Influence of Depositional and Diagenetic Processes on Caprock Properties of CO2 Storage Sites in the Northern North Sea, Offshore Norway
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Depositional and Diagenetic Processes
3.2. Caprock Property Evaluation
4. Results
4.1. Structural Setting and Sedimentation
4.2. Exhumation and Diagenesis
4.3. Caprock Properties
4.3.1. Depositional Variation
4.3.2. Diagenetic Effect
4.3.3. Seismic Data Analysis
Seismic Inverted Properties
Seismic Attributes Analysis
5. Discussion
5.1. Effect of Deposition and Diagenetic Processes
5.2. Implications
6. Conclusions
- The Nordfjord–Sogn detachment at 61° N demarcated the northern boundary of the Horda Platform, which controlled the paleo-depositional environment. This was indicated by the difference in clay proportion in the lower Drake unit between the north and south of the detachment. Moreover, the published Dunlin Group mineralogy reveals that the sediment source was close to the basin with a cold climate-based rapid erosion and short particle transportation before deposition. Although the studied formation shale was deposited in the post-rift stages, the structural influence of the major faults created in the first rifting stage has been evident. However, the effect during the post-rift period was insignificant compared to pre-rift sedimentation.
- The low temperature gradient underneath the hydrocarbon discoveries such as the Troll and Brage fields represents ductile caprock compared to the other areas. Further analysis needs to evaluate the relation between the stress change due to hydrocarbon accumulation and the underburden properties.
- Although the upper and lower Drake units have different shale volumes, the geomechanical properties have a similar range. The published mineralogical data can explain where coarser kaolinite and sheet-like clay minerals within the lower Drake unit might significantly increase the density and stiffness irrespective of total clay percentage. In contrast, the abundance of quartz cementation within the upper Drake unit further stiffened the rock behavior. However, the possible lacustrine back basin depositional environment with high clay input signifies soft caprock shales. Moreover, the thickness map demonstrated that the lower Drake unit can solely act as the main caprock for the Aurora CO2 storage site of the Longship/Northern Lights CCS project.
- In general, the caprock quality in the Horda Platform area is better (less brittle) than in the north and northwest parts of the study area. However, considering the future demand for the injection sites in the study area, further detailed analysis should be conducted in the northwest part.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Upper Drake Unit | ||||||
---|---|---|---|---|---|---|
Well # | Surface X | Surface Y | Vsh (Frac.) | Density (g/cm3) | Vp (m/s) | EBI |
30/12-1 | 491,768.63 | 6,667,795.87 | 0.3999 | 2.65 | 3321.15 | 0.7168 |
30/2-1 | 480,825.13 | 6,748,314.80 | 0.3719 | 2.55 | 3321.15 | 0.5929 |
30/3-2R | 495,734.96 | 6,740,339.05 | 0.3491 | 2.52 | 3538.2 | 0.6368 |
30/3-3 | 497,358.47 | 6,737,311.81 | 0.6241 | 2.56 | 3699.44 | 0.6815 |
30/3-4R | 492,282.13 | 6,736,867.73 | 0.5669 | 2.53 | 3631.81 | 0.6575 |
30/6-11 | 486,083.56 | 6,732,323.66 | 0.3265 | 2.61 | 3917.57 | 0.7273 |
30/6-14 | 499,416.89 | 6,722,343.60 | 0.4315 | 2.48 | 3625.48 | 0.6384 |
30/6-19R | 495,362.23 | 6,731,329.67 | 0.6368 | 2.60 | 3568.98 | 0.6615 |
30/6-22R | 498,984.72 | 6,733,159.40 | 0.4476 | 2.58 | 3602.1 | 0.6663 |
30/6-4 | 491,665.13 | 6,708,367.57 | 0.1879 | 2.51 | 3468.18 | 0.6193 |
30/6-5 | 497,435.43 | 6,728,313.09 | 0.6515 | 2.58 | 3544.29 | 0.6566 |
30/6-7 | 486,655.23 | 6,723,352.20 | 0.2849 | 2.60 | 3594.68 | 0.6609 |
30/9-13S | 484,314.06 | 6,691,639.34 | 0.4262 | 2.62 | 3765.56 | 0.7015 |
30/9-15 | 495,781.84 | 6,692,982.86 | 0.6938 | 2.48 | 3121.15 | 0.55 |
30/9-16 | 486,172.38 | 6,679,756.32 | 0.5592 | 2.59 | 3525.79 | 0.6545 |
30/9-28S | 485,699.37 | 6,699,821.19 | 0.3925 | 2.59 | 3560.29 | 0.6578 |
31-4-2 | 500,404.14 | 6,718,844.60 | 0.5639 | 2.51 | 3254.46 | 0.5376 |
31/1-1 | 517,134.61 | 6,742,841.44 | 0.3632 | 2.46 | 3472.93 | 0.5987 |
31/2-1 | 530,199.61 | 6,737,677.21 | 0.3201 | 2.33 | 3190.09 | 0.4773 |
31/2-2 | 533,938.28 | 6,738,596.92 | 0.3431 | 2.40 | 3293.22 | 0.5383 |
31/2-3 | 531,870.27 | 6,745,386.42 | 0.4216 | 2.33 | 3098.61 | 0.4707 |
31/2-4 | 527,833.01 | 6,747,077.02 | 0.3626 | 2.31 | 2957.02 | 0.4313 |
31/2-5 | 523,505.72 | 6,737,535.36 | 0.4063 | 2.39 | 3131.17 | 0.499 |
31/2-8 | 526,923.97 | 6,758,501.65 | 0.385 | 2.46 | 3748.27 | 0.6402 |
31/3-1 | 539,987.89 | 6,738,661.33 | 0.3084 | 2.33 | 3234.54 | 0.4973 |
31/3-2 | 536,834.49 | 6,748,639.00 | 0.4188 | 2.37 | 3285.62 | 0.5156 |
31/3-3 | 545,882.33 | 6,744,748.55 | 0.3232 | 2.50 | 3613.81 | 0.6388 |
31/4-3 | 505,143.68 | 6,716,917.62 | 0.4885 | 2.39 | 3360.76 | 0.5575 |
31/4-4 | 506,285.02 | 6,725,858.56 | 0.4946 | 2.54 | 3588.06 | 0.6489 |
31/4-8 | 500,144.24 | 6,709,817.07 | 0.4824 | 2.45 | 3163.84 | 0.5514 |
31/5-2 | 529,892.44 | 6,732,542.32 | 0.4353 | 2.41 | 3225.81 | 0.5179 |
31/5-7 | 524,300.05 | 6,715,849.93 | 0.6585 | 2.47 | 3448.4 | 0.603 |
31/6-1 | 537,251.61 | 6,723,687.54 | 0.5996 | 2.41 | 3111.26 | 0.5036 |
31/6-2 | 550,162.41 | 6,716,831.14 | 0.4025 | 2.48 | 3178.19 | 0.5553 |
31/6-3 | 554,832.85 | 6,707,818.02 | 0.4947 | 2.53 | 3358.85 | 0.6079 |
31/6-6 | 551,026.08 | 6,729,803.82 | 0.469 | 2.52 | 3520.74 | 0.6385 |
31/6-8 | 537,154.06 | 6,713,675.93 | 0.3091 | 2.40 | 3291.12 | 0.5331 |
31/7-1 | 501,347.50 | 6,698,949.36 | 0.5663 | 2.54 | 3369.75 | 0.6115 |
32/4-1 | 558,755.71 | 6,732,478.43 | 0.2193 | 2.35 | 3238.46 | 0.5152 |
35/10-1 | 512,195.94 | 6,776,027.35 | 0.448 | 2.59 | 3398.15 | 0.616 |
35/10-2 | 502,257.88 | 6,767,362.44 | 0.302 | 2.53 | 3695.13 | 0.6648 |
35/11-1 | 535,624.02 | 6,783,526.82 | 0.3602 | 2.44 | 3789.62 | 0.6419 |
35/11-2 | 524,673.05 | 6,782,416.44 | 0.2947 | 2.50 | 3854.32 | 0.697 |
35/11-4 | 529,618.96 | 6,766,782.09 | 0.3332 | 2.45 | 3809.94 | 0.6346 |
35/11-5 | 521,481.80 | 6,771,848.95 | 0.2352 | 2.48 | 4088.13 | 0.7149 |
35/11-6 | 525,015.67 | 6,784,875.77 | 0.3421 | 2.52 | 4026.85 | 0.7103 |
35/11-7 | 531,910.05 | 6,766,796.13 | 0.3273 | 2.36 | 3556.74 | 0.5554 |
35/12-1 | 551,760.90 | 6,783,875.58 | 0.5191 | 2.53 | 4179.58 | 0.7494 |
Lower Drake Unit | ||||||
---|---|---|---|---|---|---|
Name | Surface X | Surface Y | Vsh (Frac.) | Density (g/cm3) | Vp (m/s) | EBI |
30/12-1 | 491,768.63 | 6,667,795.87 | 0.436 | 2.64 | 3445.837 | 0.6581 |
30/2-1 | 480,825.13 | 6,748,314.80 | 0.5028 | 2.54 | 3366.548 | 0.6001 |
30/3-2R | 495,734.96 | 6,740,339.05 | 0.4948 | 2.50 | 3496.407 | 0.6278 |
30/3-3 | 497,358.47 | 6,737,311.81 | 0.7273 | 2.61 | 3620.316 | 0.6812 |
30/3-4R | 492,282.13 | 6,736,867.73 | 0.6186 | 2.56 | 3493.417 | 0.6398 |
30/6-11 | 486,083.56 | 6,732,323.66 | 0.5 | 2.63 | 3746.297 | 0.6985 |
30/6-14 | 499,416.89 | 6,722,343.60 | 0.5067 | 2.50 | 3541.794 | 0.6352 |
30/6-19R | 495,362.23 | 6,731,329.67 | 0.6055 | 2.61 | 3541.794 | 0.6613 |
30/6-22R | 498,984.72 | 6,733,159.40 | 0.4862 | 2.61 | 3527.612 | 0.6596 |
30/6-4 | 491,665.13 | 6,708,367.57 | 0.6411 | 2.53 | 3189.619 | 0.5689 |
30/6-5 | 497,435.43 | 6,728,313.09 | 0.6009 | 2.56 | 3564.707 | 0.6555 |
30/6-7 | 486,655.23 | 6,723,352.20 | 0.3965 | 2.66 | 3460.301 | 0.6451 |
30/9-13S | 484,314.06 | 6,691,639.34 | 0.398 | 2.62 | 3545.418 | 0.6723 |
30/9-15 | 495,781.84 | 6,692,982.86 | 0.5942 | 2.48 | 3010.155 | 0.523 |
30/9-16 | 486,172.38 | 6,679,756.32 | 0.5398 | 2.59 | 3328.509 | 0.6228 |
30/9-28S | 485,699.37 | 6,699,821.19 | 0.4255 | 2.58 | 3279.683 | 0.593 |
31-4-2 | 500,404.14 | 6,718,844.60 | 0.5838 | 2.52 | 3082.203 | 0.5037 |
31/1-1 | 517,134.61 | 6,742,841.44 | 0.5574 | 2.55 | 3336.073 | 0.6125 |
31/2-1 | 530,199.61 | 6,737,677.21 | 0.5235 | 2.42 | 3104.054 | 0.5076 |
31/2-2 | 533,938.28 | 6,738,596.92 | 0.6042 | 2.47 | 3121.374 | 0.5385 |
31/2-3 | 531,870.27 | 6,745,386.42 | 0.6173 | 2.45 | 3193.532 | 0.5469 |
31/2-4 | 527,833.01 | 6,747,077.02 | 0.565 | 2.43 | 2960.697 | 0.4979 |
31/2-5 | 523,505.72 | 6,737,535.36 | 0.631 | 2.46 | 3055.088 | 0.5226 |
31/2-8 | 526,923.97 | 6,758,501.65 | 0.3979 | 2.45 | 3707.87 | 0.6366 |
31/3-1 | 539,987.89 | 6,738,661.33 | 0.5395 | 2.43 | 3270.395 | 0.5554 |
31/3-2 | 536,834.49 | 6,748,639.00 | 0.6356 | 2.50 | 3412.303 | 0.6013 |
31/3-3 | 545,882.33 | 6,744,748.55 | 0.5221 | 2.53 | 3710.317 | 0.677 |
31/4-3 | 505,143.68 | 6,716,917.62 | 0.6509 | 2.44 | 3257.2 | 0.5633 |
31/4-4 | 506,285.02 | 6,725,858.56 | 0.5115 | 2.57 | 3554.009 | 0.6508 |
31/4-8 | 500,144.24 | 6,709,817.07 | 0.6093 | 2.35 | 3002.511 | 0.4867 |
31/5-2 | 529,892.44 | 6,732,542.32 | 0.7251 | 2.48 | 3091.628 | 0.532 |
31/5-7 | 524,300.05 | 6,715,849.93 | 0.5686 | 2.53 | 3164.1 | 0.5817 |
31/6-1 | 537,251.61 | 6,723,687.54 | 0.7988 | 2.45 | 2866.75 | 0.4617 |
31/6-2 | 550,162.41 | 6,716,831.14 | 0.7081 | 2.43 | 2846.196 | 0.4655 |
31/6-3 | 554,832.85 | 6,707,818.02 | 0.7095 | 2.51 | 2908.905 | 0.5059 |
31/6-6 | 551,026.08 | 6,729,803.82 | 0.5905 | 2.54 | 3675.023 | 0.6697 |
31/6-8 | 537,154.06 | 6,713,675.93 | 0.6483 | 2.45 | 2905.598 | 0.4792 |
31/7-1 | 501,347.50 | 6,698,949.36 | 0.5869 | 2.53 | 3068.791 | 0.549 |
32/4-1 | 558,755.71 | 6,732,478.43 | 0.4284 | 2.49 | 3495.491 | 0.6218 |
35/10-1 | 512,195.94 | 6,776,027.35 | 0.4372 | 2.63 | 3599.794 | 0.6753 |
35/10-2 | 502,257.88 | 6,767,362.44 | 0.2568 | 2.45 | 3763.391 | 0.6492 |
35/11-1 | 535,624.02 | 6,783,526.82 | 0.3406 | 2.48 | 3814.931 | 0.6696 |
35/11-2 | 524,673.05 | 6,782,416.44 | 0.3639 | 2.59 | 3948.152 | 0.7314 |
35/11-4 | 529,618.96 | 6,766,782.09 | 0.2561 | 2.43 | 3755.346 | 0.6209 |
35/11-5 | 521,481.80 | 6,771,848.95 | 0.1352 | 2.47 | 4094.094 | 0.7081 |
35/11-6 | 525,015.67 | 6,784,875.77 | 0.5045 | 2.63 | 4124.779 | 0.7666 |
35/11-7 | 531,910.05 | 6,766,796.13 | 0.272 | 2.36 | 3633.514 | 0.5748 |
35/12-1 | 551,760.90 | 6,783,875.58 | 0.4776 | 2.55 | 4230.931 | 0.7634 |
References
- Hawkes, C.D.; McLellan, P.J.; Bachu, S. Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J. Can. Pet. Technol. 2005, 44, 258. [Google Scholar] [CrossRef]
- Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 2007, 48, 1798–1807. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Birkholzer, J.T.; Tsang, C.-F. Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir—Caprock systems. Int. J. Rock. Mech. Min. Sci. 2008, 45, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Soltanzadeh, H.; Hawkes, C.D. Semi-analytical models for stress change and fault reactivation induced by reservoir production and injection. J. Pet. Sci. Eng. 2008, 60, 71–85. [Google Scholar] [CrossRef]
- Streit, J.E.; Hillis, R.R. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 2004, 29, 1445–1456. [Google Scholar] [CrossRef]
- Hart, B.S.; Macquaker, J.H.S.; Taylor, K.G. Mudstone (“shale”) depositional and diagenetic processes: Implications for seismic analyses of source-rock reservoirs. Interpretation 2013, 1, B7–B26. [Google Scholar] [CrossRef]
- Mondol, N.H.; Jahren, J.; Berre, T.; Grande, L.; Bjørlykke, K. Permeability Anisotropy in Synthetic Mudstones—An Experimental Study. In Proceedings of the 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC 2011, Vienna, Austria, 23–27 May 2011; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2011; p. cp-238. [Google Scholar]
- Mondol, N.H.; Bjørlykke, K.; Jahren, J. Experimental compaction of clays: Relationship between permeability and petrophysical properties in mudstones. Pet. Geosci. 2008, 14, 319–337. [Google Scholar] [CrossRef]
- Storvoll, V.; Bjørlykke, K.; Mondol, N.H. Velocity-depth trends in Mesozoic and Cenozoic sediments from the Norwegian Shelf. Am. Assoc. Pet. Geol. Bull. 2005, 89, 359–381. [Google Scholar] [CrossRef]
- Færseth, R.B. Interaction of Permo–Triassic and Jurassic extensional fault-blocks during the development of the northern North Sea. J. Geol. Soc. London 1996, 153, 931–944. [Google Scholar] [CrossRef]
- Steel, R.J. Triassic–Jurassic megasequence stratigraphy in the Northern North Sea: Rift to post-rift evolution. In Geological Society, London, Petroleum Geology Conference Series; Geological Society of London: London, UK, 1993; Volume 4, pp. 299–315. [Google Scholar]
- Steel, R.; Ryseth, A. The Triassic—Early Jurassic succession in the northern North Sea: Megasequence stratigraphy and intra-Triassic tectonics. Geol. Soc. London Spec. Publ. 1990, 55, 139–168. [Google Scholar] [CrossRef]
- Baig, I.; Faleide, J.I.; Mondol, N.H.; Jahren, J. Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas. Mar. Pet. Geol. 2019, 104, 61–85. [Google Scholar] [CrossRef]
- Rahman, M.J.; Fawad, M.; Mondol, N.H. Organic-rich shale caprock properties of potential CO2 storage sites in the northern North Sea, offshore Norway. Mar. Pet. Geol. 2020, 122, 104665. [Google Scholar] [CrossRef]
- Bjørlykke, K.; Jahren, J. Sandstones and sandstone reservoirs. In Petroleum Geoscience; Springer: Berlin/Heidelberg, Germany, 2015; pp. 119–149. [Google Scholar]
- Chuhan, F.A.; Kjeldstad, A.; Bjørlykke, K.; Høeg, K. Porosity loss in sand by grain crushing—Experimental evidence and relevance to reservoir quality. Mar. Pet. Geol. 2002, 19, 39–53. [Google Scholar] [CrossRef]
- Bjørlykke, K.; Høeg, K. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Mar. Pet. Geol. 1997, 14, 267–276. [Google Scholar] [CrossRef]
- Bjørlykke, K. Mudrocks, Shales, Silica Deposits and Evaporites. In Petroleum Geoscience; Springer: Berlin/Heidelberg, Germany, 2015; pp. 217–229. [Google Scholar]
- Aplin, A.C.; Matenaar, I.F.; van der Pluijm, B. Influence of mechanical compaction and chemical diagenesis on the microfabric and fluid flow properties of Gulf of Mexico mudstones. J. Geochem. Explor. 2003, 78, 449–451. [Google Scholar] [CrossRef]
- Bjørlykke, K. Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Min. 1998, 33, 15–34. [Google Scholar] [CrossRef]
- Marcussen, Ø.; Thyberg, B.I.; Peltonen, C.; Jahren, J.; Bjørlykke, K.; Faleide, J.I. Physical properties of Cenozoic mudstones from the northern North Sea: Impact of clay mineralogy on compaction trends. Am. Assoc. Pet. Geol. Bull. 2009, 93, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Nooraiepour, M.; Mondol, N.H.; Hellevang, H.; Bjørlykke, K. Experimental mechanical compaction of reconstituted shale and mudstone aggregates: Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences. Mar. Pet. Geol. 2017, 80, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, C.; Marcussen, Ø.; Bjørlykke, K.; Jahren, J. Mineralogical control on mudstone compaction: A study of Late Cretaceous to Early Tertiary mudstones of the Vøring and Møre basins, Norwegian Sea. Pet. Geosci. 2008, 14, 127–138. [Google Scholar] [CrossRef]
- Thyberg, B.; Jahren, J.; Winje, T.; Bjørlykke, K.; Faleide, J.I. From mud to shale: Rock stiffening by micro-quartz cementation. First Break 2009, 27. [Google Scholar] [CrossRef]
- Thyberg, B.; Jahren, J. Quartz cementation in mudstones: Sheet-like quartz cement from clay mineral reactions during burial. Pet. Geosci. 2011, 17, 53–63. [Google Scholar] [CrossRef]
- Bjørlykke, K. Principal aspects of compaction and fluid flow in mudstones. Geol. Soc. London Spec. Publ. 1999, 158, 73–78. [Google Scholar] [CrossRef]
- Ingram, G.M.; Urai, J.L.; Naylor, M.A. Sealing processes and top seal assessment. Nor. Pet. Soc. Spec. Publ. 1997, 7, 165–174. [Google Scholar]
- Nygård, R.; Gutierrez, M.; Bratli, R.K.; Høeg, K. Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Mar. Pet. Geol. 2006, 23, 201–212. [Google Scholar] [CrossRef]
- Gassnova. Geological Storage of CO2 from Mongstad; Interim Report Johansen Formation, Doc. No. TL02-GTL-Z-RA-0001; Gassnova: Porsgrunn, Norway, 2012; p. 308. [Google Scholar]
- Whipp, P.S.; Jackson, C.L.; Gawthorpe, R.L.; Dreyer, T.; Quinn, D. Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin. Res. 2014, 26, 523–549. [Google Scholar] [CrossRef]
- Stewart, D.J.; Schwander, M.; Bolle, L. Jurassic depositional systems of the Horda Platform, Norwegian North Sea: Practical consequences of applying sequence stratigraphic models. Nor. Pet. Soc. Spec. Publ. 1995, 5, 291–323. [Google Scholar]
- Roberts, A.M.; Yielding, G.; Kusznir, N.J.; Walker, I.; Dorn-Lopez, D. Mesozoic extension in the North Sea: Constraints from flexural backstripping, forward modelling and fault populations. In Geological Society, London, Petroleum Geology Conference Series; Geological Society of London: London, UK, 1993; Volume 4, pp. 1123–1136. [Google Scholar]
- Roberts, A.M.; Kusznir, N.J.; Yielding, G.; Beeley, H. Mapping the bathymetric evolution of the Northern North Sea: From Jurassic synrift archipelago through Cretaceous—Tertiary post-rift subsidence. Pet. Geosci. 2019, 25, 306–321. [Google Scholar] [CrossRef]
- Roberts, S.; Jackson, J. Active normal faulting in central Greece: An overview. Geol. Soc. London Spec. Publ. 1991, 56, 125–142. [Google Scholar] [CrossRef]
- Jackson, J.A.; White, N.J. Normal faulting in the upper continental crust: Observations from regions of active extension. J. Struct. Geol. 1989, 11, 15–36. [Google Scholar] [CrossRef]
- Færseth, R.B.; Gabrielsen, R.H.; Hurich, C.A. Influence of basement in structuring of the North Sea basin, offshore southwest Norway. Nor. Geol. Tidsskr. 1995, 75, 105–119. [Google Scholar]
- Yielding, G.; Walsh, J.; Watterson, J. The prediction of small-scale faulting in reservoirs. First Break 1992, 10. [Google Scholar] [CrossRef]
- Badley, M.E.; Price, J.D.; Dahl, C.R.; Agdestein, T. The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. J. Geol. Soc. London 1988, 145, 455–472. [Google Scholar] [CrossRef]
- Fichler, C.; Hospers, J. Deep crustal structure of the northern North Sea Viking Graben: Results from deep reflection seismic and gravity data. Tectonophysics 1990, 178, 241–254. [Google Scholar] [CrossRef]
- Hospers, J.; Ediriweera, K.K. Depth and configuration of the crystalline basement in the Viking Graben area, Northern North Sea. J. Geol. Soc. London 1991, 148, 261–265. [Google Scholar] [CrossRef]
- Klemperer, S.L. Crustal thinning and nature of extension in the northern North Sea from deep seismic reflection profiling. Tectonics 1988, 7, 803–821. [Google Scholar] [CrossRef]
- Anell, I.; Thybo, H.; Artemieva, I.M. Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics 2009, 474, 78–105. [Google Scholar] [CrossRef] [Green Version]
- Faleide, J.I.; Bjørlykke, K.; Gabrielsen, R.H. Geology of the Norwegian Continental Shelf. In Petroleum Geoscience, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 603–637. [Google Scholar]
- Jordt, H.; Faleide, J.I.; Bjørlykke, K.; Ibrahim, M.T. Cenozoic sequence stratigraphy of the central and northern North Sea Basin: Tectonic development, sediment distribution and provenance areas. Mar. Pet. Geol. 1995, 12, 845–879. [Google Scholar] [CrossRef]
- Vollset, J.; Doré, A.G. A Revised Triassic and Jurassic Lithostratigraphic Nomenclature for the Norwegian North Sea; Oljedirektoratet: Stavanger, Norway, 1984.
- NPD. NPD FactPages 2022. Available online: https://npdfactpages.npd.no/factpages/Default.aspx?culture=en (accessed on 28 March 2022).
- Isaksen, G.H.; Bohacs, K.M. Geological Controls of Source Rock Geochemistry Through Relative Sea Level; Triassic, Barents Sea. In Petroleum Source Rocks; Springer: Berlin/Heidelberg, Germany, 1995; pp. 25–50. [Google Scholar]
- Larionov, V.V. Radiometry of Boreholes; Nedra: Moscow, Russia, 1969; p. 127. [Google Scholar]
- Mondol, N.H. Porosity and permeability development in mechanically compacted silt-kaolinite mixtures. In SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 2139–2143. [Google Scholar]
- Perez Altamar, R.; Marfurt, K. Mineralogy-based brittleness prediction from surface seismic data: Application to the Barnett Shale. Interpretation 2014, 2, T1–T17. [Google Scholar] [CrossRef] [Green Version]
- Horsrud, P. Estimating mechanical properties of shale from empirical correlations. SPE Drill Complet. 2001, 16, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Fawad, M.; Mondol, M.D.N.H. Method for Estimating Rock Brittleness from Well-Log Data 2021. U.S. Patent No. 17/175,770, 19 August 2021. [Google Scholar]
- Fatti, J.L.; Smith, G.C.; Vail, P.J.; Strauss, P.J.; Levitt, P.R. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics 1994, 59, 1362–1376. [Google Scholar] [CrossRef]
- Fawad, M.; Rahman, M.J.; Mondol, N.H. Seismic-derived geomechanical properties of potential CO2 storage reservoir and cap rock in Smeaheia area, northern North Sea. Lead Edge 2021, 40, 254–260. [Google Scholar] [CrossRef]
- Fawad, M.; Hansen, J.A.; Mondol, N.H. Seismic-fluid detection—A review. Earth-Sci. Rev. 2020, 210, 103347. [Google Scholar] [CrossRef]
- Hampson, D.P.; Russell, B.H.; Bankhead, B. Simultaneous inversion of pre-stack seismic data. In SEG Technical Program Expanded Abstracts 2005; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 1633–1637. [Google Scholar]
- Fawad, M.; Mondol, N.H. Monitoring geological storage of CO2: A new approach. Sci. Rep. 2021, 11, 5942. [Google Scholar] [CrossRef] [PubMed]
- Fawad, M.; Rahman, M.J.; Mondol, N.H. Seismic reservoir characterization of potential CO2 storage reservoir sandstones in Smeaheia area, Northern North Sea-Submitted for Review. J. Pet. Sci. Eng. 2020, 205, 108812. [Google Scholar] [CrossRef]
- Mondol, N.H.; Bjørlykke, K.; Jahren, J.; Høeg, K. Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Mar. Pet. Geol. 2007, 24, 289–311. [Google Scholar] [CrossRef]
- Bjørlykke, K. Sedimentary, Geochemistry. In Petroleum Geoscience; Springer: Berlin/Heidelberg, Germany, 2015; pp. 91–117. [Google Scholar]
- Sundal, A.; Nystuen, J.P.; Rørvik, K.-L.; Dypvik, H.; Aagaard, P. The Lower Jurassic Johansen Formation, northern North Sea—Depositional model and reservoir characterization for CO2 storage. Mar. Pet. Geol. 2016, 77, 1376–1401. [Google Scholar] [CrossRef]
- Bjørlykke, K. Compaction of sedimentary rocks: Shales, sandstones and carbonates. In Petroleum Geoscience; Springer: Berlin/Heidelberg, Germany, 2015; pp. 351–360. [Google Scholar]
- Fawad, M.; Mondol, N.H.; Jahren, J.; Bjørlykke, K. Microfabric and rock properties of experimentally compressed silt-clay mixtures. Mar. Pet. Geol. 2010, 27, 1698–1712. [Google Scholar] [CrossRef]
- Voltolini, M.; Wenk, H.-R.; Mondol, N.H.; Bjørlykke, K.; Jahren, J. Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures. Geophysics 2009, 74, D13–D23. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, M.K.; Mondol, N.H.; Jahren, J. Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea. Mar. Pet. Geol. 2016, 76, 344–361. [Google Scholar] [CrossRef]
- Baldwin, B.; Butler, C.O. Compaction curves. Am. Assoc. Pet. Geol. Bull. 1985, 69, 622–626. [Google Scholar]
- Magara, K. Comparison of porosity-depth relationships of shale and sandstone. J. Pet. Geol. 1980, 3, 175–185. [Google Scholar] [CrossRef]
- Mondol, N.H.; Grande, L.; Aker, E.; Berre, T.; Ørbech, T.; Duffaut, K.; Jahren, J.; Bjørlykke, K. Velocity anisotropy of a shallow mudstone core. In Second EAGE Workshop on Shales; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2010; p. cp-158. [Google Scholar]
- Mondol, N.H. Velocity anisotropy in experimentally compacted clay-silt and clay-clay mixtures. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Houston, TX, USA, 2012; pp. 1–5. [Google Scholar]
- Mondol, N.H.; Jahren, J.; Bjørlykke, K.; Brevik, I. Elastic properties of clay minerals. Lead. Edge 2008, 27, 758–770. [Google Scholar] [CrossRef]
Well Name | Structural Elements (NPD) | Upper Drake (mBSF) | Thickness (m) | Lower Drake (mBSF) | Thickness (m) | ||
---|---|---|---|---|---|---|---|
Present | Paleo * | Present | Paleo * | ||||
30/9-15 | Bjørgvin Arch | 2148 | 2328 | 79 | 2227 | 2407 | 107 |
30/9-16 | 2880 | 3045 | 100 | 2980 | 3145 | 81 | |
30/12-1 | 2998 | 3133 | 101 | 3100 | 3235 | 98 | |
31/2-1 | 1577 | 1697 | 86 | 1664 | 1784 | 57 | |
31/2-2 | 1701 | 1832 | 57 | 1759 | 1889 | 47 | |
31/2-3 | 1543 | 1933 | 68 | 1611 | 2001 | 40 | |
31/2-4 | 1542 | 1802 | 58 | 1600 | 1860 | 47 | |
31/2-5 | 1706 | 1946 | 67 | 1772 | 2012 | 64 | |
31/3-1 | 1459 | 1839 | 71 | 1530 | 1910 | 57 | |
31/3-2 | 1586 | 1906 | 83 | 1670 | 1990 | - | |
31/3-3 | 1851 | 2371 | 49 | 1900 | 2420 | 47 | |
31/4-3 | 2216 | 2386 | 59 | 2275 | 2445 | 72 | |
31/4-8 | 1937 | 2077 | 70 | 2006 | 2146 | 67 | |
31/5-2 | 1693 | 1883 | 80 | 1773 | 1963 | 61 | |
31/7-1 | 2307 | 2517 | 81 | 2388 | 2598 | 69 | |
35/11-7 | 2163 | 2358 | 65 | 2228 | 2423 | 41 | |
31/5-7 | Stord Basin | 2173 | 2523 | 74 | 2247 | 2597 | 53 |
31/6-1 | 1508 | 1838 | 76 | 1584 | 1914 | 52 | |
31/6-2 | 1649 | 2349 | 48 | 1697 | 2397 | 32 | |
31/6-3 | 1648 | 2298 | 35 | 1683 | 2333 | 33 | |
31/6-6 | 1709 | 2439 | 48 | 1756 | 2486 | 30 | |
31/6-8 | 1640 | 1970 | 99 | 1739 | 2069 | 62 | |
32/4-1 | 1304 | 2404 | 44 | 1348 | 2448 | 49 | |
31/1-1 | Lomre Terrace | 2198 | 2398 | 84 | 2282 | 2482 | 43 |
31/2-8 | 2352 | 2582 | 62 | 2414 | 2644 | 41 | |
31/4-4 | 2559 | 2559 | 72 | 2630 | 2630 | 66 | |
31/2-19S | 3272 | 3472 | 63 | 3335 | 3535 | 49 | |
35/11-2 | 3093 | 3253 | 74 | 3167 | 3327 | 58 | |
35/11-4 | 2413 | 2603 | 66 | 2479 | 2669 | 37 | |
35/11-5 | 3014 | 3194 | 66 | 3080 | 3260 | 27 | |
35/11-6 | 3238 | 3388 | 85 | 3324 | 3474 | 52 | |
30/3-3 | Oseberg Fault Block | 2908 | 3028 | 58 | 2966 | 3086 | 67 |
30/3-4R | 2760 | 2885 | 59 | 2819 | 2944 | 69 | |
30/6-4 | 2551 | 2741 | 94 | 2645 | 2835 | 75 | |
30/6-7 | 2648 | 2768 | 98 | 2746 | 2866 | 91 | |
30/6-19R | 2809 | 2934 | 49 | 2858 | 2983 | 64 | |
30/9-13S | 3259 | 3259 | 122 | 3382 | 3382 | 78 | |
30/9-28S | 3182 | 3372 | 105 | 3287 | 3477 | 73 | |
30/3-2R | Brage Horst | 2738 | 2868 | 57 | 2795 | 2925 | 68 |
30/6-5 | 2776 | 2916 | 50 | 2826 | 2966 | 63 | |
30/6-14 | 2235 | 2390 | 61 | 2296 | 2451 | 94 | |
30/6-22R | 2797 | 2902 | 56 | 2853 | 2958 | 67 | |
31/4-2 | 2186 | 2346 | 69 | 2255 | 2415 | 57 | |
30/6-11 | Faltfisk Slope | 3415 | 3505 | 75 | 3490 | 3580 | 96 |
35/10-2 | 3893 | 4018 | 62 | 3956 | 4081 | 79 | |
35/11-1 | Uer Terrace | 2172 | 2502 | 60 | 2232 | 2562 | 56 |
35/12-1 | 2531 | 3011 | 44 | 2576 | 3056 | - | |
30/2-1 | Mokkurkalve Fault Complex | 3636 | 3701 | 77 | 3713 | 3778 | 97 |
34/11-3 | Tjalve Terrace | 3965 | 3995 | 27 | 3992 | 4022 | 36 |
35/10-1 | Marflo Spur | 3102 | 3242 | 70 | 3173 | 3313 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.J.; Fawad, M.; Jahren, J.; Mondol, N.H. Influence of Depositional and Diagenetic Processes on Caprock Properties of CO2 Storage Sites in the Northern North Sea, Offshore Norway. Geosciences 2022, 12, 181. https://doi.org/10.3390/geosciences12050181
Rahman MJ, Fawad M, Jahren J, Mondol NH. Influence of Depositional and Diagenetic Processes on Caprock Properties of CO2 Storage Sites in the Northern North Sea, Offshore Norway. Geosciences. 2022; 12(5):181. https://doi.org/10.3390/geosciences12050181
Chicago/Turabian StyleRahman, Md Jamilur, Manzar Fawad, Jens Jahren, and Nazmul Haque Mondol. 2022. "Influence of Depositional and Diagenetic Processes on Caprock Properties of CO2 Storage Sites in the Northern North Sea, Offshore Norway" Geosciences 12, no. 5: 181. https://doi.org/10.3390/geosciences12050181
APA StyleRahman, M. J., Fawad, M., Jahren, J., & Mondol, N. H. (2022). Influence of Depositional and Diagenetic Processes on Caprock Properties of CO2 Storage Sites in the Northern North Sea, Offshore Norway. Geosciences, 12(5), 181. https://doi.org/10.3390/geosciences12050181