy Instrument on the Mars Science Laboratory Rover. Spectrochim. Acta Part B At. Spectrosc. 2013, 82, 1–27. [Google Scholar] [CrossRef]
- Agarwal, S.; Tosi, N.; Kessel, P.; Padovan, S.; Breuer, D.; Montavon, G. Toward Constraining Mars’ Thermal Evolution Using Machine Learning. Earth Space Sci. 2021, 8, 1–26. [Google Scholar] [CrossRef]
- Agarwal, S.; Tosi, N.; Breuer, D.; Padovan, S.; Kessel, P.; Montavon, G. A Machine-Learning-Based Surrogate Model of Mars’ Thermal Evolution. Geophys. J. Int. 2020, 222, 1656–1670. [Google Scholar] [CrossRef]
- Ruhunusiri, S.; Halekas, J.S.; Espley, J.R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G.A.; Dong, Y.; Ma, Y.; et al. An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophys. Res. Lett. 2018, 45, 10855–10865. [Google Scholar] [CrossRef]
- Celebi, M.E.; Aydin, K. Unsupervised Learning Algorithms; Springer: Berlin, Germany, 2016; ISBN 3319242113. [Google Scholar]
- Kataria, A.; Singh, M.D. A Review of Data Classification Using K-Nearest Neighbour Algorithm. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 354–360. [Google Scholar]
- Triguero, I.; García-Gil, D.; Maillo, J.; Luengo, J.; García, S.; Herrera, F. Transforming Big Data into Smart Data: An Insight on the Use of the K-nearest Neighbors Algorithm to Obtain Quality Data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1289. [Google Scholar] [CrossRef]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In Proceedings of the OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, Sicily, Italy, 3–7 November 2003; Springer: New York, NY, USA, 2003; pp. 986–996. [Google Scholar]
- Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient KNN Classification Algorithm for Big Data. Neurocomputing 2016, 195, 143–148. [Google Scholar] [CrossRef]
- Kohonen, T. The Self-Organizing Map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the Self-Organizing Map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Hsu, C.C. Generalizing Self-Organizing Map for Categorical Data. IEEE Trans. Neural Netw. 2006, 17, 294–304. [Google Scholar] [CrossRef]
- Kohonen, T. Exploration of Very Large Databases by Self-Organizing Maps. In Proceedings of the IEEE International Conference on Neural Networks, Houston, TX, USA, 12 June 1997. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite Mixture Models. Annu. Rev. Stat. Appl. 2019, 6, 355–378. [Google Scholar] [CrossRef]
- Melnykov, V.; Maitra, R. Finite Mixture Models and Model-Based Clustering. Stat. Surv. 2010, 4, 80–116. [Google Scholar] [CrossRef]
- Young, D.S. An Overview of Mixture Models. arXiv 2008, arXiv:0808.0383. [Google Scholar]
- Plataniotis, K.N.; Hatzinakos, D. Gaussian Mixtures and Their Applications to Signal Processing. In Advanced Signal Processing Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 89–124. [Google Scholar]
- Roweis, S.; Ghahramani, Z. A Unifying Review of Linear Gaussian Models. Neural Comput. 1999, 11, 305–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, J.R.S.; Cardoso, M.G.M.S. Mixture-Model Cluster Analysis Using Information Theoretical Criteria. Intell. Data Anal. 2007, 11, 155–173. [Google Scholar] [CrossRef]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- McLachlan, G.J.; Rathnayake, S. On the Number of Components in a Gaussian Mixture Model. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2014, 4, 341–355. [Google Scholar] [CrossRef]
- Leung, K.; Leckie, C. Unsupervised Anomaly Detection in Network Intrusion Detection Using Clusters. In Proceedings of the Twenty-eighth Australasian conference on Computer Science, Newcastle, Australia, 1 January 2005; Volume 38, pp. 333–342. [Google Scholar]
- Goix, N. How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? arXiv 2016, arXiv:1607.01152. [Google Scholar]
- Kiran, B.R.; Thomas, D.M.; Parakkal, R. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos. J. Imaging 2018, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLoS ONE 2016, 11, e0152173. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdisc. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Tipping, M.E.; Bishop, C.M. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B 1999, 61, 611–622. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Girin, L.; Leglaive, S.; Bie, X.; Diard, J.; Hueber, T.; Alameda-Pineda, X. Dynamical Variational Autoencoders: A Comprehensive Review. arXiv 2020, arXiv:2008.12595. [Google Scholar]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar]
- Tschannen, M.; Bachem, O.; Lucic, M. Recent Advances in Autoencoder-Based Representation Learning. arXiv 2018, arXiv:1812.05069. [Google Scholar]
- Zhang, G.; Liu, Y.; Jin, X. A Survey of Autoencoder-Based Recommender Systems. Front. Comput. Sci. 2020, 14, 430–450. [Google Scholar] [CrossRef]
- Verleysen, M.; François, D. The Curse of Dimensionality in Data Mining and Time Series Prediction. In Proceedings of the International Work-Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; Springer: Berlin, Germany, 2005; pp. 758–770. [Google Scholar]
- Köppen, M. The Curse of Dimensionality. In Proceedings of the 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), Virtual, 4–18 September 2000; Volume 1, pp. 4–8. [Google Scholar]
- Poggio, T.; Mhaskar, H.; Rosasco, L.; Miranda, B.; Liao, Q. Why and When Can Deep-but Not Shallow-Networks Avoid the Curse of Dimensionality: A Review. Int. J. Automat. Comput. 2017, 14, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.Y.; Sloan, I.H. Lifting the Curse of Dimensionality. Not. AMS 2005, 52, 1320–1328. [Google Scholar]
- Friedman, J.H. On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality. Data Min. Knowl. Discov. 1997, 1, 55–77. [Google Scholar] [CrossRef]
- Dohm, M.; Wang, R.; Dalton, B.; Scharenbroich, L.; Hare, M.; Castaño, R.; Baker, R. Are the Rock Compositions of the Ancient Mountain Range of Mars, Thaumasia Highlands, Distinct from Tharsis Lavas? Machine Learning Evaluation of TES Data and Implications on Early Evolution of Mars. In Proceedings of the NASA Science Technology Conference, Adelphi, MD, USA, 19–20 June 2007; pp. 1–6. [Google Scholar]
- Dundar, M.; Ehlmann, B.L.; Leask, E. Rare Phase Detections in CRISM Data at Pixel-Scale by Machine Learning Generate New Discoveries about Geology at Mars Rover Landing Sites: Jezero and NE Syrtis. In Proceedings of the 50th Lunar and Planetary Science Conference 2019, The Woodlands, TX, USA, 18–22 March 2019. [Google Scholar]
- Dundar, M.; Ehlmann, B.L.; Leask, E.K. Machine-Learning-Driven New Geologic Discoveries at Mars Rover Landing Sites: Jezero and NE Syrtis. arXiv 2019, arXiv:1909.02387. [Google Scholar]
- Ramachandra, V. Deep Clustering for Mars Rover Image Datasets. 2019. Available online: https://arxiv.org/abs/1911.06623 (accessed on 8 June 2022).
- Bell, J.F.; Malin, M.C.; Caplinger, M.A.; Ravine, M.A.; Godber, A.S.; Jungers, M.C.; Rice, M.S.; Anderson, R.B. Mastcam Multispectral Imaging on the Mars Science Laboratory Rover: Wavelength Coverage and Imaging Strategies at the Gale Crater Field Site. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012; p. 2541. [Google Scholar]
- Bell, J.F., III; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M. The Mars Science Laboratory Curiosity Rover Mastcam Instruments: Preflight and In-flight Calibration, Validation, and Data Archiving. Earth Space Sci. 2017, 4, 396–452. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Caplinger, M.A.; Edgett, K.S.; Ghaemi, F.T.; Ravine, M.A.; Schaffner, J.A.; Baker, J.M.; Bardis, J.D.; DiBiase, D.R.; Maki, J.N. The Mars Science Laboratory (MSL) Mast-Mounted Cameras (Mastcams) Flight Instruments. In Proceedings of the 41st Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010; p. 1123. [Google Scholar]
- Putri, A.R.D.; Sidiropoulos, P.; Muller, J.P. Anomaly Detection Performance Comparison on Anomaly-Detection Based Change Detection on Martian Image Pairs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 1437–1441. [Google Scholar] [CrossRef] [Green Version]
- Castano, R.; Wagstaff, K.L.; Chien, S.; Stough, T.M.; Tang, B. On-Board Analysis of Uncalibrated Data for a Spacecraft at Mars. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 922–930. [Google Scholar] [CrossRef] [Green Version]
- Sivashanmugam, M. Detecting Anomalies in Marsian Satellite Images through Object Detection. Available online: https://omdena.com/blog/mars-object-detection/?doing_wp_cron=1646425605.3414530754089355468750 (accessed on 8 June 2022).
- Rajaneesh, A.; Vishnu, C.L.; Oommen, T.; Rajesh, V.J.; Sajinkumar, K.S. Machine Learning as a Tool to Classify Extra-Terrestrial Landslides: A Dossier from Valles Marineris, Mars. Icarus 2022, 376, 114886. [Google Scholar] [CrossRef]
- Scuderi, L.A.; Nagle-McNaughton, T. Automated Neural Network Identification of Cirques. Phys. Geogr. 2022, 43, 24–51. [Google Scholar] [CrossRef]
- Alimo, R.; Sam, D.; Lakhmiri, D.; Kahovec, B.; Divsalar, D. Automated Data Accountability for Missions in Mars Rover Data. In Proceedings of the 2021 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A Survey on Semi-Supervised Learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Belkin, M. Semi-Supervised Learning. In Academic Press Library in Signal Processing; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 1239–1269. ISBN 2351-9819. [Google Scholar]
- Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130. [Google Scholar]
- Li, Y.-F.; Zhou, Z.-H. Towards Making Unlabeled Data Never Hurt. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 175–188. [Google Scholar]
- Singh, A.; Nowak, R.; Zhu, J. Unlabeled Data: Now It Helps, Now It Doesn’t. In Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–11 December 2008. [Google Scholar]
- Wang, W.; Lin, L.; Fan, Z.; Liu, J. Semi-Supervised Learning for Mars Imagery Classification. In Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021; pp. 499–503. [Google Scholar] [CrossRef]
- Goh, E.; Chen, J.; Wilson, B. Mars Terrain Segmentation with Less Labels. arXiv 2022, arXiv:2202.00791. [Google Scholar]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised Contrastive Learning. Adv. Neural Inf. Process. Syst. 2020, 33, 18661–18673. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Lu, S.; Wagstaff, K.L. MSL Curiosity Rover Images with Science and Engineering Classes. 2020. Available online: https://zenodo.org/record/4033453#.YqlotexBxPY (accessed on 8 June 2022). [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Dale, R. GPT-3: What’s It Good for? Nat. Lang. Eng. 2021, 27, 113–118. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Floridi, L.; Chiriatti, M. GPT-3: Its Nature, Scope, Limits, and Consequences. Minds Mach. 2020, 30, 681–694. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Trans. Knowl. Data Eng. 2021. Preprints . [Google Scholar] [CrossRef]
- Gonog, L.; Zhou, Y. A Review: Generative Adversarial Networks. In Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 9–21 June 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 505–510. [Google Scholar]
- Alqahtani, H.; Kavakli-Thorne, M.; Kumar, G. Applications of Generative Adversarial Networks (Gans): An Updated Review. Arch. Comput. Methods Eng. 2021, 28, 525–552. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of Stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8110–8119. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4217–4228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, S.A.; Tirer, T.; Giryes, R. Image-Adaptive GAN Based Reconstruction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3121–3129. [Google Scholar]
- Shoshan, A.; Bhonker, N.; Kviatkovsky, I.; Medioni, G. Gan-Control: Explicitly Controllable Gans. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 11–17 October 2021; pp. 14083–14093. [Google Scholar]
- Karras, T.; Aila, T. Training Generative Adversarial Networks with Limited Data Paper. In Proceedings of the NeurIPS 2020, Virtual, 6–12 December 2020. [Google Scholar]
- Zhu, M.; Pan, P.; Chen, W.; Yang, Y. Dm-Gan: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5802–5810. [Google Scholar]
- Tao, M.; Tang, H.; Wu, S.; Sebe, N.; Jing, X.-Y.; Wu, F.; Bao, B. Df-Gan: Deep Fusion Generative Adversarial Networks for Text-to-Image Synthesis. arXiv 2020, arXiv:2008.05865. [Google Scholar]
- Wang, H.; Lin, G.; Hoi, S.C.H.; Miao, C. Cycle-Consistent Inverse Gan for Text-to-Image Synthesis. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 21–25 October 2021; pp. 630–638. [Google Scholar]
- Cai, Y.; Wang, X.; Yu, Z.; Li, F.; Xu, P.; Li, Y.; Li, L. Dualattn-GAN: Text to Image Synthesis with Dual Attentional Generative Adversarial Network. IEEE Access 2019, 7, 183706–183716. [Google Scholar] [CrossRef]
- Ruan, S.; Zhang, Y.; Zhang, K.; Fan, Y.; Tang, F.; Liu, Q.; Chen, E. Dae-Gan: Dynamic Aspect-Aware Gan for Text-to-Image Synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 11–17 October 2021; pp. 13960–13969. [Google Scholar]
- Chu, M.; Xie, Y.; Leal-Taixé, L.; Thuerey, N. Temporally Coherent Gans for Video Super-Resolution (Tecogan). arXiv 2018, arXiv:1811.09393. [Google Scholar]
- Demiray, B.Z.; Sit, M.; Demir, I. D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks. SN Comput. Sci. 2021, 2, 48. [Google Scholar] [CrossRef]
- Park, S.-J.; Son, H.; Cho, S.; Hong, K.-S.; Lee, S. Srfeat: Single Image Super-Resolution with Feature Discrimination. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 439–455. [Google Scholar]
- Mahapatra, D.; Bozorgtabar, B.; Garnavi, R. Image Super-Resolution Using Progressive Generative Adversarial Networks for Medical Image Analysis. Comput. Med. Imaging Graph. 2019, 71, 30–39. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4681–4690. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. Super-Fan: Integrated Facial Landmark Localization and Super-Resolution of Real-World Low Resolution Faces in Arbitrary Poses with Gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 109–117. [Google Scholar]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.-H.; Liao, Q. Deep Learning for Single Image Super-Resolution: A Brief Review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Sharma, A.; Kumar, A. Super-Resolution Using GANs for Medical Imaging. Procedia Comput. Sci. 2020, 173, 28–35. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Chen, C.; Liang, P.; Guo, X.; Jiang, J. Pan-GAN: An Unsupervised Pan-Sharpening Method for Remote Sensing Image Fusion. Inf. Fusion 2020, 62, 110–120. [Google Scholar] [CrossRef]
- Diao, W.; Zhang, F.; Sun, J.; Xing, Y.; Zhang, K.; Bruzzone, L. ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Tao, Y.; Conway, S.J.; Mulle, J.P.; Putri, A.R.D.; Thomas, N.; Cremonese, G. Single Image Super-Resolution Restoration of TGO Cassis Colour Images: Demonstration with Perseverance Rover Landing Site and Mars Science Targets. Remote Sens. 2021, 13, 1777. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Zhang, Y.; Tian, R.; Ding, M. Mars Image Super-Resolution Based on Generative Adversarial Network. IEEE Access 2021, 9, 108889–108898. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.P.; Xiong, S.; Conway, S.J. MADnet 2.0: Pixel-Scale Topography Retrieval from Single-View Orbital Imagery of Mars Using Deep Learning. Remote Sens. 2021, 13, 4220. [Google Scholar] [CrossRef]
- Tao, Y.; Muller, J.P.; Conway, S.J.; Xiong, S. Large Area High-Resolution 3d Mapping of Oxia Planum: The Landing Site for the Exomars Rosalind Franklin Rover. Remote Sens. 2021, 13, 3270. [Google Scholar] [CrossRef]
- Tao, Y.; Douté, S.; Muller, J.P.; Conway, S.J.; Thomas, N.; Cremonese, G. Ultra-High-Resolution 1 m/Pixel CaSSIS DTM Using Super-Resolution Restoration and Shape-from-Shading: Demonstration over Oxia Planum on Mars. Remote Sens. 2021, 13, 2185. [Google Scholar] [CrossRef]
- Brooks, C.A.; Iagnemma, K.D. Self-Supervised Classification for Planetary Rover Terrain Sensing. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–9. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K.; Reid, H.; Williams, R. The Dark Art of Interpretation in Geomorphology. Geomorphology 2021, 390, 107870. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Petch, J.R. Multiple Working Hypotheses: Equifinality and the Study of Landforms; University of Salford, Department of Geography: Salford, UK, 1983; pp. 458–466. [Google Scholar]
- Schumm, S.A.; Schumm, S.A. To Interpret the Earth: Ten Ways to Be Wrong; Cambridge University Press: Cambridge, UK, 1998; ISBN 0521646022. [Google Scholar]
- Balaji, V. Climbing down Charney’s Ladder: Machine Learning and the Post-Dennard Era of Computational Climate Science. Philos. Trans. R. Soc. A 2021, 379, 20200085. [Google Scholar] [CrossRef] [PubMed]
- Church, M. The Trajectory of Geomorphology. Prog. Phys. Geogr. Earth Environ. 2010, 34, 265–286. [Google Scholar] [CrossRef]
- Banham, S.G.; Gupta, S.; Rubin, D.M.; Edgett, K.S.; Barnes, R.; van Beek, J.; Watkins, J.A.; Edgar, L.A.; Fedo, C.M.; Williams, R.M. A Rock Record of Complex Aeolian Bedforms in a Hesperian Desert Landscape: The Stimson Formation as Exposed in the Murray Buttes, Gale Crater, Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006554. [Google Scholar] [CrossRef]
- Horvath, D.G.; Andrews-Hanna, J.C. The Hydrology and Climate of Mars during the Sedimentary Infilling of Gale Crater. Earth Planet. Sci. Lett. 2021, 568, 117032. [Google Scholar] [CrossRef]
- Rapin, W.; Dromart, G.; Rubin, D.; Le Deit, L.; Mangold, N.; Edgar, L.A.; Gasnault, O.; Herkenhoff, K.; le Mouélic, S.; Anderson, R.B. Alternating Wet and Dry Depositional Environments Recorded in the Stratigraphy of Mount Sharp at Gale Crater, Mars. Geology 2021, 49, 842–846. [Google Scholar] [CrossRef]
- Liu, J.; Michalski, J.R.; Zhou, M.-F. Intense Subaerial Weathering of Eolian Sediments in Gale Crater, Mars. Sci. Adv. 2021, 7, eabh2687. [Google Scholar] [CrossRef]
- Cummings, T.G.; Worley, C.G. Organization Development and Change; Cengage Learning: Boston, MA, USA, 2014; ISBN 1305143035. [Google Scholar]
- Williams, J.M.; Scuderi, L.A.; Newsom, H.E. Numerical Analysis of Putative Rock Glaciers on Mount Sharp, Gale Crater, Mars. Remote Sens. 2022, 14, 1887. [Google Scholar] [CrossRef]
- Church, M. Space, Time and the Mountain–How Do We Order What We See; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Day, M.; Zimbelman, J.R. Ripples, Megaripples, and TARs, Oh, My! Recommendations Regarding Mars Aeolian Bedform Terminology. Icarus 2021, 369, 114647. [Google Scholar] [CrossRef]
- Nagle-McNaughton, T.P.; Scuderi, L.A. Multistage Evolution in Transverse Aeolian Ridges. Remote Sens. 2021, 13, 1329. [Google Scholar] [CrossRef]
- Geissler, P.E.; Wilgus, J.T. The Morphology of Transverse Aeolian Ridges on Mars. Aeolian Res. 2017, 26, 63–71. [Google Scholar] [CrossRef]
- Nagle-McNaughton, T.P.; Scuderi, L.A. A Geomorphological Case for Multistage Evolution of Transverse Aeolian Ridges. Planet. Space Sci. 2021, 200, 105192. [Google Scholar] [CrossRef]
- Geissler, P.E. The Birth and Death of Transverse Aeolian Ridges on Mars. J. Geophys. Res. Planets 2014, 2583–2599. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Williams, S.H. An Evaluation of Formation Processes for Transverse Aeolian Ridges on Mars. In Proceedings of the Seventh International Conference on Mars, Pasadena, CA, USA, 9–13 July 2007; LPI Contribution No. 1353. p. 3047. [Google Scholar]
- Hugenholtz, C.H.; Barchyn, T.E. A Terrestrial Analog for Transverse Aeolian Ridges (TARs): Environment, Morphometry, and Recent Dynamics. Icarus 2017, 289, 239–253. [Google Scholar] [CrossRef]
- Wilson, S.A.; Zimbelman, J.R. Latitude-Dependent Nature and Physical Characteristics of Transverse Aeolian Ridges on Mars. J. Geophys. Res. E Planets 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Foroutan, M.; Zimbelman, J.R. Mega-Ripples in Iran: A New Analog for Transverse Aeolian Ridges on Mars. Icarus 2016, 274, 99–105. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Boulding, A. Morphology of Transverse Aeolian Ridges (TARs) on Mars from a Large Sample: Further Evidence of a Megaripple Origin? Icarus 2017, 286, 193–201. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Scheidt, S.P. Precision Topography of a Reversing Sand Dune at Bruneau Dunes, Idaho, as an Analog for Transverse Aeolian Ridges on Mars. Icarus 2014, 230, 29–37. [Google Scholar] [CrossRef]
- Kereszturi, A.; Aszalos, J.M.; Zs, H.; Igneczi, Á.; Zs, K.; Cs, K.; Sz, L.O.; Szalai, Z.; Zs, N.; Pal, B.; et al. Wind-Snow Interactions at the Ojos Del Salado Region as a Potential Mars Analogue Site in the Altiplano—Atacama Desert Region. Icarus 2022, 378, 114941. [Google Scholar] [CrossRef]
- Held, I.M. The Gap between Simulation and Understanding in Climate Modeling. Bull. Am. Meteorol. Soc. 2005, 86, 1609–1614. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z. AutoCirque: An Automated Method to Delineate Glacial Cirque Outlines from Digital Elevation Models. Geomorphology 2022, 398, 108059. [Google Scholar] [CrossRef]
- Fernández, M.M.; Yue, Y.; Weber, R. Telemetry Anomaly Detection System Using Machine Learning to Streamline Mission Operations. In Proceedings of the 2017 6th International Conference on Space Mission Challenges for Information Technology (SMC-IT), Virtual, 26–30 July 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 70–75. [Google Scholar]
- Lakhmiri, D.; Alimo, R.; le Digabel, S. Anomaly Detection for Data Accountability of Mars Telemetry Data. Expert Syst. Appl. 2022, 189, 116060. [Google Scholar] [CrossRef]
- Kostovska, A.; Petković, M.; Stepišnik, T.; Lucas, L.; Finn, T.; Martínez-Heras, J.; Panov, P.; Džeroski, S.; Donati, A.; Simidjievski, N. GalaxAI: Machine Learning Toolbox for Interpretable Analysis of Spacecraft Telemetry Data. arXiv 2021, arXiv:2108.01407. [Google Scholar]
- Gaudet, B.; Furfaro, R. Adaptive Pinpoint and Fuel Efficient Mars Landing Using Reinforcement Learning. IEEE/CAA J. Autom. Sin. 2014, 1, 397–411. [Google Scholar]
- Petković, M.; Boumghar, R.; Breskvar, M.; Džeroski, S.; Kocev, D.; Levatić, J.; Lucas, L.; Osojnik, A.; Ženko, B.; Simidjievski, N. Machine Learning for Predicting Thermal Power Consumption of the Mars Express Spacecraft. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, R.; Scorsoglio, A.; Linares, R.; Massari, M. Adaptive Generalized ZEM-ZEV Feedback Guidance for Planetary Landing via a Deep Reinforcement Learning Approach. Acta Astronaut. 2020, 171, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Izzo, D.; Sprague, C.I.; Tailor, D.V. Machine Learning and Evolutionary Techniques in Interplanetary Trajectory Design. In Modeling and Optimization in Space Engineering; Springer: New York, NY, USA, 2019; pp. 191–210. [Google Scholar]
- Ampatzis, C.; Izzo, D. Machine Learning Techniques for Approximation of Objective Functions in Trajectory Optimisation. In Proceedings of the IJCAI-09 Workshop on Artificial Intelligence in Space, Pasadena, CA, USA, 11–13 July 2009; pp. 1–6. [Google Scholar]
- Furfaro, R.; Simo, J.; Gaudet, B.; Wibben, D. Neural-Based Trajectory Shaping Approach for Terminal Planetary Pinpoint Guidance. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference 2013, Hilton Head, South Carolina, 11–15 August 2013. [Google Scholar]
- Boumghar, R.; Lucas, L.; Donati, A. Machine Learning in Operations for the Mars Express Orbiter. In Proceedings of the 2018 SpaceOps Conference 2018, Marseille, France, 28 May–1 June 2018; p. 2551. [Google Scholar]
- Golombek, M.P.; Huertas, A.; Marlow, J.; McGrane, B.; Klein, C.; Martinez, M.; Arvidson, R.E.; Heet, T.; Barry, L.; Seelos, K.; et al. Size-Frequency Distributions of Rocks on the Northern Plains of Mars with Special Reference to Phoenix Landing Surfaces. J. Geophys. Res. E Planets 2009, 114, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Golombek, M.P.; Haldemann, A.F.C.; Forsberg-Taylor, N.K.; DiMaggio, E.N.; Schroeder, R.D.; Jakosky, B.M.; Mello, M.T.; Matijevic, J.R. Rock Size-Frequency Distributions on Mars and Implications for Mars Exploration Rover Landing Safety and Operations. J. Geophys. Res. E Planets 2003, 108. [Google Scholar] [CrossRef]
- Arvidson, R.; Adams, D.; Bonfiglio, G.; Christensen, P.; Cull, S.; Golombek, M.; Guinn, J.; Guinness, E.; Heet, T.; Kirk, R. Mars Exploration Program 2007 Phoenix Landing Site Selection and Characteristics. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.A.; Golombek, M.P.; Wilson, S.A.; Farley, K.A.; Williford, K.H.; Chen, A. The Science Process for Selecting the Landing Site for the 2020 Mars Rover. Planet. Space Sci. 2018, 164, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.A.; Wilson, S.A.; Ruff, S.W.; Golombek, M.P.; Koestler, D.L. Distribution of Rocks on the Gusev Plains and on Husband Hill, Mars. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Craddock, R.A.; Golombek, M.P.; Howard, A.D. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites. In Proceedings of the 31st Annual Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Golombek, M.; Huertas, A.; Kipp, D.; Calef, F. Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites. Mars 2012, 7, 1–22. [Google Scholar] [CrossRef]
- Huertas, A.; Cheng, Y.; Madison, R. Passive Imaging Based Multi-Cue Hazard Detection for Spacecraft Safe Landing. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Montana, USA, 4–11 March 2006; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2006; p. 14. [Google Scholar]
- Ivanov, M.A.; Slyuta, E.N.; Grishakina, E.A.; Dmitrovskii, A.A. Geomorphological Analysis of ExoMars Candidate Landing Site Oxia Planum. Sol. Syst. Res. 2020, 54, 1–14. [Google Scholar] [CrossRef]
- Mastropietro, M.; Pajola, M.; Cremonese, G.; Munaretto, G.; Lucchetti, A. Boulder Analysis on the Oxia Planum ExoMars 2022 Rover Landing Site: Scientific and Engineering Perspectives. Sol. Syst. Res. 2020, 54, 504–519. [Google Scholar] [CrossRef]
- Masursky, H.; Chapman, M.G.; Davis, P.A.; Dial, A.L., Jr.; Strobell, M.E. Mars Lander/Rover/Returned Sample Sites. In Proceedings of the Lunar and Planetary Science Conference 1987, Houston, TX USA, 16–20 March 1987; Volume 18. [Google Scholar]
- Ward, J.G.; Arvidson, R.E.; Golombek, M. The Size-Frequency and Areal Distribution of Rock Clasts at the Spirit Landing Site, Gusev Crater, Mars. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Putzig, N.E.; Phillips, R.J.; Campbell, B.A.; Mellon, M.T.; Holt, J.W.; Brothers, T.C. SHARAD Soundings and Surface Roughness at Past, Present, and Proposed Landing Sites on Mars: Reflections at Phoenix May Be Attributable to Deep Ground Ice. J. Geophys. Res. Planets 2014, 119, 1936–1949. [Google Scholar] [CrossRef]
- Matthies, L.; Huertas, A.; Cheng, Y.; Johnson, A. Landing Hazard Detection with Stereo Vision and Shadow Analysis. In Proceedings of the 2007 AIAA InfoTech at Aerospace Conference, Rohnert Park, CA, USA, 7–10 May 2007; American Institute of Aeronautics and Astronautics: Reston, VA, USA; Volume 2, pp. 1284–1293, ISBN 1563478935. [Google Scholar]
- Ishraque, F.; Levy, J.S. Detection of Boulder Banding on Martian Lobate Debris Aprons Using Regional Convolutional Neural Network Analysis of HiRISE Image Data. In Proceedings of the 53rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March, 2022. LPI Contribution No. 2678, 2022, id.2875. [Google Scholar]
- Moeller, R.C.; Jandura, L.; Rosette, K.; Robinson, M.; Samuels, J.; Silverman, M.; Brown, K.; Duffy, E.; Yazzie, A.; Jens, E. The Sampling and Caching Subsystem (SCS) for the Scientific Exploration of Jezero Crater by the Mars 2020 Perseverance Rover. Space Sci. Rev. 2021, 217, 5. [Google Scholar] [CrossRef]
- Mangold, N.; Gupta, S.; Gasnault, O.; Dromart, G.; Tarnas, J.D.; Sholes, S.F.; Horgan, B.; Quantin-Nataf, C.; Brown, A.J.; le Mouélic, S. Perseverance Rover Reveals an Ancient Delta-Lake System and Flood Deposits at Jezero Crater, Mars. Science 2021, 374, 711–717. [Google Scholar] [CrossRef]
- Nagle-McNaughton, T.P.; Williams, J.M.; Gallegos, Z.E.; Wilkie, H.A.; Martinez, D.C.; Scuderi, L.A. Geographic Information System Based Detection and Quantification of Boulders Using HiRISE Imagery: A Case Study in Jezero Crater. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Golombek, M.; Kass, D.; Williams, N.; Warner, N.; Daubar, I.; Piqueux, S.; Charalambous, C.; Pike, W.T. Assessment of InSight Landing Site Predictions. J. Geophys. Res. Planets 2020, 125, e2020JE006502. [Google Scholar] [CrossRef]
- Quantin-Nataf, C.; Carter, J.; Mandon, L.; Thollot, P.; Balme, M.; Volat, M.; Pan, L.; Loizeau, D.; Millot, C.; Breton, S. Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation. Astrobiology 2021, 21, 345–366. [Google Scholar] [CrossRef] [PubMed]
- Kereszturi, A. Landing Site Rationality Scaling for Subsurface Sampling on Mars—Case Study for ExoMars Rover-like Missions. Planet. Space Sci. 2012, 72, 78–90. [Google Scholar] [CrossRef]
- Fairén, A.G.; Dohm, J.M.; Baker, V.R.; de Pablo, M.A.; Ruiz, J.; Ferris, J.C.; Anderson, R.C. Episodic Flood Inundations of the Northern Plains of Mars. Icarus 2003, 165, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Di Achille, G.; Hynek, B.M. Ancient Ocean on Mars Supported by Global Distribution of Deltas and Valleys. Nat. Geosci. 2010, 3, 459–463. [Google Scholar] [CrossRef]
- de Toffoli, B.; Plesa, A.; Hauber, E.; Breuer, D. Delta Deposits on Mars: A Global Perspective. Geophys. Res. Lett. 2021, 48, e2021GL094271. [Google Scholar] [CrossRef]
- Di Achille, G.; Ori, G.G.; Reiss, D. Evidence for Late Hesperian Lacustrine Activity in Shalbatana Vallis, Mars. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Erkeling, G.; Reiss, D.; Hiesinger, H.; Poulet, F.; Carter, J.; Ivanov, M.A.; Hauber, E.; Jaumann, R. Valleys, Paleolakes and Possible Shorelines at the Libya Montes/Isidis Boundary: Implications for the Hydrologic Evolution of Mars. Icarus 2012, 219, 393–413. [Google Scholar] [CrossRef] [Green Version]
- Balme, M.; Berman, D.C.; Bourke, M.C.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology 2008, 101, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.C.; Balme, M.R.; Michalski, J.R.; Clark, S.C.; Joseph, E.C.S. High-Resolution Investigations of Transverse Aeolian Ridges on Mars. Icarus 2018, 312, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.C.; Balme, M.R.; Rafkin, S.C.R.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, Orientations, and Ages. Icarus 2011, 213, 116–130. [Google Scholar] [CrossRef]
- Sullivan, R.; Bridges, N.; Herkenhoff, K.; Hamilton, V.; Rubin, D. Transverse Aeolian Ridges (TARs) as Megaripples: Rover Encounters at Meridiani Planum, Gusev, and Gale. In Proceedings of the Eighth International Conference on Mars 2014, Pasadena, CA, USA, 14–18 July 2014; Volume 1791, p. 1424. [Google Scholar]
- Scuderi, L.; Nagle-McNaughton, T.; Williams, J. Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges. Remote Sens. 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Nagle-McNaughton, T.P.; Scuderi, L.A. Networked Configurations as an Emergent Property of Transverse Aeolian Ridges on Mars. Commun. Earth Environ. 2021, 2, 217. [Google Scholar] [CrossRef]
- Silvestro, S.; Chojnacki, M.; Vaz, D.A.; Cardinale, M.; Yizhaq, H.; Esposito, F. Megaripple Migration on Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006446. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Kok, J.F.; Katra, I.; Yizhaq, H. A Broad Continuum of Aeolian Impact Ripple Morphologies on Mars Is Enabled by Low Wind Dynamic Pressures. J. Geophys. Res. Planets 2020, 125, e2020JE006485. [Google Scholar] [CrossRef]
- Andreotti, B.; Claudin, P.; Iversen, J.J.; Merrison, J.P.; Rasmussen, K.R. A Lower-than-Expected Saltation Threshold at Martian Pressure and Below. Proc. Natl. Acad. Sci. USA 2021, 118, e2012386118. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Favaro, E.A. Formation of Periodic Bedrock Ridges on Earth. Aeolian Res. 2015, 18, 135–144. [Google Scholar] [CrossRef]
- Silvestro, S.; Pacifici, A.; Salese, F.; Vaz, D.A.; Neesemann, A.; Tirsch, D.; Popa, C.I.; Pajola, M.; Franzese, G.; Mongelluzzo, G. Periodic Bedrock Ridges at the ExoMars 2022 Landing Site: Evidence for a Changing Wind Regime. Geophys. Res. Lett. 2021, 48, e2020GL091651. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Bandfield, J.L.; Becker, S.K. Periodic Bedrock Ridges on Mars. J. Geophys. Res. E Planets 2012, 117, 1–12. [Google Scholar] [CrossRef]
- Stack, K.; Arvidson, R.E.; Bennett, K.A.; Bryk, A.B.; Edgett, K.S.; Fedo, C.; Fox, V.K.; Fraeman, A.; House, C.H.; Rabinovitch, J. In-Situ Investigation of Periodic Bedrock Ridges in the Glen Torridon Area with the MSL Curiosity Rover, Gale Crater, Mars. In Proceedings of the AGU Fall Meeting Abstracts 2019, San Francisco, CA, USA, 9–13 December 2019; Volume 2019, p. P33B-02. [Google Scholar]
- Horváth, A.; Kereszturi, Á.; Bérczi, S.; Sik, A.; Pócs, T.; Gánti, T.; Szathmáry, E. Analysis of Dark Albedo Features on a Southern Polar Dune Field of Mars. Astrobiology 2009, 9, 90–103. [Google Scholar] [CrossRef]
- Kereszturi, A.; Vincendon, M.; Schmidt, F. Water Ice in the Dark Dune Spots of Richardson Crater on Mars. Planet. Space Sci. 2011, 59, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Gánti, T.; Horváth, A.; Bérczi, S.; Gesztesi, A.; Szathmáry, E. Dark Dune Spots: Possible Biomarkers on Mars? Orig. Life Evol. Biosph. 2003, 33, 515–557. [Google Scholar] [CrossRef] [PubMed]
- Pain, C.F.; Oilier, C.D. Inversion of Relief—A Component of Landscape Evolution. Geomorphology 1995, 12, 151–165. [Google Scholar] [CrossRef]
- Pain, C.F.; Clarke, J.D.A.; Thomas, M. Inversion of Relief on Mars. Icarus 2007, 190, 478–491. [Google Scholar] [CrossRef]
- Newsom, H.E.; Lanza, N.L.; Ollila, A.M.; Wiseman, S.M.; Roush, T.L.; Marzo, G.A.; Tornabene, L.L.; Okubo, C.H.; Osterloo, M.M.; Hamilton, V.E. Inverted Channel Deposits on the Floor of Miyamoto Crater, Mars. Icarus 2010, 205, 64–72. [Google Scholar] [CrossRef]
- Golombek, M.P.; Bridges, N.T. Erosion Rates on Mars and Implications for Climate Change: Constraints from the Pathfinder Landing Site. J. Geophys. Res. Planets 2000, 105, 1841–1853. [Google Scholar] [CrossRef]
- Golombek, M.P.; Grant, J.A.; Crumpler, L.S.; Greeley, R.; Arvidson, R.E.; Bell, J.F., III; Weitz, C.M.; Sullivan, R.; Christensen, P.R.; Soderblom, L.A. Erosion Rates at the Mars Exploration Rover Landing Sites and Long-term Climate Change on Mars. J. Geophys. Res. Planets 2006, 111, E12S10. [Google Scholar] [CrossRef]
- Williams, R.M.E.; Irwin, R.P., III; Zimbelman, J.R. Evaluation of Paleohydrologic Models for Terrestrial Inverted Channels: Implications for Application to Martian Sinuous Ridges. Geomorphology 2009, 107, 300–315. [Google Scholar] [CrossRef]
- Hoke, M.R.T.; Hynek, B.M.; Tucker, G.E. Formation Timescales of Large Martian Valley Networks. Earth Planet. Sci. Lett. 2011, 312, 1–12. [Google Scholar] [CrossRef]
- Kite, E.S.; Mayer, D.P.; Wilson, S.A.; Davis, J.M.; Lucas, A.S.; Stucky de Quay, G. Persistence of Intense, Climate-Driven Runoff Late in Mars History. Sci. Adv. 2019, 5, eaav7710. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.H. The Fluvial History of Mars. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2193–2215. [Google Scholar] [CrossRef] [Green Version]
- Leask, E.K.; Ehlmann, B.L. Evidence for Deposition of Chloride on Mars from Small-volume Surface Water Events into the Late Hesperian-Early Amazonian. AGU Adv. 2022, 3, e2021AV000534. [Google Scholar] [CrossRef]
- Nizam, N.; Divola, C.; Day, M.; Yin, A.; Moon, S. Development of Chaos Terrain as Subaqueous Slide Blocks in Galilaei Crater, Mars. Remote Sens. 2022, 14, 1998. [Google Scholar] [CrossRef]
- King, I.; Kuentz, L.; Rapoza, M.C.; Kuang, L.; Wang, H.; Levy, J. Geomorphic Analysis of Mars Chaos Terrains Using Global CTX Mosaic, HIRISE, and MOLA-HRSC Blended DEM Global Imagery: Fracture Density and Block Thickness Suggest Basin Control of Chaotically-Cracked Units. In Proceedings of the 53rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2022; Volume 2678, p. 1210. [Google Scholar]
- Shozaki, H.; Sekine, Y.; Guttenberg, N. Classification of Martian Chaos Terrains Using Imagery Machine Learning: Implications for Ground Ice Distributions and Dynamics. In Proceedings of the AGU Fall Meeting Abstracts 2020, Virtual Conference, 1–17 December 2020; p. P042-0011. [Google Scholar]
- Skjetne, H.L.; Singer, K.N.; Hynek, B.M.; Knight, K.I.; Schenk, P.M.; Olkin, C.B.; White, O.L.; Bertrand, T.; Runyon, K.D.; McKinnon, W.B. Morphological Comparison of Blocks in Chaos Terrains on Pluto, Europa, and Mars. Icarus 2021, 356, 113866. [Google Scholar] [CrossRef]
- Trumbo, S.K.; Becker, T.M.; Brown, M.E.; Denman, W.T.P.; Molyneux, P.; Hendrix, A.; Retherford, K.D.; Roth, L.; Alday, J. A New UV Spectral Feature on Europa: Confirmation of NaCl in Leading-Hemisphere Chaos Terrain. arXiv 2022, arXiv:2201.01333. [Google Scholar] [CrossRef]
- Bulat, A.; Yang, J.; Tzimiropoulos, G. To Learn Image Super-Resolution, Use a Gan to Learn How to Do Image Degradation First. In Proceedings of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018; pp. 185–200. [Google Scholar]
- Tang, Y.; Yan, P.; Yuan, Y.; Li, X. Single-Image Super-Resolution via Local Learning. Int. J. Mach. Learn. Cybern. 2011, 2, 15–23. [Google Scholar] [CrossRef]
- Pickup, L.C. Machine Learning in Multi-Frame Image Super-Resolution. Ph.D. Thesis, University of Oxford, Oxford, UK, 2007. [Google Scholar]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A Deep Network Architecture for Pan-Sharpening. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5449–5457. [Google Scholar]
- Lee, J.; Lee, C. Fast and Efficient Panchromatic Sharpening. IEEE Trans. Geosci. Remote Sens. 2009, 48, 155–163. [Google Scholar]
- Rahmani, S.; Strait, M.; Merkurjev, D.; Moeller, M.; Wittman, T. An Adaptive IHS Pan-Sharpening Method. IEEE Geosci. Remote Sens. Lett. 2010, 7, 746–750. [Google Scholar] [CrossRef] [Green Version]
- Shah, V.P.; Younan, N.H.; King, R.L. An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1323–1335. [Google Scholar] [CrossRef]
- Morgan, G.A.; Putzig, N.E.; Perry, M.R.; Sizemore, H.G.; Bramson, A.M.; Petersen, E.I.; Bain, Z.M.; Baker, D.M.H.; Mastrogiuseppe, M.; Hoover, R.H. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nat. Astron. 2021, 5, 230–236. [Google Scholar] [CrossRef]
- Williams, J.; Day, M.; Chojnacki, M.; Rice, M. Scarp Orientation in Regions of Active Aeolian Erosion on Mars. Icarus 2020, 335, 113384. [Google Scholar] [CrossRef]
- Williams, J.M.; Scuderi, L.A.; Newsom, H.E. Remote Sensing Computer Automation to Detect Erosional Scarps on Mars. In Proceedings of the Lunar and Planetary Science Conference 2021, Virtual conference, 15–19 March 2021; p. 1846. [Google Scholar]
- Bishop, J.L.; Yeşilbaş, M.; Hinman, N.W.; Burton, Z.F.M.; Englert, P.A.J.; Toner, J.D.; McEwen, A.S.; Gulick, V.C.; Gibson, E.K.; Koeberl, C. Martian Subsurface Cryosalt Expansion and Collapse as Trigger for Landslides. Sci. Adv. 2021, 7, eabe4459. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.E.; McEwen, A.S.; Kargel, J.S.; Baker, V.R.; Strom, R.G.; Mellon, M.T.; Gulick, V.C.; Keszthelyi, L.; Herkenhoff, K.E.; Pelletier, J.D.; et al. High Resolution Imaging Science Experiment (HiRISE) Observations of Glacial and Periglacial Morphologies in the Circum-Argyre Planitia Highlands, Mars. J. Geophys. Res. Planets 2008, 113, E12015. [Google Scholar] [CrossRef] [Green Version]
- Séjourné, A.; Costard, F.; Swirad, Z.M.; Łosiak, A.; Bouley, S.; Smith, I.; Balme, M.R.; Orgel, C.; Ramsdale, J.D.; Hauber, E.; et al. Grid Mapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-related Landforms to Understand Multiple Ice-rich Deposits in Utopia Planitia. J. Geophys. Res. Planets 2019, 124, 483–503. [Google Scholar] [CrossRef] [Green Version]
- Orgel, C.; Hauber, E.; van Gasselt, S.; Reiss, D.; Johnsson, A.; Ramsdale, J.D.; Smith, I.; Swirad, Z.M.; Séjourné, A.; Wilson, J.T.; et al. Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water-and Ice-related Landforms in Acidalia Planitia. J. Geophys. Res. Planets 2019, 124, 454–482. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Lineated Valley Fill and Lobate Debris Apron Stratigraphy in Nilosyrtis Mensae, Mars: Evidence for Phases of Glacial Modification of the Dichotomy Boundary. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.A.; Head, J.W., III; Marchant, D.R. Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in the Deuteronilus Mensae Northern Dichotomy Boundary Region, Mars: Constraints on the Extent, Age and Episodicity of Amazonian Glacial Events. Icarus 2009, 202, 22–38. [Google Scholar] [CrossRef]
- Levy, J.; Head, J.W.; Marchant, D.R. Concentric Crater Fill in the Northern Mid-Latitudes of Mars: Formation Processes and Relationships to Similar Landforms of Glacial Origin. Icarus 2010, 209, 390–404. [Google Scholar] [CrossRef]
- Levy, J.S.; Head, J.W.; Marchant, D.R. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial “Brain Terrain” and Periglacial Mantle Processes. Icarus 2009, 202, 462–476. [Google Scholar] [CrossRef]
- Levy, J.S.; Fassett, C.I.; Holt, J.W.; Parsons, R.; Cipolli, W.; Goudge, T.A.; Tebolt, M.; Kuentz, L.; Johnson, J.; Ishraque, F.; et al. Surface Boulder Banding Indicates Martian Debris-Covered Glaciers Formed over Multiple Glaciations. Proc. Natl. Acad. Sci. USA 2021, 118, e2015971118. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Shangguan, D.; Yang, J. Novel Machine Learning Method Integrating Ensemble Learning and Deep Learning for Mapping Debris-Covered Glaciers. Remote Sens. 2021, 13, 2595. [Google Scholar] [CrossRef]
- Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated Detection of Rock Glaciers Using Deep Learning and Object-Based Image Analysis. Remote Sens. Environ. 2020, 250, 112033. [Google Scholar] [CrossRef]
- Xie, Z.; Haritashya, U.K.; Asari, V.K.; Young, B.W.; Bishop, M.P.; Kargel, J.S. GlacierNet: A Deep-Learning Approach for Debris-Covered Glacier Mapping. IEEE Access 2020, 8, 83495–83510. [Google Scholar] [CrossRef]
- Ozdemir, A.; Polat, K. Deep Learning Applications for Hyperspectral Imaging: A Systematic Review. J. Inst. Electron. Comput. 2020, 2, 39–56. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine Learning Based Hyperspectral Image Analysis: A Survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
- Audebert, N.; le Saux, B.; Lefèvre, S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, J.S.; Joshi, M.V. Deep Learning in Hyperspectral Unmixing: A Review. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Virtual, 26 September–2 October 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 2189–2192. [Google Scholar]
- Plebani, E.; Ehlmann, B.L.; Leask, E.K.; Fox, V.K.; Dundar, M.M. A Machine Learning Toolkit for CRISM Image Analysis. Icarus 2022, 114849. [Google Scholar] [CrossRef]
- Maheshwari, S.; Jain, R.C.; Jadon, R.S. A Review on Class Imbalance Problem: Analysis and Potential Solutions. Int. J. Comput. Sci. Issues 2017, 14, 43–51. [Google Scholar]
- Abd Elrahman, S.M.; Abraham, A. A Review of Class Imbalance Problem. J. Netw. Innov. Comput. 2013, 1, 332–340. [Google Scholar]
- Longadge, R.; Dongre, S. Class Imbalance Problem in Data Mining Review. arXiv 2013, arXiv:1305.1707. [Google Scholar]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C 2011, 42, 463–484. [Google Scholar] [CrossRef]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling Imbalanced Datasets: A Review. GESTS Int. Trans. Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Satyasree, K.; Murthy, J. An Exhaustive Literature Review on Class Imbalance Problem. Int. J. Emerg. Trends Technol. Comput. Sci. 2013, 2, 109–118. [Google Scholar]
- Ali, A.; Shamsuddin, S.M.; Ralescu, A.L. Classification with Class Imbalance Problem. Int. J. Adv. Soft Comput. Appl. 2013, 5. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Yang, W.; Bi, F.; Yu, F.R. A State-of-the-Art Review on Image Synthesis with Generative Adversarial Networks. IEEE Access 2020, 8, 63514–63537. [Google Scholar] [CrossRef]
- Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.; Wardlaw, J.; Rueckert, D. GAN Augmentation: Augmenting Training Data Using Generative Adversarial Networks. arXiv 2018, arXiv:1810.10863. [Google Scholar]
- Bowles, C.; Gunn, R.; Hammers, A.; Rueckert, D. GANsfer Learning: Combining Labelled and Unlabelled Data for GAN Based Data Augmentation. arXiv 2018, arXiv:1811.10669. [Google Scholar]
- Han, W.; Feng, R.; Wang, L.; Chen, J. Supervised Generative Adversarial Network Based Sample Generation for Scene Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3041–3044. [Google Scholar] [CrossRef]
- Abady, L.; Barni, M.; Garzelli, A.; Tondi, B. GAN Generation of Synthetic Multispectral Satellite Images. In Proceedings of the Image and Signal Processing for Remote Sensing XXVI, Virtual, 21–25 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11533, pp. 122–133. [Google Scholar]
- Martinson, E.; Furlong, B.; Gillies, A. Training Rare Object Detection in Satellite Imagery with Synthetic GAN Images. In Proceedings of the 2021IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2769–2776. [Google Scholar]
- Bosch, M.; Gifford, C.M.; Rodriguez, P.A. Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1414–1422. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Z.; Zhang, Y.; Tian, R.; Ding, M. GMSRI: A Texture-Based Martian Surface Rock Image Dataset. Sensors 2021, 21, 5410. [Google Scholar] [CrossRef]
- McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C. Seasonal Flows on Warm Martian Slopes. Science 2011, 333, 740–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howari, F.M.; Sharma, M.; Xavier, C.M.; Nazzal, Y.; Alaydaroos, F. Atmospheric, Geomorphological, and Compositional Analysis of Martian Asimov and Hale Craters: Implications for Recurring Slope Lineae. Front. Astron. Space Sci. 2022, 8, 781166. [Google Scholar] [CrossRef]
- Wang, Y.; Di, K.; Xin, X.; Wan, W. Automatic Detection of Martian Dark Slope Streaks by Machine Learning Using HiRISE Images. ISPRS J. Photogramm. Remote Sens. 2017, 129, 12–20. [Google Scholar] [CrossRef]
- Nagle-McNaughton, T.P. Synthetic Mars. Available online: https://doi.org/10.5281/zenodo.6338470 (accessed on 8 June 2022). [CrossRef]
- Stepinski, T.F.; Mendenhall, M.P.; Molloy, I.; Bue, B.D.; Luo, W. Automated Identification and Characterization of Landforms on Mars; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Stepinski, T.F.; Ghosh, S.; Vilalta, R. Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification. In Proceedings of the 9th International Conference on Discovery Science, Barcelona, Spain, 7–10 October 2006; Springer: Berlin/Heidelberg, Germany; pp. 255–266. [Google Scholar]
- Tao, Y.; Muller, J.P.; Poole, W. Automated Localisation of Mars Rovers Using Co-Registered HiRISE-CTX-HRSC Orthorectified Images and Wide Baseline Navcam Orthorectified Mosaics. Icarus 2016, 280, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Sofia, G. Combining Geomorphometry, Feature Extraction Techniques and Earth-Surface Processes Research: The Way Forward. Geomorphology 2020, 355, 107055. [Google Scholar] [CrossRef]
- Tarolli, P. High-Resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Eisank, C. An Object-Based Workflow for Integrating Spatial Scale and Semantics to Derive Landforms from Digital Elevation Models (DEMs). Ph.D. Thesis, University of Salzburg, Salzburg, Austria, April 2013. [Google Scholar]
- D’Oleire-Oltmanns, S.; Eisank, C.; Drǎgut, L.; Blaschke, T. An Object-Based Workflow to Extract Landforms at Multiple Scales from Two Distinct Data Types. IEEE Geosci. Remote Sens. Lett. 2013, 10, 947–951. [Google Scholar] [CrossRef]
- Szypuła, B. Digital Elevation Models in Geomorphology. In Hydro-Geomorphol. Models Trends; Dericks, P.S., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Seijmonsbergen, A.C.; Hengl, T.; Anders, N.S. Chapter Ten—Semi-Automated Identification and Extraction of Geomorphological Features Using Digital Elevation Data. In Geomorphological Mapping; Smith, M.J., Paron, P., Griffiths, J.S.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15, pp. 297–335. ISBN 0928-2025. [Google Scholar]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Segmentation Optimization and Stratified Object-Based Analysis for Semi-Automated Geomorphological Mapping. Remote Sens. Environ. 2011, 115, 2976–2985. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Blaschke, T. Automated Classification of Landform Elements Using Object-Based Image Analysis. Geomorphology 2006, 81, 330–344. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, Y.; Cheng, Y.; Liu, H.; Zhao, Y. Landform Classification Based on Optimal Texture Feature Extraction from DEM Data in Shandong Hilly Area, China. Front. Earth Sci. 2019, 13, 641–655. [Google Scholar] [CrossRef]
- Nwacholundu, U.V.; Izuchukwu, I.J.; Ebele, E.J.; Onyedika, E.J.; Chinagorom, I.E. Generating and Analyzing Terrain Characteristics from Shuttle Radar Topographic Mission (SRTM), DEM. World J. Adv. Res. Rev. 2021, 10, 198–206. [Google Scholar] [CrossRef]
- Shuanglin, L.; Fayuan, L. A Method of Automatic Topographic Recognition Based on Slope Spectrum. In Geomorphometry for Geosciences; Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T., Eds.; Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań, International Society for Geomorphometry: Poznań, Poland, 2015; pp. 129–132. [Google Scholar]
- Kharchenko, S. Automatic Recognition of Exogenic Landform Types on the Arctic Terrain Using Spectral Geomorphometric Variables (Example of the European Part of the Russia). Int. Multidiscip. Sci. GeoConf. SGEM 2019, 19, 785–791. [Google Scholar]
- Abolt, C.J.; Young, M.H. High-Resolution Mapping of Spatial Heterogeneity in Ice Wedge Polygon Geomorphology near Prudhoe Bay, Alaska. Sci. Data 2020, 7, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolt, C.J.; Young, M.H.; Atchley, A.L.; Wilson, C.J. Brief Communication: Rapid Machine-Learning-Based Extraction and Measurement of Ice Wedge Polygons in High-Resolution Digital Elevation Models. Cryosphere 2019, 13, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery. Remote Sens. 2018, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Jorge, M.G.; Brennand, T.A. Semi-Automated Extraction of Longitudinal Subglacial Bedforms from Digital Terrain Models—Two New Methods. Geomorphology 2017, 288, 148–163. [Google Scholar] [CrossRef]
- Saha, K.; Wells, N.A.; Munro-Stasiuk, M. An Object-Oriented Approach to Automated Landform Mapping: A Case Study of Drumlins. Comput. Geosci. 2011, 37, 1324–1336. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kazemi Garajeh, M.; Blaschke, T.; Lakes, T. An Object Based Image Analysis Applied for Volcanic and Glacial Landforms Mapping in Sahand Mountain, Iran. Catena 2021, 198, 105073. [Google Scholar] [CrossRef]
- Pedersen, G.B.M. Semi-Automatic Classification of Glaciovolcanic Landforms: An Object-Based Mapping Approach Based on Geomorphometry. J. Volcanol. Geotherm. Res. 2016, 311, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising Spectral, Spatial and Morphometric Properties of Landslides for Semi-Automatic Detection Using Object-Oriented Methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Mezaal, M.R.; Pradhan, B.; Sameen, M.I.; Shafri, H.Z.M.; Yusoff, Z.M. Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data. Appl. Sci. 2017, 7, 730. [Google Scholar] [CrossRef] [Green Version]
- Pawłuszek, K.; Borkowski, A. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume 8. [Google Scholar]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Prokešová, R.; Mokroš, M. Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Martha, T.R.; Mohan Vamsee, A.; Tripathi, V.; Vinod Kumar, K. Detection of Coastal Landforms in a Deltaic Area Using a Multi-Scale Object-Based Classification Method. Curr. Sci. 2018, 114, 1338–1345. [Google Scholar] [CrossRef]
- Scheip, C.M. Integrating Water-Classified Returns in DTM Generation to Increase Accuracy of Stream Delineations and Geomorphic Analyses. Geomorphology 2021, 385, 107722. [Google Scholar] [CrossRef]
- Hughes, M.W.; Schmidt, J.; Almond, P.C. Automatic Landform Stratification and Environmental Correlation for Modelling Loess Landscapes in North Otago, South Island, New Zealand. Geoderma 2009, 149, 92–100. [Google Scholar] [CrossRef]
- Kakavas, M.P.; Nikolakopoulos, K.G.; Zagana, E. Karst Features Detection and Mapping Using Airphotos, DSMs and GIS Techniques. In Earth Resources and Environmental Remote Sensing/GIS Applications VI.; SPIE: Bellingham, WA, USA, 2015; Volume 9644, pp. 174–183. [Google Scholar]
- Kakavas, M.; Nikolakopoulos, K.G.; Kyriou, A.; Zagana, H. Assessment of Freely Available DSMs for Automatic Karst Feature Detection. Arab. J. Geosci. 2018, 11, 388. [Google Scholar] [CrossRef]
- Mather, A.E.; Fyfe, R.M.; Clason, C.C.; Stokes, M.; Mills, S.; Barrows, T.T. Automated Mapping of Relict Patterned Ground: An Approach to Evaluate Morphologically Subdued Landforms Using Unmanned-Aerial-Vehicle and Structure-from-Motion Technologies. Prog. Phys. Geogr. Earth Environ. 2019, 43, 174–192. [Google Scholar] [CrossRef]
- Del Val, M.; Iriarte, E.; Arriolabengoa, M.; Aranburu, A. An Automated Method to Extract Fluvial Terraces from LIDAR Based High Resolution Digital Elevation Models: The Oiartzun Valley, a Case Study in the Cantabrian Margin. Quat. Int. 2015, 364, 35–43. [Google Scholar] [CrossRef]
- Thommeret, N.; Bailly, J.S.; Puech, C. Extraction of Thalweg Networks from DTMs: Application to Badlands. Hydrol. Earth Syst. Sci. 2010, 14, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.S.; Fassett, C.I.; Rader, L.X.; King, I.R.; Chaffey, P.M.; Wagoner, C.M.; Hanlon, A.E.; Watters, J.L.; Kreslavsky, M.A.; Holt, J.W. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking. J. Geophys. Res. Planets 2018, 123, 322–334. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Fairén, A.G.; Tanaka, K.L.; Zarroca, M.; Linares, R.; Platz, T.; Komatsu, G.; Miyamoto, H.; Kargel, J.S.; Yan, J. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean. Sci. Rep. 2016, 6, 25106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscardelli, L. Boulders of the Vastitas Borealis Formation: Potential Origin and Implications for an Ancient Martian Ocean. GSA Today 2014, 24, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Zimbelman, J.R. Transverse Aeolian Ridges on Mars: First Results from HiRISE Images. Geomorphology 2010, 121, 22–29. [Google Scholar] [CrossRef]
- Burr, D.M.; Williams, R.M.E.; Wendell, K.D.; Chojnacki, M.; Emery, J.P. Inverted Fluvial Features in the Aeolis/Zephyria Plana Region, Mars: Formation Mechanism and Initial Paleodischarge Estimates. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Weitz, C.M.; Milliken, R.E.; Grant, J.A.; McEwen, A.S.; Williams, R.M.E.; Bishop, J.L. Light-toned Strata and Inverted Channels Adjacent to Juventae and Ganges Chasmata, Mars. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars. Science 2003, 302, 1931–1934. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Zhu, H.; Li, F.; Bai, H.; Cong, R.; Zhang, C.; Lin, C.; Liu, M.; Zhao, Y. Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9229–9238. [Google Scholar]
- Liang, Y.; Duan, N.; Gong, Y.; Wu, N.; Guo, F.; Qi, W.; Gong, M.; Shou, L.; Jiang, D.; Cao, G. Xglue: A New Benchmark Dataset for Cross-Lingual Pre-Training, Understanding and Generation. arXiv 2020, arXiv:2004.01401. [Google Scholar]
- Mu, N.; Gilmer, J. Mnist-c: A Robustness Benchmark for Computer Vision. arXiv 2019, arXiv:1906.02337. [Google Scholar]
- Deng, L. The Mnist Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Luo, Z.; Branchaud-Charron, F.; Lemaire, C.; Konrad, J.; Li, S.; Mishra, A.; Achkar, A.; Eichel, J.; Jodoin, P.-M. MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization. IEEE Trans. Image Process. 2018, 27, 5129–5141. [Google Scholar]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-Mnist: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: Extending MNIST to Handwritten Letters. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 2921–2926. [Google Scholar]
- Wang, Y.; Jodoin, P.-M.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar, P. CDnet 2014: An Expanded Change Detection Benchmark Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 387–394. [Google Scholar]
- Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval. ISPRS J. Photogramm. Remote Sens. 2018, 145, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Uy, M.A.; Pham, Q.-H.; Hua, B.-S.; Nguyen, T.; Yeung, S.-K. Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1588–1597. [Google Scholar]
- Hwang, S.; Park, J.; Kim, N.; Choi, Y.; So Kweon, I. Multispectral Pedestrian Detection: Benchmark Dataset and Baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1037–1045. [Google Scholar]
- Shi, B.; Wu, Z.; Mo, Z.; Duan, D.; Yeung, S.-K.; Tan, P. A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3707–3716. [Google Scholar]
- Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. Ms-Celeb-1m: A Dataset and Benchmark for Large-Scale Face Recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 87–102. [Google Scholar]
- Khan, N.Y.; McCane, B.; Wyvill, G. SIFT and SURF Performance Evaluation against Various Image Deformations on Benchmark Dataset. In Proceedings of the 2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, QLD, Australia, 18–21 July 2021; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 501–506. [Google Scholar]
- Muller, M.; Bibi, A.; Giancola, S.; Alsubaihi, S.; Ghanem, B. Trackingnet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 300–317. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyette, N.; Jodoin, P.-M.; Porikli, F.; Konrad, J.; Ishwar, P. Changedetection. Net: A New Change Detection Benchmark Dataset. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Oh, S.; Hoogs, A.; Perera, A.; Cuntoor, N.; Chen, C.-C.; Lee, J.T.; Mukherjee, S.; Aggarwal, J.K.; Lee, H.; Davis, L. A Large-Scale Benchmark Dataset for Event Recognition in Surveillance Video. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 3153–3160. [Google Scholar]
- Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; van Gool, L.; Gross, M.; Sorkine-Hornung, A. A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 724–732. [Google Scholar]
- Wang, W.Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. arXiv 2017, arXiv:1705.00648. [Google Scholar]
- Vacavant, A.; Chateau, T.; Wilhelm, A.; Lequievre, L. A Benchmark Dataset for Outdoor Foreground/Background Extraction. In Proceedings of the Asian Conference on Computer Vision, Daejeon, Korea, 5–9 November 2012; Springer: Berlin, Germany, 2012; pp. 291–300. [Google Scholar]
- Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. Ip102: A Large-Scale Benchmark Dataset for Insect Pest Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8787–8796. [Google Scholar]
- LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 8 June 2022).
- Harang, R.; Rudd, E.M. SOREL-20M: A Large Scale Benchmark Dataset for Malicious PE Detection. preprint arXiv 2020, arXiv:2012.07634. [Google Scholar]
- Sinka, M.P.; Corne, D.W. A Large Benchmark Dataset for Web Document Clustering. Soft Comput. Syst. Des. Manag. Appl. 2002, 87, 881–890. [Google Scholar]
- Long, Y.; Xia, G.S.; Li, S.; Yang, W.; Yang, M.Y.; Zhu, X.X.; Zhang, L.; Li, D. On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances, and Million-AID. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4205–4230. [Google Scholar] [CrossRef]
- Schmidt, D. Mars32k. Available online: https://dominikschmidt.xyz/mars32k/ (accessed on 8 June 2022).
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Swan, R.M.; Atha, D.; Leopold, H.A.; Gildner, M.; Oij, S.; Chiu, C.; Ono, M. AI4MARS: A Dataset for Terrain-Aware Autonomous Driving on Mars. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 1982–1991. [Google Scholar] [CrossRef]
- Bickel, V.T.; Mandrake, L.; Doran, G. A Labeled Image Dataset for Deep Learning-Driven Rockfall Detection on the Moon and Mars. Front. Remote Sens. 2021, 2, 640034. [Google Scholar] [CrossRef]
- Doran, G.; Dunkel, E.; Lu, S.; Wagstaff, K. Mars Orbital Image (HiRISE) Labeled Data Set Version 3.2. 2020. Available online: https://doi.org/10.5281/ZENODO.4002935 (accessed on 8 June 2022). [CrossRef]
- Zhou, X.; Xie, X.; Xue, Y.; Xue, B.; Qin, K.; Dai, W. Bag of Geomorphological Words: A Framework for Integrating Terrain Features and Semantics to Support Landform Object Recognition from High-Resolution Digital Elevation Models. ISPRS Int. J. Geo-Inf. 2020, 9, 620. [Google Scholar] [CrossRef]
- Schwenzer, S.P.; Woods, M.; Karachalios, S.; Phan, N.; Joudrier, L. Labelmars: Creating an Extremely Large Martian Image Dataset through Machine Learning. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 1970. [Google Scholar]
- Wallace, I.; Read, N.; Woods, M. Labelmars.Net: Driving Next-Generation Science Autonomy With Large High Quality Dataset Collection. In Proceedings of the 14th Symposium on Advanced SpaceTechnologies in Robotics and Automation, Leiden, the Netherlands, 20–22 June 2017. [Google Scholar]
- Karachalios, S.; Woods, M.; Schwenzer, S.; Joudrier, L. Novelty or Anomaly Hunter: Towards Flight Ready Autonomous Science Using State of the Art Machine & Deep Learning. In Proceedings of the 15th Symposium on Advanced Space Technologies, Robotics and Automation, Noordwijk, The Netherlands, 27–28 May 2019. [Google Scholar]
- Mandrake, L.; Braunegg, A.; Doran, G.; Horton, P.; Jeong, D.; Langert, E.; Lu, S.; Trockman, A.; Wagstaff, K.L. The Content-Based Object Summarization to Monitor Infrequent Change (COSMIC). Available online: https://www.zooniverse.org/projects/wkiri/cosmic/about/faq (accessed on 13 May 2022).
- Doran, G.; Lu, S.; Liukis, M.; Mandrake, L.; Rebbapragada, U.; Wagstaff, K.L.; Young, J.; Langert, E.; Braunegg, A.; Horton, P.; et al. COSMIC: Content-Based Onboard Summarization to Monitor Infrequent Change. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–12. [Google Scholar]
- Aye, K.M.; Hansen, C.J.; Michaels, T.I.; Portyankina, A.; Schwamb, M. Planet Four. Available online: https://www.zooniverse.org/projects/mschwamb/planet-four/about/team (accessed on 13 May 2022).
- Schwamb, M.E.; Aye, K.-M.; Portyankina, G.; Hansen, C.J.; Allen, C.; Allen, S.; Calef, F.J.; Duca, S.; McMaster, A.; Miller, G.R.M. Planet Four: Terrains—Discovery of Araneiforms Outside of the South Polar Layered Deposits. Icarus 2018, 308, 148–187. [Google Scholar] [CrossRef] [Green Version]
- Portyankina, G.; Michaels, T.I.; Aye, K.-M.; Schwamb, M.E.; Hansen, C.J.; Lintott, C.J. Planet Four: Derived South Polar Martian Winds Interpreted Using Mesoscale Modeling. Planet. Sci. J. 2022, 3, 31. [Google Scholar] [CrossRef]
- Kerber, L.; Schwamb, M.; Aye, K.M.; Portyankina, A.; Hansen, C.J. Planet Four: Ridges. Available online: https://www.zooniverse.org/projects/mschwamb/planet-four-ridges/about/research (accessed on 13 May 2022).
- Khuller, A.R.; Kerber, L.; Schwamb, M.E.; Beer, S.; Nogal, F.E.; Perry, R.; Hood, W.; Aye, K.-M.; Portyankina, G.; Hansen, C.J. Irregular Polygonal Ridge Networks in Ancient Noachian Terrain on Mars. Icarus 2022, 374, 114833. [Google Scholar] [CrossRef]
- Portyankina, G.; Hansen, C.J.; Aye, K.M. How Martian Araneiforms Get Their Shapes: Morphological Analysis and Diffusion-Limited Aggregation Model for Polar Surface Erosion. Icarus 2020, 342, 113217. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M. JMARS-a Planetary GIS. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2009; Volume 2009, p. IN22A-06. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagle-McNaughton, T.P.; Scuderi, L.A.; Erickson, N. Squeezing Data from a Rock: Machine Learning for Martian Science. Geosciences 2022, 12, 248. https://doi.org/10.3390/geosciences12060248
Nagle-McNaughton TP, Scuderi LA, Erickson N. Squeezing Data from a Rock: Machine Learning for Martian Science. Geosciences. 2022; 12(6):248. https://doi.org/10.3390/geosciences12060248
Chicago/Turabian StyleNagle-McNaughton, Timothy Paul, Louis Anthony Scuderi, and Nicholas Erickson. 2022. "Squeezing Data from a Rock: Machine Learning for Martian Science" Geosciences 12, no. 6: 248. https://doi.org/10.3390/geosciences12060248
APA StyleNagle-McNaughton, T. P., Scuderi, L. A., & Erickson, N. (2022). Squeezing Data from a Rock: Machine Learning for Martian Science. Geosciences, 12(6), 248. https://doi.org/10.3390/geosciences12060248