Mantle Xenoliths from Huanul Volcano (Central-West Argentina): A Poorly Depleted Mantle Source under Southern Payenia
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Results
4.1. Petrography
4.2. Mineral Phases Major Elements
4.3. Clinopyroxene Trace Elements
4.4. Geothermobarometry
5. Discussion
5.1. Primary Poorly Depleted Spinel-Facies Mantle Column beneath Huanul Volcano
5.2. Xenolith-Melt Interaction during Magma Ascent
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbieri, M.A.; Rivalenti, G.; Cingolani, C.; Vanucci, R.; Kempton, P. Geochemical and isotope constraints on the composition of the mantle lithosphere in Patagonia (Argentina, Chile). In Actas of Second South American Symposium on Isotope Geology; Servicio Geologico Minero Argentino: Carlos Paz, Argentina, 1999; Volume 2, pp. 163–166. ISSN 0328-2325. [Google Scholar]
- Bertotto, G.W. Cerro Agua Poca, un cono basáltico cuaternario portador de xenolitos ultramáficos, en el oeste de la provincia de La Pampa, Argentina. Rev. Asoc. Geol. Argent. 2000, 55, 59–71. [Google Scholar]
- Rivalenti, G.; Mazzuchelli, M.; Laurora, A.; Ciuffi, S.; Zanetti, A.; Vannucci, R.; Cingolani, C.A. The back arc mantle lithosphere in Patagonia, South America. J. S. Am. Earth Sci. 2004, 17, 121–152. [Google Scholar] [CrossRef]
- Bjerg, E.A.; Ntaflos, T.; Kurat, G.; Dobosi, G.; Labudia, C. The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts. J. S. Am. Earth Sci. 2005, 18, 125–145. [Google Scholar] [CrossRef]
- Schilling, M.E.; Carlson, R.W.; Conceição, R.V.; Dantas, C.; Bertotto, G.W.; Koester, E. Re–Os isotope constraints on subcontinental lithospheric mantle evolution of southern South America. Earth Planet. Sci. Lett. 2008, 268, 89–101. [Google Scholar] [CrossRef]
- Schilling, M.A.; Carlson, R.W.; Tassara, A.; Conceição, R.V.; Bertotto, G.W.; Vásquez, M.; Muñoz, D.; Jalowitzki, T.; Gervasoni, F.; Morata, D. The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambrian Res. 2017, 294, 15–32. [Google Scholar] [CrossRef]
- Jalowitzki, T.L.R.; Conceiçao, R.V.; Orihashi, Y.; Bertotto, G.W.; Nakai, S.; Schilling, M. Evoluçao geoquímica de Peridotitos e Piroxenitos do Manto Litosférico Subcontinental do vulcão Agua Poca, Terreno Cuyania, Argentina. Pesqui. Geociências 2010, 37, 143–167. [Google Scholar] [CrossRef] [Green Version]
- Jalowitzki, T.; Sumino, H.; Conceição, R.V.; Orihashi, Y.; Nagao, K.; Bertotto, G.W.; Balbinot, E.; Schilling, M.E.; Gervasoni, F. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia. Earth Planet. Sci. Lett. 2016, 450, 263–273. [Google Scholar] [CrossRef]
- Jalowitzki, T.; Gervasoni, F.; Conceição, R.V.; Orihashi, Y.; Bertotto, G.W.; Sumino, H.; Schilling, M.E.; Nagao, K.; Morata, D.; Sylvester, P. Slab-derived components in the subcontinental lithospheric mantle beneath Chilean Patagonia: Geochemistry and Sr–Nd–Pb isotopes of mantle xenoliths and host basalt. Lithos 2017, 292–293, 179–197. [Google Scholar] [CrossRef]
- Bertotto, G.W.; Mazzucchelli, M.; Zanetti, A.; Vannucci, R. Petrology and geochemistry of the back-arc lithospheric mantle beneath eastern Payunia (La Pampa, Argentina): Evidence from Agua Poca peridotite xenoliths. Geochem. J. 2013, 47, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Bertotto, G.W.; Mazzucchelli, M.; Zanetti, A.; Ponce, A.D.; Giovanardi, T.; Brunelli, D.; Bernardi, M.I.; Hémond, C.; Cipriani, A. Mantle heterogeneities produced by open-system melting and melt/rock reactions in Patagonian extra-Andean backarc mantle (Paso de Indios, Argentina). J. S. Am. Earth Sci. 2021, 106, 103002. [Google Scholar] [CrossRef]
- Ponce, A.; Bertotto, G.W.; Zanetti, A.; Brunelli, D.; Giovanardi, T.; Aragón, E.; Bernardi, M.; Hémond, C.; Mazzucchelli, M. Short-scale variability of the SCLM beneath the extra-Andean back arc (Paso de Indios, Argentina): Evidence from spinel-facies mantle xenoliths. Open Geosci. 2015, 7, 362–385. [Google Scholar] [CrossRef] [Green Version]
- Mazzucchelli, M.; Cipriani, A.; Hémond, C.; Zanetti, A.; Bertotto, G.W.; Cingolani, C.A. Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences. Lithos 2016, 248–251, 257–271. [Google Scholar] [CrossRef]
- Melchiorre, M.; Faccini, B.; Grégoire, M.; Benoit, M.; Casetta, F.; Coltorti, M. Melting and metasomatism/refertilisation processes in the Patagonian sub-continental lithospheric mantle: A review. Lithos 2020, 354–355, 105324. [Google Scholar] [CrossRef]
- Novais-Rodrigues, E.; Jalowitzki, T.; Gervasoni, F.; Sumino, H.; Bussweiler, Y.; Klemme, S.; Berndt, J.; Conceição, R.V.; Schilling, M.E.; Bertotto, G.W.; et al. Partial melting and subduction-related metasomatism recorded by geochemical and isotope (He-Ne-Ar-Sr-Nd) compositions of spinel lherzolite xenoliths from Coyhaique, Chilean Patagonia. Gondwana Res. 2021, 98, 257–276. [Google Scholar] [CrossRef]
- Kilian, R.; Stern, C.R. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. Eur. J. Mineral. 2002, 14, 25–36. [Google Scholar] [CrossRef]
- Ntaflos, T.; Bjerg, E.A.; Labudia, C.H.; Kurat, G. Depleted lithosphere from the mantle wedge beneath Tres Lagos, southern Patagonia, Argentina. Lithos 2007, 94, 46–65. [Google Scholar] [CrossRef]
- Gervasoni, F.; Conceição, R.V.; Jalowitzki, T.L.R.; Schilling, M.E.; Orihashi, Y.; Nakai, S.; Sylvester, P. Heterogeneidades do manto litosférico subcontinental no extremo sul da Placa Sul-americana: Influência da subducção atual e interações litosfera-astenosfera sob o Campo Vulcânico de Pali Aike. Pesqui. Geocienc. 2012, 39, 269–285. [Google Scholar] [CrossRef]
- Faccini, B.; Bonadiman, C.; Coltorti, M.; Gregoire, M.; Siena, F. Oceanic material recycled within the Sub-Patagonian Lithospheric Mantle (Cerro del Fraile, Argentina). J. Petrol. 2013, 6, 1211–1258. [Google Scholar] [CrossRef] [Green Version]
- Chilson-Parks, B.H.; Calabozo, F.M.; Saal, A.E.; Wang, Z.; Mallick, S.; Petrinovic, I.A.; Frey, F.A. The signature of metasomatized subcontinental lithospheric mantle in the basaltic magmatism of the Payenia volcanic province, Argentina. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010071. [Google Scholar] [CrossRef]
- Bernardi, M.I.; Bertotto, G.W.; Jalowitzki, T.R.L.; Orihashi, Y.; Ponce, A.D. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina. J. Volcanol. Geotherm. Res. 2015, 293, 46–56. [Google Scholar] [CrossRef]
- Cobbold, P.R.; Rossello, E.A. Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar. Pet. Geol. 2003, 20, 429–443. [Google Scholar] [CrossRef]
- Kay, S.M.; Burns, W.M.; Copeland, P.; Mancilla, O. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35–39° S Lat.); Kay, S.M., Ramos, V.A., Eds.; Special Paper; Geological Society of America: Boulder, CO, USA, 2006; Volume 407, pp. 67–96. [Google Scholar]
- Galland, O.; Hallot, E.; Cobbold, P.R.; Buffet, G. Volcanismin a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquen Province, Argentina). Tectonics 2007, 26, TC4010. [Google Scholar] [CrossRef] [Green Version]
- Folguera, A.; Naranjo, J.A.; Orihashi, Y.; Sumino, H.; Nagao, K.; Polanco, E.; Ramos, V.A. Retroarc volcanism in the northern San Rafael block (34–35°30′ S), southern Central Andes: Occurrence, age, and tectonic setting. J. Volcanol. Geotherm. Res. 2009, 186, 169–185. [Google Scholar] [CrossRef]
- Quidelleur, X.; Carlut, J.; Tchilinguirian, P.; Germa, A.; Gillot, P.Y. Paleomagnetic directions from mid-latitude sites in the southern hemisphere (Argentina): Contribution to time averaged field models. Phys. Earth Planet. Inter. 2009, 172, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Germa, A.; Quidelleur, X.; Gillot, P.Y.; Tchilinguirian, P. Volcanic evolution of the back-arc Pleistocene Payun Matru volcanic field (Argentina). J. S. Am. Earth Sci. 2010, 29, 717–730. [Google Scholar] [CrossRef]
- Gudnason, J.; Holm, P.M.; Søager, N.; Llambías, E.J. Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J. S. Ameraican Earth Sci. 2012, 37, 191–201. [Google Scholar] [CrossRef]
- Ramos, V.A.; Folguera, A. Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In The Neuquén Basin: A Case Study in Sequence Stratigraphy and Basin Dynamics; Veiga, G., Spalletti, L.A., Howell, J.A., Eds.; Special Publication; Geological Society: Boulder, CO, USA, 2005; Volume 252, pp. 15–35. [Google Scholar]
- Ramos, V.A.; Kay, S.M. Overview of the tectonic evolution of the Southern Central Andes of Mendoza and Neuquén (35–39° S latitude). In Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35–39° S); Kay, S.M., Ramos, V.A., Eds.; Special Publication; Geological Society of America: Boulder, CO, USA, 2006; Volume 407, pp. 1–18. [Google Scholar]
- Bermúdez, A.; Delpino, D.; Frey, F.; Saal, A. Los basaltos de retroarco extraandinos. In Geología y Recursos Naturales de Mendoza, Relatorio. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos; Ramos, V.A., Ed.; Asociación Geológica: Buenos Aires, Argentina, 1993; pp. 161–173. [Google Scholar]
- James, D.E.; Sacks, I.S. Cenozoic formation of the Central Andes: A geophysical perspective. In Geology and Ore Deposits of the Central Andes; Skinner, B.J., Ed.; Special Publication; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 7, pp. 1–26. [Google Scholar]
- Kay, S.M.; Gorring, M.; Ramos, V. Magmatic sources, setting and causes of Eocene to recent Patagonian plateau magmatism (36° S to 52° S latitude). Rev. Asoc. Geol. Argent. 2004, 59, 556–568. [Google Scholar]
- Kay, S.M.; Godoy, E.; Kurtz, A. Episodic arcmigration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 2005, 117, 67–88. [Google Scholar] [CrossRef]
- Bernardi, M.I.; Bertotto, G.W.; Ponce, A.D.; Orihashi, Y.; Sumino, H. Volcanology and inflation structures of an extensive basaltic lava flow in the Payenia Volcanic Province, extra-Andean back arc of Argentina. Andean Geol. 2019, 46, 279–299. [Google Scholar] [CrossRef]
- Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F.A. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina). Geochem. Geophys. Geosyst. 2008, 9, Q09002. [Google Scholar] [CrossRef] [Green Version]
- Risso, C.; Németh, K.; Combina, A.M.; Nullo, F.; Drosina, M. The role of phreatomagmatism in a Plio–Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J. Volcanol. Geotherm. Res. 2008, 169, 61–86. [Google Scholar] [CrossRef]
- Inbar, M.; Risso, C. A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, south-central Andes, Argentina. Z. Geomorphol. 2001, 45, 321–343. [Google Scholar] [CrossRef]
- Bertotto, G.W.; Bjerg, E.A.; Cingolani, C.A. Hawaiian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina. J. Volcanol. Geotherm. Res. 2006, 158, 430–444. [Google Scholar] [CrossRef]
- Bertotto, G.W.; Orihashi, Y.; Nagao, K.; Motoki, A. New K-Ar ages on retroarc basalts of Mendoza-La Pampa. In Proceedings of the Segundo Encuentro Científico del ICES, Buenos Aires, Argentina, 28–31 November 2006. [Google Scholar]
- Bertotto, G.W.; Cingolani, C.A.; Bjerg, E.A. Geochemical variations in Cenozoic back-arc basalts at the border of La Pampa and Mendoza provinces, Argentina. J. S. Am. Earth Sci. 2009, 28, 360–373. [Google Scholar] [CrossRef]
- Bernardi, M.I. Petrología y Volcanología de los Flujos Basálticos Neógeno-Cuaternarios del Retroarco Extraandino Entre los 36° y 37°30’LS, Provincias de Mendoza y La Pampa, Argentina. Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2016; 353p. [Google Scholar]
- Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kyser, K.T. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America. Contrib. Mineral. Petrol. 1990, 104, 294–308. [Google Scholar] [CrossRef]
- Giovanardi, T.; Zanetti, A.; Dallai, L.; Morishita, T.; Hémond, C.; Mazzucchelli, M. Evidence of subduction-related components in sapphirine-bearing gabbroic dykes (Finero phlogopite–peridotite): Insights into the source of the Triassic–Jurassic magmatism at the Europe–Africa boundary. Lithos 2020, 356–357, 105366. [Google Scholar] [CrossRef]
- Giovanardi, T.; Mazzucchelli, M.; Zanetti, A.; Langone, A.; Tiepolo, M.; Cipriani, A. Occurrence of phlogopite in the finero mafic layered complex. Cent. Eur. J. Geosci. 2014, 6, 588–613. [Google Scholar] [CrossRef]
- Harte, B. Rock nomenclature with particular relation to deformation and recrystallization textures in olivine bearing xenoliths. J. Geol. 1977, 85, 279–288. [Google Scholar] [CrossRef]
- Lyubetskaya, T.; Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 2007, 112, B03211. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A., Norry, M., Eds.; Special Publication; Geological Society: Boulder, CO, USA, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Ionov, D.A.; Bodinier, J.L.; Mukasa, S.B.; Zanetti, A. Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J. Petrol. 2002, 43, 2219–2259. [Google Scholar] [CrossRef]
- Wells, P.R. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 1977, 62, 129–140. [Google Scholar] [CrossRef]
- Mercier, J.-C.C. Single-pyroxene thermobarometry. Tectonophysics 1980, 70, 1–37. [Google Scholar] [CrossRef]
- Brey, G.; Köhler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Taylor, W.R. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrb. Mineral. Abh. 1998, 172, 381–408. [Google Scholar] [CrossRef]
- Nimis, P.; Grütter, H. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Mineral. Petrol. 2010, 159, 411–427. [Google Scholar] [CrossRef]
- Yang, H.-J.; Frey, F.A.; Weis, D.; Giret, A.; Pyle, D.; Michon, G. Petrogenesis of the Flood Basalts Forming the Northern Kerguelen Archipelago: Implications for the Kerguelen Plume. J. Petrol. 1998, 39, 711–748. [Google Scholar] [CrossRef]
- Wang, X.; Hou, T.; Wang, M.; Zhang, C.; Zhang, Z.; Pan, R.; Marxer, F.; Zhang, H. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. Eur. J. Mineral. 2021, 33, 621–637. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and Barometers for Volcanic Systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Hasterok, D.; Chapman, D. Heat production and geotherms for the continental lithosphere. Earth Planet. Sci. Lett. 2011, 307, 59–70. [Google Scholar] [CrossRef]
- Batanova, V.G.; Suhr, G.; Sobolev, V. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes. Geochim. Cosmochim. Acta 1998, 62, 853–866. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.E.; Dick, H.J.B.; Hofmann, A.W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 2001, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M. Global variations in abyssal peridotite compositions. Lithos 2016, 248–251, 193–219. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Ramos, V.A.; Folguera, A. Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting. J. Volcanol. Geotherm. Res. 2011, 201, 53–64. [Google Scholar] [CrossRef]
- Gianni, G.M.; García, H.P.A.; Lupari, M.; Pesce, A.; Folguera, A. Plume overriding triggers shallow subduction and orogeny in the southern Central Andes. Gondwana Res. 2017, 49, 387–395. [Google Scholar] [CrossRef]
- Rivalenti, G.; Mazzucchelli, M.; Zanetti, A.; Vannucci, R.; Bollinger, C.; Hémond, C.; Bertotto, G.W. Xenoliths from Cerro de los Chenques (Patagonia): An example of slab-related metasomatism in the backarc lithospheric mantle. Lithos 2007, 99, 45–67. [Google Scholar] [CrossRef]
- Bonadiman, C.; Coltorti, M.; Beccaluva, L.; Siena, F. Kimberlite-like Metasomatism and ‘Garnet Signature’ in Spinel-peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere? J. Petrol. 2005, 46, 2465–2493. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.S.J.; Dingwell, D.B. Experimental peridotite–melt reaction at one atmosphere: A textural and chemical study. Contrib. Mineral. Petrol. 2008, 155, 199–214. [Google Scholar] [CrossRef]
- Pan, S.; Zheng, J.; Yin, Z.; Griffin, W.L.; Xia, M.; Lin, A.; Zhang, H. Spongy texture in mantle clinopyroxene records decompression-induced melting. Lithos 2018, 320–321, 144–154. [Google Scholar] [CrossRef]
Sample | Classification | Texture | % Ol | % Opx | % Cpx | % Sp | % Veins |
---|---|---|---|---|---|---|---|
HU2 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 62.45 | 20.02 | 14.47 | 3.06 | 0.00 |
HU11 | spinel-bearing lherzolite | Porphyroclastic | 68.21 | 13.79 | 10.48 | 4.45 | 3.08 |
HU12 | spinel-bearing lherzolite | Porphyroclastic | 56.10 | 12.91 | 21.93 | 3.48 | 5.58 |
HU13 | spinel-bearing lherzolite | Granuloblastic | 61.39 | 9.98 | 17.10 | 2.09 | 9.45 |
HU14 | spinel-bearing lherzolite | Granuloblastic | 67.23 | 19.77 | 7.93 | 2.37 | 2.70 |
HU15 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 84 | 5.27 | 7.06 | 2.09 | 1.09 |
HU17 | spinel-bearing lherzolite | Porphyroclastic | 66.04 | 22.13 | 9.20 | 2.63 | 0.00 |
HU19 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 50.55 | 32.77 | 12.47 | 2.73 | 1.48 |
HU20 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 63.41 | 14.56 | 17.37 | 2.04 | 2.62 |
HU21 | spinel-bearing lherzolite | Porphyroclastic | 55.96 | 23.84 | 13.14 | 2.93 | 4.12 |
HU22 | spinel-bearing lherzolite | Porphyroclastic | 47 | 29.21 | 15.74 | 3.95 | 4.40 |
HU23 | spinel-bearing lherzolite | Porphyroclastic | 83.47 | 5.49 | 6.13 | 0.38 | 4.53 |
HU25 | spinel-bearing lherzolite | Granuloblastic | 66.96 | 21.96 | 6.03 | 1.84 | 3.22 |
HU30 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 55.3 | 26.2 | 11.1 | 4.4 | 3.1 |
HU32 | spinel-bearing lherzolite | Mosaic-porphyroclastic | 51.77 | 32.31 | 12.23 | 2.67 | 1.02 |
HU33 | spinel-bearing lherzolite | Porphyroclastic | 57.47 | 21.55 | 16.87 | 2.91 | 1.20 |
HU34 | spinel-bearing lherzolite | Porphyroclastic | 54.69 | 26.43 | 12.37 | 2.93 | 3.59 |
Sample | HU11 | HU12 | HU14 | HU15 | HU19 | HU20 | HU21 | HU32 | HU33 | HU34 |
---|---|---|---|---|---|---|---|---|---|---|
Sc | 63 | 59 | 42 | 50 | 63 | 64 | 63 | 62 | 60 | 62 |
Ti | 2965 | 2741 | 2285 | 1563 | 2221 | 3304 | 2261 | 3388 | 3240 | 2712 |
V | 180 | 186 | 120 | 163 | 186 | 234 | 226 | 246 | 239 | 226 |
Cr | 6132 | 5645 | 7541 | 2999 | 5684 | 5502 | 5694 | 5153 | 5803 | 5324 |
Rb | 0.465 | 0.050 | 1.02 | 0.176 | 0.060 | 0.217 | 0.047 | 0.011 | 0.007 | 0.008 |
Sr | 52 | 37 | 114 | 103 | 29 | 58 | 33 | 33 | 48 | 38 |
Y | 16 | 17 | 14 | 10 | 16 | 17 | 14 | 18 | 17 | 16 |
Zr | 35 | 27 | 29 | 20 | 24 | 34 | 25 | 24 | 27 | 26 |
Nb | 0.030 | 0.009 | 0.234 | 0.033 | 0.004 | 0.090 | 0.007 | 0.003 | 0.007 | 0.003 |
Cs | 0.021 | 0.008 | 0.043 | 0.022 | 0.018 | 0.033 | 0.039 | 0.009 | 0.007 | 0.008 |
Ba | 245 | 0.356 | 70 | 1.49 | 0.086 | 279 | 0.234 | 0.131 | 0.082 | 0.021 |
La | 0.820 | 0.473 | 2.99 | 2.11 | 0.348 | 1.06 | 0.505 | 0.269 | 0.561 | 0.476 |
Ce | 3.5 | 2.13 | 10 | 3.2 | 2.03 | 3.3 | 1.80 | 1.75 | 2.40 | 2.09 |
Pr | 0.677 | 0.469 | 1.48 | 0.439 | 0.467 | 0.576 | 0.364 | 0.440 | 0.510 | 0.435 |
Nd | 4.4 | 3.6 | 8.6 | 3.0 | 3.6 | 4.23 | 3.0 | 3.8 | 4.0 | 3.6 |
Sm | 1.56 | 1.74 | 2.45 | 1.19 | 1.56 | 1.89 | 1.44 | 1.80 | 1.85 | 1.67 |
Eu | 0.617 | 0.689 | 0.873 | 0.496 | 0.646 | 0.721 | 0.573 | 0.723 | 0.750 | 0.656 |
Gd | 2.29 | 2.48 | 2.70 | 1.59 | 2.35 | 2.66 | 2.16 | 2.68 | 2.59 | 2.38 |
Tb | 0.428 | 0.452 | 0.424 | 0.276 | 0.423 | 0.462 | 0.386 | 0.463 | 0.442 | 0.426 |
Dy | 3.0 | 3.2 | 2.78 | 2.02 | 2.97 | 3.4 | 2.85 | 3.4 | 3.3 | 3.1 |
Ho | 0.642 | 0.682 | 0.583 | 0.430 | 0.639 | 0.702 | 0.596 | 0.722 | 0.693 | 0.636 |
Er | 1.92 | 2.03 | 1.58 | 1.29 | 1.92 | 2.14 | 1.82 | 2.21 | 2.13 | 2.02 |
Tm | 0.274 | 0.282 | 0.201 | 0.167 | 0.282 | 0.292 | 0.251 | 0.294 | 0.289 | 0.276 |
Yb | 1.89 | 1.91 | 1.32 | 1.18 | 1.87 | 2.10 | 1.79 | 2.18 | 2.08 | 2.01 |
Lu | 0.257 | 0.253 | 0.167 | 0.162 | 0.250 | 0.254 | 0.228 | 0.274 | 0.265 | 0.262 |
Hf | 0.933 | 0.966 | 0.975 | 0.774 | 0.965 | 1.13 | 0.851 | 0.946 | 0.953 | 0.924 |
Ta | 0.002 | 0.002 | 0.020 | 0.006 | 0.005 | 0.002 | 0.001 | 0.002 | 0.001 | |
Pb | 0.153 | 0.044 | 0.031 | 0.100 | 0.215 | 0.028 | 0.048 | 0.063 | 0.052 | |
Th | 0.042 | 0.005 | 0.024 | 0.194 | 0.003 | 0.016 | 0.013 | 0.001 | 0.001 | 0.002 |
U | 0.021 | 0.002 | 0.010 | 0.059 | 0.003 | 0.007 | 0.008 | 0.003 | 0.003 | 0.001 |
Primary | Spongy | Spinels | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
T | T | T | T | T | P | T | P | T | P | F | F | F | ||
HU11 | Avg. | 929 | 969 | 904 | 908 | 905 | 19 | 5.6 | 3.2 | 4.3 | ||||
Min | 885 | 908 | 884 | 848 | 886 | 17 | 5.4 | 3.0 | 4.1 | |||||
Max | 960 | 1021 | 937 | 947 | 939 | 22 | 5.8 | 3.4 | 4.5 | |||||
HU12 | Avg. | 1029 | 1107 | 918 | 920 | 1052 | 24 | 1263 | 8.0 | 1260 | 9.4 | 4.1 | 1.7 | 2.9 |
Min | 1021 | 1103 | 908 | 910 | 1043 | 24 | 1260 | 7.9 | 1259 | 9.2 | 3.8 | 1.4 | 2.6 | |
Max | 1035 | 1117 | 926 | 927 | 1058 | 25 | 1265 | 8.2 | 1260 | 9.6 | 4.4 | 2.0 | 3.2 | |
HU14 | Avg. | 1108 | 1175 | 1185 | 1168 | 1151 | 22 | 1239 | 6.4 | 1256 | 8.8 | 9.7 | 7.4 | 8.1 |
Min | 1059 | 1089 | 1156 | 1102 | 1129 | 20 | 1238 | 6.3 | 1245 | 7.9 | 9.6 | 7.3 | 8.0 | |
Max | 1138 | 1222 | 1204 | 1211 | 1166 | 24 | 1240 | 6.5 | 1265 | 9.4 | 9.8 | 7.6 | 8.2 | |
HU15 | Avg. | 1289 | 9.6 | 1252 | 9.3 | 4.5 | 2.0 | 3.2 | ||||||
Min | 1279 | 9.1 | 1237 | 8.3 | 4.4 | 2.0 | 3.2 | |||||||
Max | 1306 | 10.0 | 1264 | 10.3 | 4.5 | 2.1 | 3.3 | |||||||
HU19 | Avg. | 950 | 979 | 940 | 941 | 942 | 20 | 2.8 | 0.3 | 1.7 | ||||
Min | 935 | 959 | 936 | 916 | 938 | 20 | 2.6 | 0.2 | 1.5 | |||||
Max | 961 | 999 | 944 | 961 | 946 | 21 | 3.1 | 0.6 | 1.9 | |||||
HU20 | Avg. | 942 | 969 | 921 | 929 | 923 | 22 | 4.0 | 1.6 | 2.8 | ||||
Min | 920 | 948 | 910 | 898 | 912 | 20 | 3.0 | 0.5 | 1.9 | |||||
Max | 978 | 1007 | 934 | 978 | 935 | 23 | 6.4 | 4.0 | 5.0 | |||||
HU21 | Avg. | 951 | 980 | 953 | 947 | 953 | 20 | 4.0 | 1.5 | 2.8 | ||||
Min | 934 | 958 | 912 | 923 | 914 | 18 | 3.8 | 1.3 | 2.6 | |||||
Max | 964 | 993 | 984 | 972 | 983 | 23 | 4.2 | 1.7 | 3.0 | |||||
HU22 | Avg. | 932 | 966 | 944 | 918 | 945 | 20 | 2.9 | 0.4 | 1.8 | ||||
Min | 918 | 950 | 920 | 892 | 922 | 18 | 2.4 | −0.1 | 1.3 | |||||
Max | 946 | 984 | 977 | 940 | 976 | 21 | 3.5 | 1.0 | 2.3 | |||||
HU23 | Avg. | 1296 | 12.5 | 1339 | 17.5 | 10.3 | 8.1 | 8.7 | ||||||
Min | 1278 | 11.2 | 1323 | 15.8 | 10.2 | 7.9 | 8.5 | |||||||
Max | 1319 | 14.0 | 1358 | 19.4 | 10.6 | 8.3 | 8.9 | |||||||
HU25 | Avg. | 1308 | 11.3 | 1296 | 13.0 | 8.6 | 6.3 | 7.0 | ||||||
Min | 1294 | 11.0 | 1261 | 10.7 | 8.4 | 6.1 | 6.9 | |||||||
Max | 1318 | 11.7 | 1316 | 14.3 | 8.7 | 6.4 | 7.1 | |||||||
HU32 | Avg. | 887 | 914 | 881 | 848 | 883 | 16 | 2.3 | 0.2 | 1.3 | ||||
Min | 880 | 903 | 875 | 837 | 877 | 15 | 2.2 | −0.2 | 1.1 | |||||
Max | 893 | 925 | 887 | 858 | 889 | 18 | 2.6 | 0.3 | 1.5 | |||||
HU33 | Avg. | 849 | 852 | 832 | 781 | 831 | 13 | 3.2 | 0.7 | 2.0 | ||||
Min | 836 | 814 | 826 | 752 | 825 | 10 | 2.9 | 0.4 | 1.8 | |||||
Max | 862 | 890 | 837 | 809 | 837 | 15 | 3.4 | 0.9 | 2.2 | |||||
HU34 | Avg. | 976 | 1038 | 967 | 987 | 966 | 22 | 3.3 | 0.9 | 2.2 | ||||
Min | 960 | 1026 | 918 | 963 | 920 | 21 | 3.2 | 0.7 | 2.0 | |||||
Max | 992 | 1050 | 1016 | 1010 | 1013 | 22 | 3.6 | 1.2 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertotto, G.W.; Mazzucchelli, M.; Giovanardi, T.; Conceiçao, R.V.; Zanetti, A.; Schilling, M.E.; Bernardi, M.I.; Ponce, A.D.; Jalowitzki, T.; Gervasoni, F.; et al. Mantle Xenoliths from Huanul Volcano (Central-West Argentina): A Poorly Depleted Mantle Source under Southern Payenia. Geosciences 2022, 12, 157. https://doi.org/10.3390/geosciences12040157
Bertotto GW, Mazzucchelli M, Giovanardi T, Conceiçao RV, Zanetti A, Schilling ME, Bernardi MI, Ponce AD, Jalowitzki T, Gervasoni F, et al. Mantle Xenoliths from Huanul Volcano (Central-West Argentina): A Poorly Depleted Mantle Source under Southern Payenia. Geosciences. 2022; 12(4):157. https://doi.org/10.3390/geosciences12040157
Chicago/Turabian StyleBertotto, Gustavo W., Maurizio Mazzucchelli, Tommaso Giovanardi, Rommulo V. Conceiçao, Alberto Zanetti, Manuel E. Schilling, Mauro I. Bernardi, Alexis D. Ponce, Tiago Jalowitzki, Fernanda Gervasoni, and et al. 2022. "Mantle Xenoliths from Huanul Volcano (Central-West Argentina): A Poorly Depleted Mantle Source under Southern Payenia" Geosciences 12, no. 4: 157. https://doi.org/10.3390/geosciences12040157
APA StyleBertotto, G. W., Mazzucchelli, M., Giovanardi, T., Conceiçao, R. V., Zanetti, A., Schilling, M. E., Bernardi, M. I., Ponce, A. D., Jalowitzki, T., Gervasoni, F., & Cipriani, A. (2022). Mantle Xenoliths from Huanul Volcano (Central-West Argentina): A Poorly Depleted Mantle Source under Southern Payenia. Geosciences, 12(4), 157. https://doi.org/10.3390/geosciences12040157