Damage to Churches after the 2016 Central Italy Seismic Sequence
Abstract
:1. Introduction
2. Inspected Churches
2.1. Historical and Architectural Features
2.2. Structural Features
2.3. Simplified Vulnerability Assessment
3. Observed Damages
3.1. Possible and Activated Collapse Mechanisms
- Overturning of the façade (M1)—it occurred in 24 churches, i.e., in 69% of cases in which the macroelement could be activated;
- Overturning of the gable (M2)—it was detected in the 50% of the possible cases;
- Shear mechanism in the façade (M3)—observed in the 60% of the reduced sample.
- The apse overturning (M16) could be developed in 15 churches, i.e., in 42% of the sample, and among them the activation frequency was the 60%;
- The shear failure of apse walls (M17) was triggered only in 27% of the possible cases.
- Damage on the nave roof (M19) could be verified in 94% of the sample, but it was activated only in 41% of the possible cases;
- The mechanisms in the transept roof (M20) were possible in only 14% of the churches and they had an occurrence probability of 40%;
- On the roof of the apse and the presbytery (M21), the mechanisms occurred in 36% of the religious buildings, and they took place only in 8% of the reduced sample.
- The façade overturning (M1) simultaneously presents a 100% probability of occurrence, a probability of activation of 69%, and a mean damage level higher than 3. Specifically, through deeply analyzing the survey form, it can be detected that 44% of the sample is characterized by a damage level higher than 3 (serious damage). This percentage reduced to 28% if only those values higher than 4 (very serious damage) are considered.
- The gable overturning (M2) has a 94% probability of occurrence, and simultaneously, a 50% probability of activation and a mean damage level higher than 3. However, only 31% of the sample is characterized by a damage level higher than 3, and it should be considered that the façade collapsed in only 19% of cases.
- The shear mechanism of the façade (M3) was simultaneously characterized by a 100% probability of occurrence, a 60% probability of activation, and a mean damage level higher than 3. In detail, churches presenting a damage level higher than 3 comprise 42% of the sample, but when considering only very serious damages and collapses, this percentage reduces to 25%.
- The transversal vibration of the nave (M5) has a probability of occurrence of 100%, a probability of activation of 56%, and a mean damage level higher than 3. Additionally, in this case, 42% of the sample presents a damage level higher than 3, while the percentage decreases to 36% if accounting for only those values higher than 4.
- The shear mechanism in the nave sidewalls (M6) is characterized by a 100% probability of occurrence, 58% probability of activation, and a mean damage level higher than 3. A proportion of 39% of the sample is characterized by damage levels higher than 3, while only 28% suffered the worst damages.
3.2. The Damage Index: Relationship with IMs and Usability Judgment
- 25% of the inspected churches were severely damaged or collapsed;
- 17% of the dataset experienced extended damage and consequently observed damage indexes ranging from 0.3 to 0.6;
- 58% of the inspected churches were characterized by limited damage (i.e., observed damage index from 0 to 0.3).
- The locations of most of the inspected churches are characterized by the V degree of the IMCS scale, corresponding to PGA values between 0.02 g and 0.08 g (except for one struck by a PGA of 0.12 g).
- Even if the VI degree of the IMCS corresponds to a wide range of PGA (from 0.08 g to 0.48 g), only 5 churches of the inspected sample are in such an area.
- The degrees of IMCS greater than VI are associated with high PGA values, ranging between 0.44 g and 0.76 g.
- Only 8 (22.2%) churches of the sample are usable, 5 (13.9%) are partially usable, and 23 (63.9%) are unusable.
- All usable and partially usable churches suffered a PGA value lower than 0.08 g, with the limited exception of one church (C21), for which the assigned PGA was equal to 0.48 g. It is worth noting that this church is in a small village, in which the masonry buildings experienced minor seismic damages in the surrounding areas.
- Unusable churches suffered a PGA ranging from 0.04 to 0.77 g; in detail, 10 churches were characterized by PGA > 0.40 g, whilst 13 churches were struck by PGA ranging between 0.04 and 0.12 g.
- Overall, all churches with a PGA > 0.08 g were unusable and seriously damaged, with the only exception of 1 usable building.
- It is difficult to identify a proper correlation between the intensity measure and the usability judgment for low values of PGA. In fact, church vulnerability plays a key role in the judgment of damages and usability.
- The damage index varies from 0 to 1, with a mean value equal to 0.081 and 0.550 for usable and unusable churches, respectively; all churches with a damage index greater than 0.2 are unusable.
- Usable and partially usable churches are characterized by damage index varying between 0 and 0.2.
- Unusable churches can be subdivided in two families: 20 churches characterized by id > 0.2, and 3 churches (C18, C20, C33) with lower values. The latter suffered the 2009 L’Aquila earthquake, and the previous damages were eventually unrepaired (C18 and C33). Therefore, such moderately vulnerable churches (iv falls in the range of 0.36–0.46) had their preexisting crack pattern enlarged after the seismic sequence in 2016, even in the face of a PGA equal to 0.08 g. However, it is worth underlining that the low id obtained in the above cases is due to highly localized damages (C18) or to the significant number of macroelements present in the structures compared with the activated mechanism (C20, C33).
- Usable churches had a maximum vulnerability index equal to 0.39, with an average value of 0.30.
- The 5 partially usable churches are characterized by iv in the range 0.21–0.48, with an average value of 0.37.
- For values greater than 0.5, all churches are unusable; however, there are 7 unusable churches characterized by iv greater than 0.36.
- Unusable churches presented an average vulnerability index of 0.56.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branno, A.; Esposito, E.; Luongo, G.; Marturano, A.; Porfido, S.; Rinaldis, V. The largest earthquakes of the Apennines, southern Italy. In Proceedings of the International Symposiym of Engineering Geology Problems in Seismic Areas, Bari, Italy, 13–19 April 1986; Volume 4, pp. 3–14. [Google Scholar]
- Borre, K.; Cacon, S.; Cello, G.; Kontny, B.; Kostak, B.; Likke Andersen, H.; Moratti, G.; Piccardi, L.; Stemberk, J.; Tondi, E.; et al. The COST project in Italy: Analysis and monitoring of seismogenic faults in the Gargano and Norcia areas (central-southern Apennines, Italy). J. Geodyn. 2003, 36, 3–18. [Google Scholar] [CrossRef]
- Galli, P. Recurrence times of central-southern Apennine faults (Italy): Hints from palaeoseismology. Terra Nova 2020, 32, 399–407. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Proietti, G. Soprintendenza Generale per gli Interventi Post-Sismici in Campania e Basilicata. In Dopo la Polvere: Rilevazione Degli Interventi di Recupero Post-Sismico del Patrimonio Archeologico, Architettonico ed Artistico delle Regioni Campania e Basilicata Danneggiato dal Terremoto del 23 Novembre 1980 e del 14 Febbraio 1981; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 1994; Volume 5. [Google Scholar]
- Mazzoleni, D.; Sepe, M. Rischio Sismico, Paesaggio, Architettura: L’Irpinia, Contributi per un Progetto; CRdC-AMRA: Naples, Italy, 2005. (In Italian) [Google Scholar]
- D’Ayala, D.F.; Paganoni, S. Assessment and analysis of damage in L’Aquila historic city centre after 6th April 2009. Bull. Earthq. Eng. 2011, 9, 81–104. [Google Scholar] [CrossRef]
- Drago, C.; Ferlito, R.; Zucconi, M. Equivalent damage validation by variable cluster analysis. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1738, p. 270014. [Google Scholar]
- Zucconi, M.; Sorrentino, L.; Ferlito, R. Principal component analysis for a seismic usability model of unreinforced masonry buildings. Soil Dyn. Earthq. Eng. 2017, 96, 64–75. [Google Scholar] [CrossRef]
- Zucconi, M.; Sorrentino, L.; Ferlito, R. Verification of a usability model for unreinforced masonry buildings with data from the 2002 Molise, southern Italy, eartqhuake. In Proceedings of the 10th International Masonry Conference, IMC 2018, Milan, Italy, 9–11 July 2018; pp. 680–688. [Google Scholar]
- Zucconi, M.; Ferlito, R.; Sorrentino, L. Validation and extension of a statistical usability model for unreinforced masonry buildings with different ground motion intensity measures. Bull. Earthq. Eng. 2020, 18, 767–795. [Google Scholar] [CrossRef]
- Zucconi, M.; Sorrentino, L. Census-Based Typological Damage Fragility Curves and Seismic Risk Scenarios for Unreinforced Masonry Buildings. Geosciences 2022, 12, 45. [Google Scholar] [CrossRef]
- Bruneau, M. State-of-the-art report on seismic performance of unreinforced masonry buildings. J. Struct. Eng. 1994, 120, 230–251. [Google Scholar] [CrossRef]
- Decanini, L.; De Sortis, A.; Goretti, A.; Langenbach, R.; Mollaioli, F.; Rasulo, A. Performance of masonry buildings during the 2002 Molise, Italy, earthquake. Earthq. Spectra 2004, 20, S191–S220. [Google Scholar] [CrossRef]
- Penna, A.; Morandi, P.; Rota, M.; Manzini, C.F.; Da Porto, F.; Magenes, G. Performance of masonry buildings during the Emilia 2012 earthquake. Bull. Earthq. Eng. 2014, 12, 2255–2273. [Google Scholar] [CrossRef]
- Coccia, S.; Di Carlo, F.; Imperatore, S. Strength reduction factor for out-of-plane failure mechanisms of masonry walls. In Brick and Block Masonry: Trends, Innovations and Challenges—Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, Padova, Italy, 26–30 June 2016; CRC Press: Boca Raton, FL, USA, 26–30 June; pp. 137–144.
- Zucconi, M.; Ferlito, R.; Sorrentino, L. Typological Damage Fragility Curves for Unreinforced Masonry Buildings affected by the 2009 L’Aquila, Italy Earthquake. Open Civ. Eng. J. 2021, 15, 117–134. [Google Scholar] [CrossRef]
- Ministero per i Beni Culturali e Ambientali, Bollettino d’arte. Sisma del 1980: Effetti sul Patrimonio Artistico della Campania e Basilicata-Campania; Supplemento n.2; Istituto Poligrafico E Zecca dello Stato: Roma, Italy, 1982. (In Italian) [Google Scholar]
- Cifani, G.; Lemme, A.; Podestà, S. Beni Monumentali e Terremoto. Dall’emergenza alla Ricostruzione; DEI-Tipografia del Genio Civile: Roma, Italy, 2005. (In Italian) [Google Scholar]
- Binda, L.; Saisi, A. Research on historic structures in seismic areas in Italy. Prog. Struct. Eng. Mater. 2005, 7, 71–85. [Google Scholar] [CrossRef]
- da Porto, F.; Silva, B.; Costa, C.; Modena, C. Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on April 6, 2009. J. Earthq. Eng. 2012, 16, 739–758. [Google Scholar] [CrossRef]
- Colonna, S.; Imperatore, S.; Zucconi, M.; Ferracuti, B. Post-seismic damage assessment of a historical masonry building: The case study of a school in Teramo. In Proceedings of the International Conference on Mechanics of Masonry Structures Strengthened with Composites Materials, MuRiCo5, Bologna, Italy, 28–30 June 2017; pp. 620–627. [Google Scholar]
- De Matteis, G.; Brando, G.; Corlito, V.; Criber, E.; Guadagnuolo, M. Seismic vulnerability assessment of churches at regional scale after the 2009 L’Aquila earthquake. Int. J. Mason. Res. Innov. 2019, 4, 174–196. [Google Scholar] [CrossRef]
- Colonna, S.; Imperatore, S.; Ferracuti, B. Fragility curves of masonry churches façades. In Proceedings of the 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2019, Crete, Greece, 24–26 June 2019; Volume 1, pp. 718–731. [Google Scholar]
- Gaudiosi, G.; Alessio, G.; Nappi, R.; Noviello, V.; Spiga, E.; Porfido, S. Evaluation of Damages to the Architectural Heritage of Naples as a Result of the Strongest Earthquakes of the Southern Apennines. Appl. Sci. 2020, 10, 6880. [Google Scholar] [CrossRef]
- Nardone, L.; Gizzi, F.T.; Maresca, R. Ground Response and Historical Buildings in Avellino (Campania, Southern Italy): Clues from a Retrospective View Concerning the 1980 Irpinia-Basilicata Earthquake. Geosciences 2020, 10, 503. [Google Scholar] [CrossRef]
- Benenato, A.; Lignola, G.P.; Imperatore, S.; Ferracuti, B. Probabilistic seismic fragility for rocking masonry façades using cloud analysis. In Proceedings of the 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Compdyn 2021, Athens, Greece, 28–30 June 2021; Volume 2021. [Google Scholar]
- Reluis-Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale. Available online: http://www.reluis.it/images/stories/Le_attività_del_DPC_durante_e_dopo_Aquila_2009_Dolce.pdf (accessed on 5 November 2020).
- Dipartimento della Protezione Civile–Presidenza del Consiglio dei Ministri. Available online: http://www.protezionecivile.gov.it/jcms/it/terremoto_centro_italia_2016 (accessed on 5 November 2020).
- Giuffrè, A. Letture Sulla Meccanica Delle Murature Storiche; Edizioni Kappa: Roma, Italy, 1991; pp. 1–52. [Google Scholar]
- Giuffrè, A. Sicurezza e Conservazione del Centri Storici: Il Caso Ortigia; Editori Laterza: Bari, Italy, 1993; pp. 1–123. [Google Scholar]
- Como, M. Equilibrium and collapse analysis of masonry bodies. In Masonry Construction; Springer: Dordrecht, The Netherlands, 1992; pp. 185–194. [Google Scholar]
- Doglioni, F.; Moretti, A.; Petrini, V.; Angeletti, P. Le chiese e il terremoto. Dalla vulnerabilità constatata nel terremoto del Friuli al miglioramento antisismico nel restauro. In Verso Una Politica di Prevenzione; Edizioni Lint: Trieste, Italy, 1994; pp. 108–204. [Google Scholar]
- Lagomarsino, S.; Podesta, S. Damage and vulnerability assessment of churches after the 2002 Molise, Italy, earthquake. Earthq. Spectra 2004, 20, S271–S283. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Podesta, S. Seismic vulnerability of ancient churches: I. Damage assessment and emergency planning. Earthq. Spectra 2004, 20, 377–394. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Podesta, S. Seismic vulnerability of ancient churches: II. Statistical analysis of surveyed data and methods for risk analysis. Earthq. Spectra 2004, 20, 395–412. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Damage survey, simplified assessment, and advanced seismic analyses of two masonry churches after the 2012 Emilia earthquake. Int. J. Archit. Herit. 2018, 13, 901–924. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Castori, G.; Sisti, R.; De Maria, A. Analysis of the collapse mechanisms of medieval churches struck by the 2016 Umbrian earthquake. Int. J. Archit. Herit. 2018, 13, 215–218. [Google Scholar] [CrossRef]
- Dizhur, D.; Ingham, J.; Moon, L.; Griffith, M.; Schultz, A.; Senaldi, I.; Magenes, G.; Dickie, J.; Lissel, S.; Centeno, J.; et al. Performance of masonry buildings and churches in the 22 February 2011 Christchurch earthquake. Bull. N. Zeal. Soc. Earthq. Eng. 2011, 44, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Lagomarsino, S. Damage assessment of churches after L’Aquila earthquake (2009). Bull. Earthq. Eng. 2012, 10, 73–92. [Google Scholar] [CrossRef]
- Leite, J.; Lourenco, P.B.; Ingham, J.M. Statistical Assessment of Damage to Churches Affected by the 2010–2011 Canterbury (New Zealand) Earthquake Sequence. J. Earthq. Eng. 2013, 17, 73–97. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, L.; Liberatore, L.; Decanini, L.D.; Liberatore, D. The performance of churches in the 2012 Emilia earthquakes. Bull. Earthq. Eng. 2014, 12, 2299–2331. [Google Scholar] [CrossRef]
- De Matteis, G.; Criber, E.; Brando, G. Damage probability matrices for three-nave masonry churches in Abruzzi after the 2009 L’Aquila earthquake. Int. J. Archit. Herit. 2016, 10, 120–145. [Google Scholar]
- Colonna, S.; Imperatore, S.; Ferracuti, B. The 2016 central Italy earthquake: Damage and vulnerability assessment of churches. Proceedings of 10th International Masonry Conference, IMC 2018; Milan, Italy, 9–11 July 2018; Milani, G., Taliercio, A., Garrity, S., Eds.; International Masonry Society: Whyteleafe, UK, 2018; pp. 2425–2440. [Google Scholar]
- Fuentes, D.D.; Baquedano Julià, P.A.; D’Amato, M.; Laterza, M. Preliminary seismic damage assessment of Mexican churches after September 2017 earthquakes. Int. J. Archit. Herit. 2019, 15, 505–525. [Google Scholar] [CrossRef]
- Palazzi, N.C.; Rovero, L.; De La Llera, J.C.; Sandoval, C. Preliminary assessment on seismic vulnerability of masonry churches in central Chile. Int. J. Archit. Herit. 2019, 14, 829–848. [Google Scholar] [CrossRef]
- Palazzi, N.C.; Favier, P.; Rovero, L.; Sandoval, C.; de la Llera, J.C. Seismic damage and fragility assessment of ancient masonry churches located in central Chile. Bull. Earthq. Eng. 2020, 18, 3433–3457. [Google Scholar] [CrossRef]
- Salzano, P.; Casapulla, C.; Ceroni, F.; Prota, A. Seismic vulnerability and simplified safety assessments of masonry churches in the Ischia Island (Italy) after the 2017 earthquake. Int. J. Archit. Herit. 2020, 16, 136–162. [Google Scholar] [CrossRef]
- Galli, P.; Peronace, E.; Bramerini, F.; Castenetto, S.; Naso, G.; Cassone, F.; Pallone, F. The MCS intensity distribution of the devastating 24 August 2016 earthquake in central Italy (MW 6.2). Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Pischiutta, M.; Akinci, A.; Malagnini, L.; Herrero, A. Characteristics of the strong ground motion from the 24th August 2016 Amatrice earthquake. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- INGVterremoti. Available online: https://ingvterremoti.com/2017/04/28/sequenza-in-italia-centrale-aggiornamento-del-28-aprile/ (accessed on 29 December 2021).
- Pucci, S.; De Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Ciacagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Civico, R.; Pucci, S.; Villani, F.; Pizzimenti, L.; De Martini, P.M.; Nappi, R.; Open EMERGEO Working Group. Surface ruptures following the 30 October 2016 M w 6.5 Norcia earthquake, central Italy. J. Maps 2018, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Luiso, P.; Paoletti, V.; Nappi, R.; Gaudiosi, G.; Cella, F.; Fedi, M. Testing the value of a multi-scale gravimetric analysis in characterizing active fault 2 geometry at hypocentral depths: The 2016–2017 Central Italy seismic sequence. Ann. Geophys. 2018, 61. [Google Scholar] [CrossRef]
- Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, R.; De Martini, P.M. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci. Data 2018, 5, 180049. [Google Scholar] [CrossRef] [Green Version]
- Di Ludovico, M.; De Martino, G.; Santoro, A.; Prota, A.; Manfredi, G.; Calderini, C.; Carocci, C.; Da Porto, F.; Dall’Asta, A.; De Santis, S.; et al. Usability and damage assessment of public buildings and churches after the 2016 Central Italy earthquake. In Proceedings of the 7th International Conference Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Rome, Italy, 17–20 June 2019. [Google Scholar]
- MiBAC. Form A-DC PCM-DPC. Scheda per il Rilievo del Danno ai Beni Culturali—Chiese. 2006. Available online: https://www.beniculturali.it/mibac/multimedia/MiBAC/documents/1338454237471_allegato4.pdf (accessed on 5 March 2021).
- MiBAC. Form B-DP PCM-DPC. Scheda per il Rilievo Del Danno ai Beni Culturali—Palazzi. 2006. Available online: https://www.beniculturali.it/mibac/multimedia/MiBAC/documents/1338454343145_allegato3.pdf (accessed on 5 March 2021).
- MiBACT. Direttiva 23 Aprile 2015: Aggiornamento Della Direttiva 12 Dicembre 2013, Relativa alle “Procedure per la Gestione Delle Attività di Messa in Sicurezza e Salvaguardia del Patrimonio Culturale in Caso di Emergenze Derivanti da Calamità Naturali”; G.U. No. 169, 23/07/2015; Libreria dello Stato: Rome, Italy, 2015. (In Italian) [Google Scholar]
- Penna, A.; Calderini, C.; Sorrentino, L.; Carocci, C.F.; Cescatti, E.; Sisti, R.; Borri, A.; Modena, C.; Prota, A. Damage to churches in the 2016 central Italy earthquakes. Bull. Earthq. Eng. 2019, 17, 5763–5790. [Google Scholar] [CrossRef]
- Sferrazza Papa, G.; Silva, B. Assessment of post-earthquake damage: St. Salvatore church in Acquapagana, central Italy. Buildings 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, L.; Doria, M.; Tassi, V.; Liotta, M.A. Performance of a Far-Field Historical Church during the 2016–2017 Central Italy Earthquakes. J. Perform. Constr. Facil. 2019, 33, 04019016. [Google Scholar] [CrossRef]
- Grazzini, A.; Chiabrando, F.; Foti, S.; Sammartano, G.; Spanò, A. A multidisciplinary study on the seismic vulnerability of St. Agostino church in Amatrice following the 2016 seismic sequence. Int. J. Archit. Herit. 2020, 14, 885–902. [Google Scholar] [CrossRef]
- Giordano, E.; Clementi, F.; Nespeca, A.; Lenci, S. Damage assessment by numerical modeling of sant’agostino’s sanctuary in offida during the central italy 2016–2017 Seismic Sequence. Front. Built Environ. 2019, 4, 87. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Acito, M.; Chesi, C. Seismic sequence of 2016–17: Linear and non-linear interpretation models for evolution of damage in San Francesco church, Amatrice. Eng. Struct. 2020, 211, 110418. [Google Scholar] [CrossRef]
- Papa, G.S.; Tateo, V.; Parisi, M.A.; Casolo, S. Seismic response of a masonry church in Central Italy: The role of interventions on the roof. Bull. Earthq. Eng. 2021, 19, 1151–1179. [Google Scholar] [CrossRef]
- Clementi, F.; Ferrante, A.; Giordano, E.; Dubois, F.; Lenci, S. Damage assessment of ancient masonry churches stroked by the Central Italy earthquakes of 2016 by the non-smooth contact dynamics method. Bull. Earthq. Eng. 2020, 18, 455–486. [Google Scholar] [CrossRef] [Green Version]
- Clementi, F. Failure Analysis of Apennine Masonry Churches Severely Damaged during the 2016 Central Italy Seismic Sequence. Buildings 2021, 11, 58. [Google Scholar] [CrossRef]
- Ferrante, A.; Giordano, E.; Clementi, F.; Milani, G. FE vs. DE Modeling for the Nonlinear Dynamics of a Historic Church in Central Italy. Geosciences 2021, 11, 189. [Google Scholar] [CrossRef]
- Hofer, L.; Zampieri, P.; Zanini, M.A.; Faleschini, F.; Pellegrino, C. Seismic damage survey and empirical fragility curves for churches after the August 24, 2016 Central Italy earthquake. Soil Dyn. Earthq. Eng. 2018, 111, 98–109. [Google Scholar] [CrossRef]
- De Matteis, G.; Zizi, M. Preliminary analysis on the effects of 2016 Central Italy earthquake on one-nave churches. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; RILEM Bookseries; Springer: Cham, Switzerland, 2019; Volume 18, pp. 1268–1279. [Google Scholar]
- De Matteis, G.; Zizi, M. Seismic damage prediction of masonry churches by a PGA-based approach. Int. J. Archit. Herit. 2019, 13, 1165–1179. [Google Scholar] [CrossRef]
- Canuti, C.; Carbonari, S.; Dall’Asta, A.; Dezi, L.; Gara, F.; Leoni, G.; Morici, M.; Petrucci, E.; Zona, A. Post-earthquake damage and vulnerability assessment of churches in the Marche Region struck by the 2016 Central Italy seismic sequence. Int. J. Archit. Herit. 2019, 15, 1000–1021. [Google Scholar] [CrossRef]
- Cescatti, E.; Salzano, P.; Casapulla, C.; Ceroni, F.; da Porto, F.; Prota, A. Damages to masonry churches after 2016–2017 Central Italy seismic sequence and definition of fragility curves. Bull. Earthq. Eng. 2019, 18, 297–329. [Google Scholar] [CrossRef]
- Morici, M.; Canuti, C.; Dall’Asta, A.; Leoni, G. Empirical predictive model for seismic damage of historical churches. Bull. Earthq. Eng. 2020, 18, 6015–6037. [Google Scholar] [CrossRef]
- Direttiva del Presidente Consiglio dei Ministri (DPCM) del 9 Febbraio 2011. Valutazione e Riduzione del Rischio Sismico del Patrimonio Culturale con Riferimento alle Norme Tecniche per le Costruzioni di cui al DM 14 Gennaio 2008; GU Serie Generale No. 47, 26-02-2011-S.O. no. 54; Libreria dello Stato: Rome, Italy, 2011. (In Italian) [Google Scholar]
- Lagomarsino, S.; Cattari, S.; Ottonelli, D.; Giovinazzi, S. Earthquake damage assessment of masonry churches: Proposal for rapid and detailed forms and derivation of empirical vulnerability curves. Bull. Earthq. Eng. 2019, 17, 3327–3364. [Google Scholar] [CrossRef]
- De Matteis, G.; Mazzolani, F.M. The Fossanova Church: Seismic vulnerability assessment by numeric and physical testing. Int. J. Archit. Herit. 2010, 4, 222–245. [Google Scholar] [CrossRef]
- INGV. Gruppo di Lavoro sul Terremoto in Centro Italia. Rapporto di Sintesi sul Terremoto in Centro Italia Mw 6.5 del 30 Ottobre 2016. Available online: https://zenodo.org/record/166019#.YEJT12hKhPY (accessed on 5 March 2021).
- ITACA–ITalian ACcelerometric Archive. Available online: http://itaca.mi.ingv.it/ItacaNet_31/#/event/search (accessed on 5 March 2021).
- Direttiva del Presidente Consiglio dei Ministri (DPCM) del 13 Marzo 2013. Approvazione del Manuale per Compilare la Scheda di Rilievo del Danno ai Beni Culturali. Available online: https://www.protezionecivile.gov.it/it/normativa/dpcm-del-13-marzo-2013 (accessed on 5 March 2021).
- Galli, P.; Castenetto, S.; Peronace, E. Rapporto sugli effetti macrosismici del terremoto del 30 Ottobre 2016 (Monti Sibillini) in scala MCS. Roma Rapp. Congiunto DPC CNR-IGAG 2017, 17, 8. [Google Scholar]
- Istituto Nazionale di Geofisica e Vulcanologia. Available online: http://shakemap.rm.ingv.it/shake/archive/2016.html (accessed on 5 March 2021).
- Marotta, A.; Sorrentino, L.; Liberatore, D.; Ingham, J.M. Seismic risk assessment of New Zealand unreinforced masonry churches using statistical procedures. Int. J. Archit. Herit. 2018, 12, 448–464. [Google Scholar] [CrossRef]
Macroelement | Collapse/Damage Mechanism | ID | ρk |
---|---|---|---|
Façade | Overturning of the facade | M1 | 1.0 |
Damage at the top of façade (gable) | M2 | 1.0 | |
Shear mechanisms in the façade | M3 | 1.0 | |
- | Narthex | M4 | 0.5 |
Nave | Transversal vibration of the nave | M5 | 1.0 |
Shear mechanisms in the side walls | M6 | 1.0 | |
Longitudinal response of the colonnade | M7 | 1.0 | |
Vaults | Vaults of the nave | M8 | 1.0 |
Vaults of the aisles | M9 | 1.0 | |
Vaults of the transept | M12 | 0.5–1.0 | |
Vaults in presbytery and apse | M18 | 0.5–1.0 | |
Transept | Overturning of the transept’s end wall | M10 | 0.5–1.0 |
Shear mechanisms in the transept walls | M11 | 0.5–1.0 | |
Triumphal arch | Triumphal arches | M13 | 1.0 |
Dome | Dome and lantern | M14 | 1.0 |
Lantern | M15 | 0.5 | |
Apse | Overturning of apse | M16 | 1.0 |
Shear mechanisms in presbytery and apse | M17 | 1.0 | |
Roof | Roof mechanisms: side walls of nave and aisles | M19 | 1.0 |
Roof mechanisms: transept | M20 | 0.5–1.0 | |
Roof mechanisms: apse and presbytery | M21 | 1.0 | |
Chapel | Overturning of the chapels | M22 | 0.5–1.0 |
Shear mechanisms in the walls of chapels | M23 | 0.5–1.0 | |
Vaults of chapels | M24 | 0.5–1.0 | |
- | Interactions next to irregularities | M25 | 0.5–1.0 |
Projections (domed vaults, pinnacles, statues) | M26 | 0.5–1.0 | |
Belltower | Belltower | M27 | 1.0 |
Belfry | M28 | 1.0 |
Place | Church | ID | iv |
---|---|---|---|
Micigliano (Rieti) | Abbey St. Quirico and St. Giulitta | C1 | 0.22 |
Case Vernesi (Montorio, Teramo) | St. Andrew | C2 | 0.22 |
Altavilla (Montorio, Teramo) | St. Andrew Apostle | C3 | 0.24 |
Pagannoni (Campli, Teramo) | St. Peter in Pensilis | C4 | 0.32 |
Gualdo (Macerata) | St. Peter | C5 | 0.35 |
Teramo | St. Anthony Abbot | C6 | 0.48 |
Fichieri (Campli, Teramo) | Virgin of Rescue | C7 | 0.64 |
Collalto (Amatrice, Rieti) | Oratory St. Maxim | C8 | 0.39 |
Gualdo (Macerata) | St. Elpidio | C9 | 0.73 |
Cornillo Vecchio (Amatrice, Rieti) | St. Francis | C10 | 0.77 |
Cossito (Amatrice, Rieti) | Annunciation | C11 | 0.96 |
Casale (Amatrice, Rieti) | Virgin of Carmine | C12 | Collapsed |
Civitella del Tronto (Teramo) | St. Francis | C13 | 0.29 |
Campli (Teramo) | Immaculate Conception | C14 | 0.21 |
Montorio (Teramo) | St. Rocco | C15 | 0.38 |
Navelli (L’Aquila) | Holy Mary of Rosary | C16 | 0.48 |
Pagannoni (Campli, Teramo) | St. Peter in Pensilis | C17 | 0.35 |
Montorio (Teramo) | Holy Mary of Mercy | C18 | 0.36 |
Rojano (Campli, Teramo) | Holy Mary ad Venales | C19 | 0.39 |
Montorio (Teramo) | St. Sebastian | C20 | 0.37 |
Poggio d’Api (Accumoli, Rieti) | Holy Mary of Piano | C21 | 0.38 |
Campli (Teramo) | St. Paul | C22 | 0.56 |
Campli (Teramo) | St. Francis | C23 | 0.49 |
Civitella del Tronto (Teramo) | Holy Mary in Montesanto | C24 | 0.54 |
Roccasalli (Accumoli, Rieti) | St. Giovenale | C25 | 0.56 |
Tino (Accumoli, Rieti) | Annunziata Church | C26 | Collapsed |
Macchia (Accumoli, Rieti) | St. Peter and St. Paul | C27 | Collapsed |
Poggio Casoli (Accumoli, Rieti) | St. Lucia | C28 | Collapsed |
Accumoli (Rieti) | St. Lawrence and St. Paul | C29 | Collapsed |
Civitella del Tronto (Teramo) | St. Flavian | C30 | 0.44 |
Boceto (Campli, Teramo) | Holy Mary Assumpted | C31 | 0.56 |
Civitella del Tronto (Teramo) | St. Lawrence | C32 | 0.55 |
Montorio (Teramo) | Sanctuary Holy Mary of Sgrima | C33 | 0.46 |
Campli (Teramo) | Dome Holy Mary in Platea | C34 | 0.44 |
Terracino (Accumoli, Rieti) | St. George | C35 | 0.59 |
Gualdo (Macerata) | St. Savino | C36 | 0.60 |
ID | PGA (g) | IMCS | id | idW | Usability Judgment |
---|---|---|---|---|---|
C1 | 0.04 | 5 | 0 | 0 | Usable |
C2 | 0.08 | 5 | 0 | 0 | Usable |
C3 | 0.08 | 5 | 0.046 | 0.046 | Usable |
C4 | 0.04 | 5 | 0.10 | 0.09 | Usable |
C5 | 0.08 | 6 | 0.11 | 0.12 | Usable |
C6 | 0.04 | 5 | 0.22 | 0.21 | Unusable |
C7 | 0.04 | 5 | 0.43 | 0.43 | Unusable |
C8 | 0.76 | 6.5 | 0.38 | 0.38 | Unusable |
C9 | 0.08 | 6 | 0.60 | 0.60 | Unusable |
C10 | 0.72 | 10 | 0.88 | 0.88 | Unusable |
C11 | 0.768 | 10 | 0.82 | 0.86 | Unusable |
C12 | 0.768 | 10.5 | 1 | 1 | Unusable |
C13 | 0.08 | 5 | 0.03 | 0.03 | Usable |
C14 | 0.08 | 5 | 0.07 | 0.06 | Usable after local interventions |
C15 | 0.08 | 5 | 0.08 | 0.09 | Partially Usable |
C16 | 0.02 | 5 | 0.13 | 0.14 | Partially Usable |
C17 | 0.04 | 5 | 0.15 | 0.15 | Usable after local interventions |
C18 | 0.08 | 5 | 0.13 | 0.13 | Unusable |
C19 | 0.08 | 5 | 0.16 | 0.16 | Usable |
C20 | 0.08 | 5 | 0.18 | 0.17 | Unusable |
C21 | 0.48 | 6 | 0.2 | 0.16 | Usable |
C22 | 0.08 | 5 | 0.31 | 0.31 | Unusable |
C23 | 0.08 | 5 | 0.30 | 0.30 | Unusable |
C24 | 0.12 | 5 | 0.35 | 0.34 | Unusable |
C25 | 0.48 | 7 | 0.78 | 0.78 | Unusable |
C26 | 0.56 | 10.5 | 1 | 1 | Unusable |
C27 | 0.44 | 9.5 | 1 | 1 | Unusable |
C28 | 0.44 | 9.5 | 1 | 1 | Unusable |
C29 | 0.52 | 10.5 | 1 | 1 | Unusable |
C30 | 0.08 | 5 | 0.20 | 0.21 | Partially Usable |
C31 | 0.04 | 5 | 0.28 | 0.27 | Unusable |
C32 | 0.08 | 5 | 0.25 | 0.26 | Unusable |
C33 | 0.08 | 5 | 0.20 | 0.21 | Unusable |
C34 | 0.08 | 5 | 0.27 | 0.27 | Unusable |
C35 | 0.48 | 6 | 0.62 | 0.62 | Unusable |
C36 | 0.08 | 6 | 0.51 | 0.51 | Unusable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferracuti, B.; Imperatore, S.; Zucconi, M.; Colonna, S. Damage to Churches after the 2016 Central Italy Seismic Sequence. Geosciences 2022, 12, 122. https://doi.org/10.3390/geosciences12030122
Ferracuti B, Imperatore S, Zucconi M, Colonna S. Damage to Churches after the 2016 Central Italy Seismic Sequence. Geosciences. 2022; 12(3):122. https://doi.org/10.3390/geosciences12030122
Chicago/Turabian StyleFerracuti, Barbara, Stefania Imperatore, Maria Zucconi, and Silvia Colonna. 2022. "Damage to Churches after the 2016 Central Italy Seismic Sequence" Geosciences 12, no. 3: 122. https://doi.org/10.3390/geosciences12030122
APA StyleFerracuti, B., Imperatore, S., Zucconi, M., & Colonna, S. (2022). Damage to Churches after the 2016 Central Italy Seismic Sequence. Geosciences, 12(3), 122. https://doi.org/10.3390/geosciences12030122