Quantifying Strombolian Activity at Etna Volcano
Abstract
:1. Introduction
February 2020 Activity
2. Materials and Methods
3. Results
3.1. Field Observations and Particle Properties
3.2. Statistical Analysis
3.3. Main Explosion Dynamics
4. Discussion
4.1. General Eruption Dynamics
4.2. Strombolian Dynamics
4.3. Hazard Implications
5. Conclusions
- explosions occurred in swarms, each on average were 3 s apart, and distributed as log logistic functions, they erupt 108 kg on average;
- explosion duration and repose times were correlated, suggesting constant feeding rates. The average magma feeding rate was about 3 × 10 kg/s;
- vertical exit speeds of pyroclasts ranged from 1.3 to 47.7 m/s, with the exception of large, high intensity explosions where they reach speeds exceeding 150 m/s;
- in large scale explosions, particle size distribution had median values ranging from −10 to −9 phi, with good sorting;
- the magma feeding rate partly converted during the lava effusion rate, implying a regime of decoupled degassing controlling the mild explosive activity;
- both lava emission and the explosive system should have been in a steady state;
- despite its low intensity, the study of the September 2019–February 2020 eruption provided significant information for a better assessment of the hazard associated with Strombolian activity at Etna.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef] [Green Version]
- Andronico, D.; Cannata, A.; Di Grazia, G.; Ferrari, F. The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard. Earth-Sci. Rev. 2021, 220, 103686. [Google Scholar] [CrossRef]
- Scollo, S.; Coltelli, M.; Bonadonna, C.; Del Carlo, P. Tephra hazard assessment at Mt. Etna (Italy). Nat. Haz. Earth Syst. Sci. 2013, 13, 3221–3233. [Google Scholar] [CrossRef] [Green Version]
- Blong, R.J. Volcanic Hazards: A Sourcebook on the Effects of Eruptions; Academic Press: Orlando, FL, USA, 1984; 441p. [Google Scholar]
- Taddeucci, J.; Scarlato, P.; Capponi, A.; Del Bello, E.; Cimarelli, C.; Palladino, D.M.; Kueppers, U. High-speed imaging of Strombolian explosions: The ejection velocity of pyroclasts. Geophys. Res. Lett. 2012, 39, L02301. [Google Scholar] [CrossRef] [Green Version]
- Cobden, L.; Goes, S.; Ravenna, M.; Styles, E.; Cammarano, F.; Gallagher, K.; Connolly, J.A.D. Anatomy of a Strombolian eruption: Inferences from particle data recorded with thermal video. J. Geophys. Res. Solid Earth 2015, 120, 2367–2387. [Google Scholar] [CrossRef]
- Steinberg, G.; Babenko, J. Experimental velocity and density determination of volcanic gases during eruption. J. Volcanol. Geotherm. Res. 1978, 3, 89–98. [Google Scholar] [CrossRef]
- Ripepe, M.; Rossi, M.; Saccorotti, G. Image processing of explosive activity at Stromboli. J. Volcanol. Geotherm. Res. 1993, 54, 335–351. [Google Scholar] [CrossRef]
- Taddeucci, J.; Edmonds, M.; Houghton, B.; James, M.R.; Vergniolle, S. Chapter 27—Hawaiian and Strombolian Eruptions, 2nd ed.; The Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: Orlando, FL, USA, 2015; pp. 485–503. [Google Scholar]
- Pyle, D.M.; Mather, T.A.; Biggs, J. Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling—Introduction. Geol. Soc. Lond. Spéc. Publ. 2013, 380, 1–13. [Google Scholar] [CrossRef]
- Sassen, K.; Zhu, J.; Webley, P.; Dean, K.; Cobb, P. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophys. Res. Lett. 2007, 34, L08803. [Google Scholar] [CrossRef]
- Mereu, L.; Scollo, S.; Mori, S.; Boselli, A.; Leto, G.; Marzano, F.S. Maximum-Likelihood Retrieval of Volcanic Ash Concentration and Particle Size from Ground-Based Scanning Lidar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5824–5842. [Google Scholar] [CrossRef]
- Prata, A.J.; Grant, I.F. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull. Volcanol. 2007, 69, 769–784. [Google Scholar] [CrossRef]
- Pioli, L.; Harris, A.J.L. Real-Time Geophysical Monitoring of Particle Size Distribution During Volcanic Explosions at Stromboli Volcano (Italy). Front. Earth Sci. 2019, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- La Spina, A.; Burton, M.R.; Harig, R.; Mure, F.; Rusch, P.; Jordan, M.; Caltabiano, T. New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system. J. Volcanol. Geoth. Res. 2013, 249, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Pering, T.D.; Tamburello, G.; McGonigle, A.J.S.; Aiuppa, A.; James, M.R.; Sciotto, M.; Cannata, A.; Patanè, D. Dynamics of mild strombolian activity on Mt. Etna. J. Volcanol. Geoth. Res. 2015, 300, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, D.; Taddeucci, J.; Scarlato, P.; Moroni, M.; Freda, C.; Gaeta, M.; Palladino, D.M. Pyroclast Tracking Velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. J. Geophys. Res. Solid Earth 2014, 119, 5384–5397. [Google Scholar] [CrossRef]
- Witsil, A.J.; Johnson, J.B. Analyzing Continuous Infrasound from Stromboli Volcano, Italy Using Unsupervised Machine Learning. Comput. Geosci. 2020, 140, 104494-1–104494-12. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption column height estimation of the 2011-2013 Etna lava fountains. Ann. Geophys. 2014, 57, S0214. [Google Scholar] [CrossRef] [Green Version]
- Corsaro, R.A.; Andronico, D.; Behncke, B.; Branca, S.; Caltabiano, T.; Ciancitto, F.; Cristaldi, A.; De Beni, E.; La Spina, A.; Lodato, L.; et al. Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics. J. Volcanol. Geoth. Res. 2017, 341, 53–69. [Google Scholar] [CrossRef]
- Barsotti, S.; Andronico, D.; Neri, A.; Del Carlo, P.; Baxter, P.J.; Aspinall, W.P.; Hincks, T. Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J. Volcanol. Geotherm. Res. 2010, 192, 85–96. [Google Scholar] [CrossRef]
- Osman, S.; Rossi, E.; Bonadonna, C.; Frischknecht, C.; Andronico, D.; Cioni, R. Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Nat. Haz. Earth Syst. Sci. 2019, 19, 589–610. [Google Scholar] [CrossRef] [Green Version]
- Andronico, D.; Del Carlo, P. PM10 measurements in urban settlements after lava fountain episodes at Mt. Etna, Italy: Pilot test to assess volcanic ash hazard to human health. Nat. Hazards Earth Syst. Sci. 2016, 16, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Rogic, N.; Cappello, A.; Ferrucci, F. Role of Emissivity in Lava Flow ‘Distance-to-Run’ Estimates from Satellite-Based Volcano Monitoring. Remote Sens. 2019, 11, 662. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Spata, G.; D’Agostino, M.; Coltelli, M. Monitoring and forecasting Etna volcanic plumes. Nat. Hazards Earth Syst. Sci. 2009, 9, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- World Heritage Centre. Understanding World Heritage in Europe and North America; Final Report on the Second Cycle of Periodic Reporting, 2012–2015; World Heritage Reports: Paris, France, 2016; p. 43. [Google Scholar]
- Bisson, M.; Spinetti, C.; Andronico, D.; Palaseanu-Lovejoy, M.; Buongiorno, M.F.; Alexandrov, O.; Cecere, T. Ten years of volcanic activity at Mt Etna: High-resolution mapping and accurate quantification of the morphological changes by Pleiades and Lidar data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102369. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Corradino, C.; Del Negro, C.; Negro, D. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data 2019, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Rittmann, A. Les Volcans et Leur Activité; Masson et Cie: Paris, France, 1963; 461p. [Google Scholar]
- Chester, D.K.; Duncan, A.M.; Guest, J.E.; Kilburn, C. Mount Etna: The Anatomy of a Volcano; Chapman and Hall: London, UK, 1985. [Google Scholar]
- Behncke, B.; Neri, M.; Pecora, E.; Zanon, V. The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001. Bull. Volcanol. 2006, 69, 149–173. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Carleo, L.; Currenti, G.; Sicali, A. Magma Migration at Shallower Levels and Lava Fountains Sequence as Revealed by Borehole Dilatometers on Etna Volcano. Front. Earth Sci. 2021, 9, 800. [Google Scholar] [CrossRef]
- De Beni, E.; Behncke, B.; Branca, S.; Nicolosi, I.; Carluccio, R.; Caracciolo, F.D.; Chiappini, M. The continuing story of Etna’s New Southeast Crater (2012–2014): Evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 2015, 303, 175–186. [Google Scholar] [CrossRef]
- De Beni, E.; Cantarero, M.; Messina, A. UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. J. Volcanol. Geotherm. Res. 2018, 369, 250–262. [Google Scholar] [CrossRef]
- De Beni, E.; Cantarero, M.; Neri, M.; Messina, A. Lava flows of Mt Etna, Italy: The 2019 eruption within the context of the last two decades (1999–2019). J. Maps 2021, 3, 17. [Google Scholar] [CrossRef]
- Coltelli, M.; Proietti, C.; Branca, S.; Marsella, M.; Andronico, D.; Lodato, L. Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J. Geophys. Res. Earth Surf. 2007, 112, F02029. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M.J.; Pioli, L.; Harris, A.J.L.; Gurioli, L.; Thivet, S. Magma fragmentation and particle size distributions in low intensity mafic explosions: The July/August 2015 Piton de la Fournaise eruption. Sci. Rep. 2020, 10, 13953. [Google Scholar] [CrossRef]
- Edwards, M.J.; Eychenne, J.; Pioli, L. Formation and Dispersal of Ash at Open Conduit Basaltic Volcanoes: Lessons from Etna. Front. Earth Sci. 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Houghton, B.F.; Taddeucci, J.; Andronico, D.; Gonnermann, H.M.; Pistolesi, M.; Patrick, M.R.; Orr, T.R.; Swanson, D.A.; Edmonds, M.; Gaudin, D.; et al. Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles. Geology 2016, 44, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Donnadieu, F. Systematic retrieval of ejecta velocities and gas fluxes at Etna volcano using L-Band Doppler radar. Bull. Volcanol. 2011, 73, 1139–1145. [Google Scholar] [CrossRef]
- Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C.B.; Andronico, D.; Harris, A.J.L.; Ripepe, M. Quantifying unsteadiness and dynamics of pulsatory volcanic activity. Earth Planet Sci. Lett. 2016, 444, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Wallis, G.B. One Dimensional Two Phase Flow; McGraw-Hill: New York, NY, USA, 1969; 408p. [Google Scholar]
- Azzopardi, B.J.; Pioli, L.; Abdulkareem, L.A. The properties of large bubbles rising in very viscous liquids in vertical columns. Int. J. Multiph. Flow 2014, 67, 160–173. [Google Scholar] [CrossRef]
- James, M.R.; Lane, S.J.; Wilson, L.; Corder, S.B. Degassing at low magma-viscosity volcanoes: Quantifying the transition between passive bubble-burst and Strombolian eruption. J. Volcanol. Geoth. Res. 2009, 180, 81–88. [Google Scholar] [CrossRef]
- Davies, R.M.; Taylor, G.I. The mechanics of large bubbles rising through liquids in tubes. Proc. R. Soc. Lond. 1950, A200, 375–390. [Google Scholar]
- Pering, T.; McGonigle, A.; James, M.; Capponi, A.; Lane, S.; Tamburello, G.; Aiuppa, A. The dynamics of slug trains in volcanic conduits: Evidence for expansion driven slug coalescence. J. Volcanol. Geotherm. Res. 2017, 348, 26–35. [Google Scholar] [CrossRef]
- Hasan, A.H.; Mohammed, S.K.; Pioli, L.; Hewakandamby, B.N.; Azzopardi, B.J. Gas rising through a large diameter column of very viscous liquid: Flow patterns and their dynamic characteristics. Int. J. Multiph. Flow 2019, 116, 1–14. [Google Scholar] [CrossRef]
- Maiti, K.; Kayal, S. Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications. Ann. Data Sci. 2020, 1–40. [Google Scholar] [CrossRef]
- Pioli, L.; Azzopardi, B.; Cashman, K. Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. J. Volcanol. Geotherm. Res. 2009, 186, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Pering, T.D.; Mcgonigle, A.; James, M.R.; Tamburello, G.; Aiuppa, A.; Donne, D.D.; Ripepe, M. Conduit dynamics and post explosion degassing on Stromboli: A combined UV camera and numerical modeling treatment. Geophys. Res. Lett. 2016, 43, 5009–5016. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, D.; Taddeucci, J.; Scarlato, P.; Harris, A.; Bombrun, M.; Del Bello, E.; Ricci, T. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: The example of Stromboli Volcano (Italy). Bull. Volcanol. 2017, 79, 24. [Google Scholar] [CrossRef]
- Pering, T.D.; McGonigle, A.J.S. Combining Spherical-Cap and Taylor Bubble Fluid Dynamics with Plume Measurements to Characterize Basaltic Degassing. Geosciences 2018, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Reitz, R.D. Atomization and other Breakup Regimes of a Liquid Jet. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1978. [Google Scholar]
- Jones, T.J.; Reynolds, C.D.; Boothroyd, S.C. Fluid dynamic induced break-up during volcanic eruptions. Nat. Commun. 2019, 10, 3828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, A.H.; McDonell, V.G. Atomisation and Sprays; CRC Press: Boca Raton, FL, USA, 2017; 300p. [Google Scholar]
- Gurioli, L.; Colo’, L.; Bollasina, A.J.; Harris, A.J.L.; Whittington, A.; Ripepe, M. Dynamics of Strombolian explosions: Inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J. Geophys. Res. Solid Earth 2014, 119, 319–345. [Google Scholar] [CrossRef]
- Capponi, A.; Taddeucci, J.; Scarlato, P.; Palladino, D.M. Recycled ejecta modulating Strombolian explosions. Bull. Volcanol. 2016, 78, 13. [Google Scholar] [CrossRef] [Green Version]
- Alatorre-Ibargüengoitia, M.A.; Scheu, B.; Dingwell, D.B.; Delgado-Granados, H.; Taddeucci, J. Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet. Sci. Lett. 2010, 291, 60–69. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Cristaldi, A. Unexpected hazards from tephra fallouts at Mt Etna: The 23 November 2013 lava fountain. J. Volcanol. Geotherm. Res. 2015, 304, 118–125. [Google Scholar] [CrossRef]
- Behncke, B.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 2014, 270, 10–21. [Google Scholar] [CrossRef]
Video | Time | Duration (mins) | Explosions (n) | Distance from Vent (m) | hFOV × VFOV(m) |
---|---|---|---|---|---|
1 | 12:39 | 1:57 | 34 | 136 | 32.6 × 18.4 |
2 | 13:22 | 4:53 | 76 | 403 | 169.0 × 95.0 |
3 | 13:29 | 3:58 | 71 | 403 | 48.0 × 27.0 * 32.6 × 18.4.0 * |
3 | 13:58 | 3:41 | 41 | 136 | 122.9 × 69.12 * 55.7 × 31.4 |
Explosion Onset | Explosion End | Repose Time between Explosions Rt(s) | Time between Explosions Te (s) | Explosion Duration |
---|---|---|---|---|
Frame showing the first pyroclast leaving the vent | Frame showing the last pyrocast leaving the vent | Number of frames between consecutive explosions onset/fps | Number of frames between end and onset of two consecutive explosions/fps | Number of frames between explosion onset and end/fps |
Video | Explosion Duration (s) | Rt (s) | Rt (s) |
---|---|---|---|
Median (St Dev) | Median (St Dev) | Median (St Dev) | |
1 | 1.2 (1.1) | 3.1 (2.0) | 2.1 (1.4) |
2 | 1.8 (1.6) | 3.4 (1.8) | 1.4 (1.1) |
3 | 1.6 (1.1) | 3.0 (1.7) | 1.2 (1.3) |
4 | 1.2 (1.6) | 5.0 (2.6) | 3.5 (2.1) |
Label | Phase | Time (s) | Max 2D Speed (m/s) | GSD Mdphi (Sorting) |
---|---|---|---|---|
1e | Onset (gas emission) | 0 | 260 | |
First Pulse | 0.02 | 180 | −8.8 (0.82) | |
Second Pulse | 0.24 | 160 | ||
End | 2.36 | |||
2e | First Pulse | 0 | 148.8 | |
Second pulse | 0.16 | 107.2 | −8.8 (0.97) | |
Sustained Phase | 0.32 | 122.5 | ||
End | 3.06 | |||
3e | First Pulse | 0 | 68.9 | |
Intense degassing | 0.92 | 17.9 | −9.2 (1.08) | |
Sustained Phase | 1.14 | 83.1 | ||
End | 2.56 | |||
4e | First Pulse | 0 | 107.6 | |
Sustained Phase | 0.24 | 41.1 | −10.1 (0.61) | |
End | 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pioli, L.; Palmas, M.; Behncke, B.; De Beni, E.; Cantarero, M.; Scollo, S. Quantifying Strombolian Activity at Etna Volcano. Geosciences 2022, 12, 163. https://doi.org/10.3390/geosciences12040163
Pioli L, Palmas M, Behncke B, De Beni E, Cantarero M, Scollo S. Quantifying Strombolian Activity at Etna Volcano. Geosciences. 2022; 12(4):163. https://doi.org/10.3390/geosciences12040163
Chicago/Turabian StylePioli, Laura, Marco Palmas, Boris Behncke, Emanuela De Beni, Massimo Cantarero, and Simona Scollo. 2022. "Quantifying Strombolian Activity at Etna Volcano" Geosciences 12, no. 4: 163. https://doi.org/10.3390/geosciences12040163
APA StylePioli, L., Palmas, M., Behncke, B., De Beni, E., Cantarero, M., & Scollo, S. (2022). Quantifying Strombolian Activity at Etna Volcano. Geosciences, 12(4), 163. https://doi.org/10.3390/geosciences12040163