Features of the Largest Earthquake Seismic Cycles in the Western Part of the Aleutian Subduction Zone
Abstract
:1. Introduction
2. Seismotectonic Setting in Western Segment of the Aleutian Islands
3. Models of Subduction Zone Dynamics
3.1. Asperity Model
3.2. Tectonic Sliver Model
3.3. Keyboard Model of Earthquake Generation under Oblique Subduction Settings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kanamori, H.; Brodsky, E.E. The physics of earthquakes. Rep. Prog. Phys. 2004, 67, 429–1496. [Google Scholar] [CrossRef]
- Hwang, L.J.; Kanamori, H. Of the May 7, 1986 Andreanof Islands earthquake source parameters. Geophys. Res. Lett. 1986, 13, 1426–1429. [Google Scholar] [CrossRef]
- Nishenko, S.P.; Jacob, K.H. Seismic potential of the Queen Charlotte-Alaska-Aleutian seismic zone. J. Geophys. Res. 1990, 95, 2511–2532. [Google Scholar] [CrossRef]
- Ekström, G.; Engdahl, E.R. Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. J. Geophys. Res. 1989, 94, 15499–15519. [Google Scholar] [CrossRef]
- McCaffrey, R. Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res. 1992, 97, 8905–8915. [Google Scholar] [CrossRef]
- Avdeiko, G.P.; Palueva, A.A. The Kamchatka subduction zone: Seismotectonic regionalization and geodynamics. J. Volcanolog. Seismol. 2011, 5, 3–18. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Baranov, B.V.; Dozorova, K.A.; Mazova, R.K.; Kiselman, B.A.; Baranova, N.A. The Komandor seismic gap: Earthquake prediction and tsunami computation. Oceanology 2014, 54, 519–531. [Google Scholar] [CrossRef]
- Baranov, B.V.; Monin, A.S. On the Kuril-Aleutian subduction. Dokl. Akad. Nauk SSSR 1985, 281, 1328–1331. (In Russian) [Google Scholar]
- Andô, M. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics 1975, 27, 119–140. [Google Scholar] [CrossRef]
- Cormier, V.F. Tectonics near the junction of the Aleutian and Kuril-Kamchatka Arcs and a mechanism for Middle Tertiary magmatism in the Kamchatka Basin. Geol. Soc. Am. Bull. 1975, 86, 443–453. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Kerchman, V.I.; Baranov, B.V.; Pristavakina, E.I. Analysis of seismotectonic processes in subduction zones from the standpoint of a keyboard model of great earthquakes. Tectonophysics 1991, 199, 211–236. [Google Scholar] [CrossRef]
- Spence, W. The Aleutian Arc: Tectonic blocks, episodic subduction, strain diffusion, and magma generation. J. Geophys. Res. 1977, 82, 213–230. [Google Scholar] [CrossRef]
- Fedotov, S.A. The Seismic Cycle, Possibility of the Quantitative Seismic Zoning, and Long-Term Seismic Forecasting. In Seismic Zoning in the USSR; (In Russian). Medvedev, S.V., Ed.; Nauka: Moscow, Russia, 1968; pp. 133–166. [Google Scholar]
- Beck, S.; Barrientos, S.; Kausel, E.; Reyes, M. Source characteristics of historic earthquakes along the central Chile subduction zone. J. S. Am. Earth Sci. 1998, 11, 115–129. [Google Scholar] [CrossRef]
- Freymueller, J.T.; Woodard, H.; Cohen, S.C.; Cross, R.; Elliott, J.; Larsen, C.F.; Hreinsdottir, S.; Zweck, C. Active Deformation Process in Alaska, Based on 15 Years of GPS Measurements. In Geophysical Monograph Series; Wiley: Hoboken, NJ, USA, 2008; Volume 179, pp. 1–42. [Google Scholar]
- Minster, J.B.; Jordan, T.H. Present-day plate motions. J. Geophys. Res. 1978, 83, 5331–5354. [Google Scholar] [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 1994, 21, 2191–2194. [Google Scholar] [CrossRef]
- Wesson, R.L.; Boyd, O.S.; Mueller, C.S.; Bufe, C.G.; Frankel, A.D.; Petersen, M.D. Revision of Time-Independent Probabilistic Seismic Hazard Maps for Alaska: U.S. Geological Survey Open-File Report 2007–1043; U.S. Geological Survey: Reston, VA, USA, 2007; p. 33. [Google Scholar]
- Porto, N.M.; Fitzenz, D.D. An Alternative Segmentation Model for the Alaskan Aleutian Megathrust. Bull. Seismol. Soc. Am. 2016, 106, 1125–1132. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Freymueller, J.T.; Witter, R.C.; Suleimani, E.N.; Koehler, R.D. Evidence for shallow megathrust slip across the Unalaska seismic gap during the great 1957 Andreanof Islands earthquake, eastern Aleutian Islands, Alaska. Geophys. Res. Lett. 2016, 43, 10,328–10,337. [Google Scholar] [CrossRef] [Green Version]
- Witter, R.C.; Carver, G.A.; Briggs, R.W.; Gelfenbaum, G.; Koehler, R.D.; la Selle, S.P.; Bender, A.M.; Engelhart, S.E.; Hemphill-Haley, E.; Hill, T.D. Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust. Geophys. Res. Lett. 2016, 43, 76–84. [Google Scholar] [CrossRef]
- Davison, F.C.; Scholz, C.H. Frequency-moment distribution of earthquakes in the Aleutian Arc: A test of the characteristic earthquake model. Bull. Seismol. Soc. Am. 1985, 75, 1349–1361. [Google Scholar] [CrossRef]
- Boyd, M.; Lerner-Lam, A.L. Spatial distribution of turn-of-the-century seismicity along the Alaska-Aleutian arc. Bull. Seismol. Soc. Am. 1988, 78, 636–650. [Google Scholar]
- Fedotov, S.A. Long-term Earthquake Prediction for the Kuril-Kamchatka Arc; Moscow: Nauka, Russia, 2005; p. 34. (In Russian) [Google Scholar]
- International Seismological Centre. ISC-GEM Earthquake Catalogue. 2022. Available online: http://www.isc.ac.uk/iscgem/ (accessed on 12 January 2022).
- Ruppert, N.; Lees, J.; Kozyreva, N. Seismicity, Earthquakes and Structure Along the Alaska—Aleutian and Kamchatka—Kurile Subduction Zones: A Review. Geophys. Monogr. 2013, 172, 129–144. [Google Scholar]
- Minsch, J.H.; Stover, C.W.; Dunbar, P.K.; Baldwin, F.W. Earthquakes in the United States, January–March 1981; Series 871-A; U.S. Geological Survey Circular: Denver, CO, USA, 1982; p. 16. [Google Scholar]
- USGS Earthquake Catalog. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 12 January 2022).
- Johnson, J.M.; Tanioka, Y.; Ruff, L.J.; Satake, K.; Kanamori, H.; Sykes, L.R. The 1957 great Aleutian earthquake. Pure Appl. Geophys. 1994, 142, 3–28. [Google Scholar] [CrossRef]
- Balakina, L.M.; Moskvina, A. Characterization of the seismogenic process in the Aleutian island arc: I. Source relations of the large earthquakes of 1957, 1986, and 1996 in the Andreanof Islands. Izv. Phys. Solid Earth 2008, 44, 631–659. [Google Scholar] [CrossRef]
- Lopez, A.M.; Okal, E.A. A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophys. J. Int. 2006, 165, 835–849. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Xiong, X. The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula Earthquake Rupture Inferred from Seismic and Geodetic Observations: Re-rupture of the Western 2/3 of the 1938 Rupture Zone. Geophys. Res. Lett. 2022, 49, e2021GL096004. [Google Scholar] [CrossRef]
- Gates, O.; Gibson, W. Interpretation of the configuration of the Aleutian Ridge. Bull. Geol. Soc. Amer. 1956, 67, 127–146. [Google Scholar] [CrossRef]
- Geist, E.L.; Childs, J.R.; Scholl, D.W. The origin of summit basins of the Aleutian Ridge: Implications for block rotation of an arc massif. Tectonics 1988, 7, 327–341. [Google Scholar] [CrossRef]
- Ryan, H.F.; Scholl, D.W. Geologic implications of great interpolate earthquakes along the Aleutian arc. J. Geophys. Res. 1993, 98, 22135–22146. [Google Scholar] [CrossRef]
- Vikulin, A.V. A variant of the long-term seismic forecast for Kamchatka Bay and Kronotskii Peninsula. J. Vulkanol. Seismol. 1986, 3, 72–83. [Google Scholar]
- Sykes, L.R.; Kisslinger, J.B.; House, H.; Davies, J.N.; Jacob, K.H. Rupture zones of great earthquakes in the Alaska-Aleutian arc, 1784 to 1980. Science 1980, 210, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Benz, H.M.; Tarr, A.C.; Hayes, G.P.; Villaseñor, A.; Furlong, K.P.; Dart, R.L.; Rhea, S. Seismicity of the Earth 1900–2010 Aleutian Arc and Vicinity; Series 2010–1083-B; USGS—United States Geological Survey: USA: Reston VA, USA, 2011. [Google Scholar]
- Davies, J.N.; Sykes, L.; House, L.; Jacob, K. Shumagin seismic gap, Alaska: History of great earthquakes, tectonic setting and evidence for high seismic potential. J. Geophys. Res. 1981, 86, 3821–3855. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Xiong, X.; Wen, Y. Rupture of the 2020 MW 7.8 earthquake in the Shumagin gap inferred from seismic and geodetic observations. Geophys. Res.Lett. 2020, 47, e2020GL090806. [Google Scholar] [CrossRef]
- Lallemant, H.G.A.; Oldow, J.S. Active displacement partitioning and arc-parallel extension of the Aleutian volcanic arc based on Global Positioning System geodesy and kinematic analysis. Geology 2000, 28, 739–742. [Google Scholar] [CrossRef]
- Lay, T.; Kanamori, H. An Asperity Model of Large Earthquake Sequences in Earthquake Prediction: An International Review; AGU: Washington DC, WA, USA, 1981; pp. 579–592. [Google Scholar]
- Ruff, L.J. Asperity distributions and large earthquake occurrence in subduction zones. Tectonophysics 1992, 211, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Avouac, J.P.; Lapusta, N. Towards inferring earthquake patterns from 513 geodetic observations of interseismic coupling. Nat. Geosci. 2010, 3, 363–369. [Google Scholar] [CrossRef]
- Rosenau, M.; Horenko, I.; Corbi, F.; Rudolf, M.; Kornhuber, R.; Oncken, O. Synchronization of great subduction megathrust earthquakes: Insights from scale model analysis. J. Geophys. Res. Solid Earth 2019, 124, 3646–3661. [Google Scholar] [CrossRef] [Green Version]
- Senatorski, P. Effect of slip-weakening distance on seismic–aseismic slip patterns. Pure Appl. Geophys. 2019, 176, 3975–3992. [Google Scholar] [CrossRef] [Green Version]
- Steblov, G.M.; Grekova, T.A.; Vasilenko, N.F.; Prytkov, A.S.; Frolov, D.I. Dynamics of the Kuril-Kamchatka subduction zone from GPS. Izv. Phys. Solid Earth 2010, 46, 440–445. [Google Scholar] [CrossRef]
- Fitch, T.J. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and western Pacific. J. Geophys. Res. 1972, 23, 4432–4460. [Google Scholar] [CrossRef]
- Beck, M.E.J. On the mechanism of tectonic transport in zones of oblique subduction. Tectonophysics 1983, 93, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; McNally, K.C.; Shen, Z.K. Evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones. J. Geophys. Res. 1995, 100, 15351–15372. [Google Scholar] [CrossRef]
- Yu, G.; Wesnousky, S.G.; Ekstrom, G. Slip partitioning along major convergent plate boundaries. Pure Appl. Geophys. 1993, 140, 183–210. [Google Scholar] [CrossRef]
- Jarrard, R.D. Terrain motion by strike-slip faulting of forearc slivers. Geology 1986, 14, 780–783. [Google Scholar] [CrossRef]
- Chemenda, A.; Lallemand, S.; Bokun, A. Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modeling. J. Geophys. Res. 2000, 105, 5567–5581. [Google Scholar] [CrossRef] [Green Version]
- Levina, V.I.; Lander, A.V.; Mityushkina, S.V.; Chebrova, A.Y. The Seismicity of the Kamchatka Region: 1962–2011. J. Volcanolog. Seismol. 2013, 7, 37–57. [Google Scholar] [CrossRef]
- Kogan, M.G.; Frolov, D.I.; Vasilenko, N.F.; Freymueller, J.T.; Steblov, G.M.; Ekström, G.; Titkov, N.N.; Prytkov, A.S. Plate coupling and strain in the far western Aleutian arc modeled from GPS data. Geophys. Res. Lett. 2017, 44, 3176–3183. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Vladimirova, I.S.; Alekseev, D.A.; Gabsatarov, Y.V. Two-element keyboard model of strongest subduction earthquakes generation. Dokl. Earth Sci. 2021, 496, 72–75. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Vladimirova, I.S.; Gabsatarov, Y.V.; Alekseev, D.A. Keyboard Model of Seismic Cycle of Great Earthquakes in Subduction Zones: Simulation Results and Further Generalization. Appl. Sci. 2021, 11, 9350. [Google Scholar] [CrossRef]
- Shreve, R.L.; Cloos, M. Dynamics of sediment subduction, melange formation, and prism accretion. J. Geophys. Res. 1986, 91, 10229–10245. [Google Scholar] [CrossRef]
- Sorokhtin, O.G.; Lobkovsky, L.I. Mechanism for pulling of sediments in subduction zone of lithospheric plates. Izv. Phys. Solid Earth 1976, 12, 3–10. [Google Scholar]
- Baranov, B.V.; Ivanchenko, A.I.; Dozorova, K.A. The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Islands Region. Pure Appl. Geophys. 2015, 172, 3509–3535. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Vladimirova, I.S.; Gabsatarov, Y.V.; Baranov, B.V.; Garagash, I.A.; Steblov, G.M. Seismotectonic deformations related to the 2010 Maule earthquake at different stages of the seismic cycle from satellite geodetic observations. Dokl. Earth Sci. 2017, 477, 1498–1503. [Google Scholar] [CrossRef]
- Lobkovsky, L.I.; Vladimirova, I.S.; Gabsatarov, Y.V.; Steblov, G.M. Seismotectonic deformations related to the 2011 Tohoku earthquake at different stages of the seismic cycle, based on satellite geodetic observations. Dokl. Earth Sci. 2018, 481, 1060–1065. [Google Scholar] [CrossRef]
- Vladimirova, I.S.; Lobkovsky, L.I.; Gabsatarov, Y.V.; Steblov, G.M.; Vasilenko, N.F.; Prytkov, A.S.; Frolov, D.I. Patterns of the seismic cycle in the Kuril island arc from GPS observations. Pure Appl. Geophys. 2020, 177, 3599–3617. [Google Scholar] [CrossRef]
- Solov′ev, A.A.; Rundkvist, D.V. Modeling of seismicity for the arc subduction zone. Dokl. Earth Sci. 1998, 362, 256–260. [Google Scholar]
- Hayes, G.P.; Wald, D.J.; Johnson, R.L. Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. 2012, 117, B01302. [Google Scholar] [CrossRef]
- Brodsky, E.E.; Ma, K.F.; Mori, J.; Saffer, D.M.; The participants of the ICDP/SCEC International Workshop. Rapid Response Drilling: Past, Present, and Future. Sci. Drill. 2009, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Ujiie, K.; Tsutsumi, A.; Kameda, J.; Shibazaki, B. Geological and frictional aspects of very-low-frequency earthquakes in an accretionary prism. Geophys. Res. Lett. 2013, 40, 703–708. [Google Scholar] [CrossRef]
- Ikari, M.; Marone, C.; Saffer, D.; Kopf, A.J. Slip weakening as a mechanism for slow earthquakes. Nat. Geosci. 2013, 6, 468–472. [Google Scholar] [CrossRef]
- Ujiie, K.; Tanaka, H.; Saito, T.; Tsutsumi, A.; Mori, J.J.; Kameda, J.; Brodsky, E.E.; Chester, F.M.; Eguchi, N.; Toczko, S.; et al. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science 2013, 342, 1211–1214. [Google Scholar] [CrossRef]
- Den Hartog, S.A.M.; Spiers, C.J. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust fault. Tectonophysics 2013, 600, 75–90. [Google Scholar] [CrossRef]
- Molnar, P.; England, P. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet. Sci. Lett. 1995, 131, 57–70. [Google Scholar] [CrossRef]
- McCaffrey, R. Influence of recurrence times and fault zone temperatures on the age-rate dependence of subuction zone seismicity. J. Geophys. Res. 1997, 102, 22839–22854. [Google Scholar] [CrossRef]
- Kay, R.W. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. J. Volc. Geoth. Res. 1978, 4, 117–132. [Google Scholar] [CrossRef]
- Yogodzinski, G.M.; Kelemen, P.B. Slab melting in the Aleutians: Implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet. Sci. Let. 1998, 158, 53–65. [Google Scholar] [CrossRef]
- Avdeiko, G.P.; Palueva, A.A.; Kuvikas, O.V. Adakites in subduction zones of the Circum Pacific: An overview and analysis of geodynamic settings. Vestn. KRAUNTs. Nauk. Zemle 2011, 17, 45–60. (In Russian) [Google Scholar]
- Peacock, S.M.; Rushmer, T.; Thompson, A.B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 1994, 121, 227–244. [Google Scholar] [CrossRef]
- Kocharyan, G.G.; Ostapchuk, A.A. The influence of viscosity of thin fluid films on the frictional interaction mechanism of rock blocks. Dokl. Earth Sci. 2015, 463, 757–759. [Google Scholar] [CrossRef]
Region | Date | Latitude | Longitude | Depth | Mw | Rupture Length, km | Source | |
---|---|---|---|---|---|---|---|---|
Western part (seismic cycle duration ~30–40 yr) | Komandor Islands | 30 Jan 1917 | 55.20° N | 164.5° E | shallow | 8.0 | no data | [24,25] |
Rat Islands | 4 Feb 1965 | 51.30° N | 178.60° E | 36 | 8.7 | 400–600 | [3,25,26] | |
30 Jan 1981 | 51.74° N | 176.27° E | 33 | 7.0 | no data | [25,27] | ||
17 Nov 2003 | 51.15° N | 178.65° E | 33 | 7.7 | 100 | [26,28] | ||
Andreanof Islands | 9 Mar 1957 | 51.30° N | 175.80° W | 33 | 8.6 | 850–1200 | [25,26,29] | |
7 May 1986 | 51.50° N | 174.80° W | 19 | 8.0 | 140 | [2,30] | ||
10 Jun 1996 | 51.56° N | 177.63° W | 33 | 7.9 | 100 | [26,30] | ||
Eastern part (seismic cycle duration > 80 yr) | Alaska Peninsula | 10 Nov 1938 | 55.50° N | 158.00° W | 25 | 8.3 | 300 | [3,25,26] |
1 Apr 1946 | 52.80° N | 162.50° W | 50 | 8.6 | 200 | [25,31] | ||
29 Jul 2021 | 55.36° N | 157.89° W | 35 | 8.2 | 175–200 | [28,32] | ||
Alaska | 28 Mar 1964 | 61.10°N | 147.60° W | 23 | 9.3 | 650–800 | [3,25,26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobkovsky, L.I.; Vladimirova, I.S.; Gabsatarov, Y.V.; Alekseev, D.A. Features of the Largest Earthquake Seismic Cycles in the Western Part of the Aleutian Subduction Zone. Geosciences 2022, 12, 107. https://doi.org/10.3390/geosciences12030107
Lobkovsky LI, Vladimirova IS, Gabsatarov YV, Alekseev DA. Features of the Largest Earthquake Seismic Cycles in the Western Part of the Aleutian Subduction Zone. Geosciences. 2022; 12(3):107. https://doi.org/10.3390/geosciences12030107
Chicago/Turabian StyleLobkovsky, Leopold I., Irina S. Vladimirova, Yurii V. Gabsatarov, and Dmitry A. Alekseev. 2022. "Features of the Largest Earthquake Seismic Cycles in the Western Part of the Aleutian Subduction Zone" Geosciences 12, no. 3: 107. https://doi.org/10.3390/geosciences12030107