Rockfall Vulnerability of a Rural Road Network—A Methodological Approach in the Harz Mountains, Germany
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Rockfall Data
3.2. Thematic Maps
3.2.1. Morphometry
3.2.2. Material Characteristics
3.2.3. Structural Geology
3.2.4. Meteorological Conditions
3.3. Susceptibiliy Modeling and Model Validation
3.4. Assessment of Road Network Vulnerability to Rock Falls
4. Results
4.1. Landslide Susceptibilty
4.2. Landslide Vulnerability
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varnes, D.J. Slope movement types and processes. In Landslides: Analysis and Control; Schuster, R.L., Krizek, Eds.; Special Report 176; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Special Report 247; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Klose, M.; Maurischat, P.; Damm, B. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides 2016, 13, 183–199. [Google Scholar] [CrossRef]
- Schuster, R.L. Socioeconomic Significance of Landslides. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Special Report 247; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 1996; pp. 12–35. [Google Scholar]
- Kjekstad, O.; Highland, L. Economic and Social Impacts of Landslides. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 573–587. [Google Scholar]
- Schlögl, M.; Richter, G.; Avian, M.; Thaler, T.; Heiss, G.; Lenz, G.; Fuchs, S. On the nexus between landslide susceptibility and transport infrastructure—An agent-based approach. Nat. Hazards Earth Syst. Sci. 2019, 19, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Bíl, M.; Kubeček, J.; Andrášik, R. An epidemiological approach to determining the risk of road damage due to landslides. Nat. Hazards 2014, 73, 1323–1335. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Soeters, R.; Van Westen, C.J. Slope instability recognition, analysis and zonation. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Special Report 247; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Süzen, M.L.; Doyuran, V. A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environ. Geol. 2004, 45, 665–679. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomat. Nat. Hazards Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef] [Green Version]
- Kobashi, S.; Suzuki, M. Hazard Index for the Judgment of Slope Stability in the Rokko Mountain Region; Band 1; Interpraevent: Graz, Austria, 1988; pp. 223–233. [Google Scholar]
- Yin, K.L.; Yan, T.Z. Statistical prediction models for slope instability of metamorphosed rocks. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; pp. 1269–1272. [Google Scholar]
- Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Weights of evidence modeling: A new approach to mapping mineral potential. In Statistical Applications in the Earth Sciences; Agterberg, F.P., Bonham-Carter, G.F., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 1989; pp. 171–183. [Google Scholar]
- Papathoma-Köhle, M. Vulnerability curves vs. vulnerability indicators: Application of an indicator-based methodology for debris-flow hazards. Nat. Hazards Earth Syst. Sci. 2016, 16, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Berdica, K. An introduction to road vulnerability: What has been done, is done and should be done. Transp. Policy 2002, 9, 117–127. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Gems, B.; Sturm, M.; Fuchs, S. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth Sci. Rev. 2017, 171, 272–288. [Google Scholar] [CrossRef]
- Kappes, M.S.; Papathoma-Köhle, M.; Keiler, M. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 2012, 32, 577–590. [Google Scholar] [CrossRef]
- Birkmann, J. Indicators and Criteria for Measuring Vulnerability: Theoretical Bases and Requirements. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; UNU-Press: Tokyo, Japan, 2006; pp. 55–77. [Google Scholar]
- Klose, M.; Gruber, D.; Damm, B.; Gerold, G. Spatial databases and GIS as tools for regional landslide susceptibility modeling. Z. Geomorphol. 2014, 58, 1–36. [Google Scholar] [CrossRef]
- Rupp, S.; Wohlers, A.; Damm, B. Long-term relationship between landslide occurrences and precipitation in southern Lower Saxony and northern Hesse. Z. Geomorphol. 2018, 61, 327–338. [Google Scholar] [CrossRef]
- Jaeger, A.K.; Klose, M.; Damm, B. Landslides along highways: GIS-based inventory and planning issues. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015; p. 1541. Available online: https://meetingorganizer.copernicus.org/EGU2015/EGU2015-1541.pdf (accessed on 6 February 2020).
- Deutsche Wetterdienst (DWD) Climate Data Center (CDC). Hourly Station Observations of Wind Direction 10 m above Ground in Degree for Germany. Available online: https://cdc.dwd.de/portal/ (accessed on 6 February 2020).
- Mohr, K. Geologie und Minerallagerstätten des Harzes; Schweizerbart: Stuttgart, Germany, 1978. [Google Scholar]
- Damm, B. Hangrutschungen im Mittelgebirgsraum—Verdrängte “Naturgefahr”? Z. Angew. Geogr. 2000, 24, 27–34. [Google Scholar] [CrossRef]
- Damm, B.; Klose, M. The landslide database for Germany: Closing the gap at national level. Geomorphology 2015, 249, 82–93. [Google Scholar] [CrossRef]
- DSM (Digital Surface Model). Available online: https://data.opendataportal.at/ (accessed on 24 June 2021).
- Engineering Geological Map of Lower Saxony (1:50,000). Available online: https://nibis.lbeg.de/cardomap3/?TH=IGK50 (accessed on 6 February 2022).
- Geological Map of Lower Saxony (1:200,000). Available online: https://services.bgr.de/geologie/guek200 (accessed on 8 February 2022).
- Rupp, S.; Damm, B. A national rockfall dataset as a tool for analysing the spatial and temporal rockfall occurrence in Germany. Earth Surf. Process. Landf. 2020, 45, 1528–1538. [Google Scholar] [CrossRef]
- Zêzere, J.L. Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. Sci. 2002, 2, 73–82. [Google Scholar] [CrossRef]
- QGIS. Available online: https://qgis.org/de/site/ (accessed on 8 February 2022).
- Beguería, S. Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management. Nat. Hazards 2006, 37, 315–329. [Google Scholar] [CrossRef] [Green Version]
- NLStBV (Federal State Authority for Road Construction and Traffic). Map of Traffic Volumes 2015 (1:250,000). 2017. Available online: https://www.strassenbau.niedersachsen.de/startseite/aufgaben/strassenverkehr/strassenverkehrszahlung/straenverkehrszaehlung.html (accessed on 6 February 2022).
- Google Earth. Available online: https://www.google.de/intl/de/earth/index.html (accessed on 8 February 2022).
- StVO (Road Traffic Regulations of Germany). 2013 § 3 Section 3.2. Available online: https://www.gesetze-im-internet.de/stvo_2013/__3.html (accessed on 6 February 2022).
- Geofabrik. Available online: http://www.geofabrik.de/ (accessed on 8 February 2022).
- OSM Routing. Available online: https://routing.openstreetmap.de/ (accessed on 6 February 2022).
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill International: New York, NY, USA, 1980. [Google Scholar]
- Nissen, K.M.; Rupp, S.; Kreuzer, T.M.; Guse, B.; Damm, B.; Ulbrich, U. Quantification of meteorological conditions for rockfall triggers in Central Europe. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 1–18. [Google Scholar] [CrossRef]
- Winter, M.G.; Smith, J.T.; Fotopoulou, S.D.; Pitilakis, K.; Mavrouli, O.; Corominas, J.; Argyroudis, S. An expert judgement approach to determining the physical vulnerability of roads to debris flow. Bull. Eng. Geol. Environ. 2014, 73, 291–305. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Neuhäuser, B.; Ratzinger, K.; Wenzel, H.; Dominey-Howes, D. Elements at risk as a frame-work for assessing the vulnerability of communities to landslides. Nat. Hazards Earth Syst. Sci. 2007, 7, 765–779. [Google Scholar] [CrossRef]
Classes of Block Sizes | Number of Rockfalls in Class |
---|---|
<10 cm | 56 |
10–50 cm | 271 |
50–100 cm | 1 |
≥100 cm | 0 |
No info | 23 |
Ground Type | Category | Material Description |
---|---|---|
2 | Artificial infill | Different types of material: natural soil mixed with artificial and waste materials |
3 | Organic and biogenic soils | Peat, sludge, organic silt |
4–8 | Cohesive unconsolidated rock | Silt to clay, partly peat (4) |
Alluvial clay (5) | ||
Loess, loess loam (6) | ||
Till, solifluction deposits (8) | ||
11, 12 | Noncohesive unconsolidated rock | Dune sand, drift sand (11) |
Fluvial and glacial-fluvial deposits (12) | ||
14 | Sub-recent deposits of mass movements | Separated blocks, weathered |
15 | Highly soluble rocks | Gypsum |
16–20 | Slaking rocks | Claystone, siltstone, marlstone with gypsum and limestone (16) |
Claystone, siltstone, marlstone (17) | ||
Dolostone, marlstone, limestone (18) | ||
Marlstone, claystone, siltstone, sandstone (19) | ||
Limestone, sandstone, greywacke (20) | ||
21, 22 | Sedimentary rocks | Limestone, sandstone, slate (21) |
Limestone, sandstone, greywacke (22) | ||
23 | Metamorphic/Magmatic rocks | Basalt, granite, greenstone, gneiss |
Vulnerability Indicator | Category | Indicator Value | Weighting Factor |
---|---|---|---|
Mitigation | Scaling and trimming | −0.10 | 0.359041 |
<25% with structural measures 1 | −0.20 | ||
25–50% with structural measures 1 | −0.30 | ||
>50% with structural measures 1 | −0.40 | ||
Average daily traffic volume | <4000 | 0.10 | 0.237229 |
4000–8000 | 0.15 | ||
8000–12,000 | 0.20 | ||
12,000–16,000 | 0.25 | ||
>16,000 | 0.30 | ||
Average daily heavy traffic volume | <400 | 0.10 | 0.176031 |
400–800 | 0.15 | ||
800–1200 | 0.20 | ||
1200–1600 | 0.25 | ||
>1600 | 0.30 | ||
Type of road (width) | State road, narrow (5–7 m) | 0.35 | 0.119928 |
State road, two lanes (6–8 m) | 0.25 | ||
Interstate road, two lanes (6–9 m) | 0.25 | ||
Interstate road, three lanes (11–12 m) | 0.15 | ||
Interstate road, four lanes (14–16 m) | 0.10 | ||
Speed reduction 2 | <20% | 0 | 0.042860 |
20–40% | −0.10 | ||
40–60% | −0.25 | ||
60–80% | −0.30 | ||
>80% | −0.35 | ||
Length of alternative routes 3 | <200% | 0.05 | 0.064850 |
200–500% | 0.10 | ||
500–1000% | 0.20 | ||
1000–2000% | 0.30 | ||
>2000% | 0.35 |
Factor | Classes | Information Value | Total Area (%) | Landslide Area (%) |
---|---|---|---|---|
Elevation | <300 m | −0.641473 | 34.59 | 18.21 |
300–400 m | 1.362817 | 20.28 | 79.24 | |
400–500 m | −5.127046 | 13.72 | 0.08 | |
500–600 m | −1.932988 | 17.05 | 2.47 | |
600–700 m | −10.000000 | 7.81 | 0.00 | |
700–800 m | −10.000000 | 4.85 | 0.00 | |
>800 | −10.000000 | 1.71 | 0.00 | |
Slope | <15° | −1.269577 | 82.08 | 23.06 |
15–20° | 0.834263 | 8.69 | 20.02 | |
20–25° | 1.743032 | 5.55 | 31.72 | |
25–30° | 2.003805 | 2.67 | 19.83 | |
>30° | 1.678186 | 1.00 | 5.36 | |
Material characteristics | 2 | −2.980840 | 1.54 | 0.08 |
3 | −10.000000 | 0.80 | 0.00 | |
4 | −10.000000 | 0.02 | 0.00 | |
5 | −10.000000 | 1.11 | 0.00 | |
6 | −10.000000 | 4.85 | 0.00 | |
8 | −10.000000 | 7.58 | 0.00 | |
11 | 0.424239 | 6.13 | 9.37 | |
12 | 0.535791 | 21.45 | 36.66 | |
14 | −10.000000 | 0.17 | 0.00 | |
15 | −10.000000 | 0.31 | 0.00 | |
16 | −10.000000 | 2.00 | 0.00 | |
17 | −10.000000 | 0.53 | 0.00 | |
18 | −10.000000 | 0.94 | 0.00 | |
19 | −10.000000 | 0.52 | 0.00 | |
20 | −10.000000 | 0.85 | 0.00 | |
21 | −2.446112 | 16.09 | 1.39 | |
22 | 0.616785 | 28.28 | 52.40 | |
23 | −4.303761 | 6.82 | 0.09 | |
Road section orientation | N (0–11.25°) | −0.176030 | 13.04 | 10.93 |
NNE (11.25–33.75°) | −0.391955 | 11.25 | 7.60 | |
NE (33.75–56.25°) | 1.526976 | 12.03 | 55.39 | |
ENE (56.25–78.75°) | 0.230975 | 13.54 | 17.05 | |
E (78.75–101.25°) | −1.513952 | 14.19 | 3.12 | |
ESE (101.25–123.75°) | −1.687862 | 11.82 | 2.19 | |
SE (123.75–146.25°) | −1.875752 | 11.83 | 1.81 | |
Distance to faults | <500 m | −0.712056 | 32.86 | 16.12 |
500–1000 m | 0.366012 | 24.26 | 34.98 | |
1000–1500 m | 0.3360609 | 14.79 | 20.69 | |
1500–2000 m | −0.1558190 | 12.66 | 10.84 | |
>2000 m | 0.1182856 | 15.43 | 17.37 | |
Precipitation | <1000 mm | −2.492298 | 36.48 | 3.02 |
1000–1100 mm | 1.723268 | 11.34 | 63.54 | |
1100–1200 mm | 0.437078 | 11.59 | 17.94 | |
1200–1300 mm | −0.514383 | 15.73 | 9.40 | |
>1300 mm | −1.406148 | 24.86 | 6.09 | |
Ice Days | <20 | −10.000000 | 21.80 | 0.00 |
20–25 | 0.827132 | 19.38 | 44.31 | |
25–30 | −0.446209 | 11.72 | 7.50 | |
30–35 | 0.023274 | 15.93 | 16.30 | |
35–40 | 0.668763 | 16.34 | 31.88 | |
>40 | −10.000000 | 14.84 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wohlers, A.; Damm, B. Rockfall Vulnerability of a Rural Road Network—A Methodological Approach in the Harz Mountains, Germany. Geosciences 2022, 12, 170. https://doi.org/10.3390/geosciences12040170
Wohlers A, Damm B. Rockfall Vulnerability of a Rural Road Network—A Methodological Approach in the Harz Mountains, Germany. Geosciences. 2022; 12(4):170. https://doi.org/10.3390/geosciences12040170
Chicago/Turabian StyleWohlers, Annika, and Bodo Damm. 2022. "Rockfall Vulnerability of a Rural Road Network—A Methodological Approach in the Harz Mountains, Germany" Geosciences 12, no. 4: 170. https://doi.org/10.3390/geosciences12040170
APA StyleWohlers, A., & Damm, B. (2022). Rockfall Vulnerability of a Rural Road Network—A Methodological Approach in the Harz Mountains, Germany. Geosciences, 12(4), 170. https://doi.org/10.3390/geosciences12040170