Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes
Abstract
:1. Introduction
2. Adopted Computer Codes
3. Ideal Soil Model
4. Numerical Model
4.1. Geometry and Discretization
Seismic Bedrock Modeling
4.2. Soil Properties
Rayleigh Damping Formulation
4.3. Lateral Boundary Conditions (2D and 3D Codes Only)
4.4. Boundary Conditions at the Base of the Model (2D and 3D Codes Only)
4.5. Input Motion Application
5. Results and Comparisons
6. Discussion
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amorosi, A.; Boldini, D.; Di Lernia, A. Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study. Comput. Geotech. 2017, 90, 34–54. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Bilotta, E.; d’Onofrio, A.; Flora, A.; Silvestri, F. A simplified procedure for evaluating post-seismic settlements in liquefiable soils. In Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 51–59. [Google Scholar]
- Chiaradonna, A.; d’Onofrio, A.; Bilotta, E. Assessment of post-liquefaction consolidation settlement. Bull. Earthq. Eng. 2019, 17, 5825–5848. [Google Scholar] [CrossRef]
- Alleanza, G.A.; d’Onofrio, A.; Silvestri, F.; Chiaradonna, A. Parametric study on 2D effect on the seismic response of alluvial valleys. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions; CRC Press: Boca Raton, FL, USA, 2019; pp. 1082–1089. ISBN 0429031270. [Google Scholar]
- Di Ludovico, M.; Chiaradonna, A.; Bilotta, E.; Flora, A.; Prota, A. Empirical damage and liquefaction fragility curves from 2012 Emilia earthquake data. Earthq. Spectra 2020, 36, 507–536. [Google Scholar] [CrossRef]
- Falcone, G.; Acunzo, G.; Mendicelli, A.; Mori, F.; Naso, G.; Peronace, E.; Porchia, A.; Romagnoli, G.; Tarquini, E.; Moscatelli, M. Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensional numerical approach. Eng. Geol. 2021, 289, 106170. [Google Scholar] [CrossRef]
- Gruppo di Lavoro, M.S. Indirizzi e criteri per la microzonazione sismica. In Proceedings of the Conferenza Delle Regioni e Delle Provincie Autonome; Dipartimento Della protezione Civile: Roma, Italy, 2008; Volume 3. [Google Scholar]
- Moscatelli, M.; Albarello, D.; Scarascia Mugnozza, G.; Dolce, M. The Italian approach to seismic microzonation. Bull. Earthq. Eng. 2020, 18, 5425–5440. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Pearson Education India: Noida, India, 1996; ISBN 8131707180. [Google Scholar]
- Mori, F.; Gena, A.; Mendicelli, A.; Naso, G.; Spina, D. Seismic emergency system evaluation: The role of seismic hazard and local effects. Eng. Geol. 2020, 270, 105587. [Google Scholar] [CrossRef]
- Stewart, J.P. Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2008. [Google Scholar]
- Kwok, A.O.L.; Stewart, J.P.; Hashash, Y.M.A.; Matasovic, N.; Pyke, R.; Wang, Z.; Yang, Z. Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures. J. Geotech. Geoenviron. Eng. 2007, 133, 1385–1398. [Google Scholar] [CrossRef] [Green Version]
- Régnier, J.; Bonilla, L.; Bard, P.; Bertrand, E.; Hollender, F.; Kawase, H.; Sicilia, D.; Arduino, P.; Amorosi, A.; Asimaki, D.; et al. PRENOLIN: International Benchmark on 1D Nonlinear Site-Response Analysis—Validation Phase Exercise. Bull. Seismol. Soc. Am. 2018, 108, 876–900. [Google Scholar] [CrossRef]
- Kaklamanos, J.; Baise, L.G.; Thompson, E.M.; Dorfmann, L. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dyn. Earthq. Eng. 2015, 69, 207–219. [Google Scholar] [CrossRef]
- Kaklamanos, J.; Bradley, B.A.; Thompson, E.M.; Baise, L.G. Critical parameters affecting bias and variability in site-response analyses using KiK-net downhole array data. Bull. Seismol. Soc. Am. 2013, 103, 1733–1749. [Google Scholar] [CrossRef]
- Tropeano, G.; Chiaradonna, A.; d’Onofrio, A.; Silvestri, F. A numerical model for non-linear coupled analysis of the seismic response of liquefiable soils. Comput. Geotech. 2019, 105, 211–227. [Google Scholar] [CrossRef]
- Chiaradonna, A.; D’onofrio, A.; Silvestri, F.; Tropeano, G. Prediction of non-linear soil behaviour in saturated sand: A loosely coupled approach for 1d effective stress analysis. In Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, ICEGE 2019; CRC Press/Balkema: Boca Raton, FL, USA, 2019; pp. 1746–1753. [Google Scholar]
- Amorosi, A.; Boldini, D.; Elia, G. Parametric study on seismic ground response by finite element modelling. Comput. Geotech. 2010, 37, 515–528. [Google Scholar] [CrossRef]
- Bardet, J.P.; Ichii, K.; Lin, C.H. EERA: A Computer Program for Equivalent-Linear Earthquake Site Response Analyses of Layered Soil; University of Southern California: Los Angeles, CA, USA, 2000; p. 40. [Google Scholar]
- Kottke, A.R.; Wang, X.; Rathje, E.M. Strata Technical Manual. 2019. Available online: https://github.com/arkottke/strata (accessed on 23 December 2021).
- Hashash, Y.M.A.; Musgrove, M.; Harmon, J.; Ilhan, O.; Xing, G.; Numanoglu, O.; Groholski, D.R.; Phillips, C.A.; Park, D. Deepsoil Version 7.0; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2020; pp. 1–170. [Google Scholar]
- Tropeano, G.; Chiaradonna, A.; d’Onofrio, A.; Silvestri, F. An innovative computer code for 1D seismic response analysis including shear strength of soils. Geotechnique 2016, 66, 95–105. [Google Scholar] [CrossRef]
- Elgamal, A.; Yang, Z.; Lu, J. Cyclic 1D Seismic Ground Response Version 1.4 User’s Manual; University of California: San Diego, CA, USA, 2015; pp. 1–28. [Google Scholar]
- Dynamic Modeling with QUAKE/W; Geo-Slope International Ltd.: Calgary, AB, Canada, 2014; pp. 1–173.
- PLAXIS bv PLAXIS CONNECT Edition V21.01 General Information Manual. 2021. Available online: https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/50826/manuals-archive---plaxis (accessed on 23 December 2021).
- FLAC-Fast Lagrangian Analysis of Continua. User’s Guide; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2021.
- FLAC3D-Fast Lagrangian Analysis of Continua in 3 Dimensions. User’s Guide; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2021.
- Groholski, D.R.; Hashash, Y.M.A.; Matasovic, N. Learning of pore pressure response and dynamic soil behavior from downhole array measurements. Soil Dyn. Earthq. Eng. 2014, 61–62, 40–56. [Google Scholar] [CrossRef]
- Olson, S.M.; Mei, X.; Hashash, Y.M.A. Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation. J. Geotech. Geoenviron. Eng. 2020, 146, 4019128. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Flora, A.; d’Onofrio, A.; Bilotta, E. A pore water pressure model calibration based on in-situ test results. Soils Found. 2020, 60, 327–341. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Tropeano, G.; d’Onofrio, A.; Silvestri, F. Development of a simplified model for pore water pressure build-up induced by cyclic loading. Bull. Earthq. Eng. 2018, 16, 3627–3652. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Tropeano, G.; d’Onofrio, A.; Silvestri, F. A Simplified Method for Pore Pressure Buildup Prediction: From Laboratory Cyclic Tests to the 1D Soil Response Analysis in Effective Stress Conditions. Procedia Eng. 2016, 158, 302–307. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, J.; Elgamal, A. A web-based platform for computer simulation of seismic ground response. Adv. Eng. Softw. 2004, 35, 249–259. [Google Scholar] [CrossRef]
- Lu, J.; Elgamal, A.-W.M.; Yang, Z. Cyclic1D: A Computer Program for Seismic Ground Response; Department of Structural Engineering, University of California: San Diego, CA, USA, 2006. [Google Scholar]
- Stability Modeling with Slope/W; Geo-Slope International Ltd.: Calgary, AB, Canada, 2012.
- Seepage Modeling with SEEP/W; Geo-Slope International Ltd.: Calgary, AB, Canada, 2012; p. 307.
- Martin, G.R.; Seed, H.B.; Finn, W.D.L. Fundamentals of liquefaction under cyclic loading. J. Geotech. Eng. Div. 1975, 101, 423–438. [Google Scholar] [CrossRef]
- Schanz, T.; Vermeer, P.A.; Bonnier, P.G. The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics; Routledge: London, UK, 2019; pp. 281–296. ISBN 1315138204. [Google Scholar]
- Boulanger, R.W.; Ziotopoulou, K. PM4Sand (Version 3): A Sand Plasticity Model for Earthquake Engineering Applications; University of California: Davis, CA, USA, 2015. [Google Scholar]
- Petalas, A. PLAXIS Liquefaction Model UBC3D-PLM, 2013. Available online: https://communities.bentley.com/cfs-file/__key/communityserver-wikis-components-files/00-00-00-05-58/UBC3D_2D00_PLM_2D00_REPORT.June2013.pdf (accessed on 23 December 2021).
- Byrne, P.M. A Cyclic Shear-Volume Coupling and Pore Pressure Model for Sand; Missouri University of Science and Technology: Rolla, MO, USA, 1991. [Google Scholar]
- Boulanger, R.W.; Ziotopoulou, K. PM4Silt (Version 1): A Silt Plasticity Model for Earthquake Engineering Applications; University of California: Davis, CA, USA, 2018. [Google Scholar]
- Andrianopoulos, K.I.; Papadimitriou, A.G.; Bouckovalas, G.D. Explicit integration of bounding surface model for the analysis of earthquake soil liquefaction. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1586–1614. [Google Scholar] [CrossRef]
- Andrianopoulos, K.I.; Papadimitriou, A.G.; Bouckovalas, G.D. Bounding surface plasticity model for the seismic liquefaction analysis of geostructures. Soil Dyn. Earthq. Eng. 2010, 30, 895–911. [Google Scholar] [CrossRef]
- Itasca Consulting Group. User Defined Model-UDM. Available online: https://www.itascacg.com/software/udm-library?software=flac&category=&phrase= (accessed on 23 December 2021).
- Cheng, Z. Application of SANISAND Dafalias-Manzari model in FLAC 3D. In Continuum and Distinct Element Numerical Modeling in Geomechanics; Itasca International Inc.: Minneapolis, MN, USA, 2013. [Google Scholar]
- Dafalias, Y.F.; Manzari, M.T. Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 2004, 130, 622–634. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, G. Computers and Geotechnics A unified plasticity model for large post-liquefaction shear deformation of sand. Comput. Geotech. 2014, 59, 54–66. [Google Scholar] [CrossRef]
- Bathe, K.-J. Finite Element Procedures; Prentice Hall: Hoboken, NJ, USA, 2006; ISBN 097900490X. [Google Scholar]
- Mejia, L.H.; Dawson, E.M. Earthquake deconvolution for FLAC. In Proceedings of the 4th International FLAC Symposium on Numerical Modeling in Geomechanics; Citeseer: Princeton, NJ, USA, 2006; pp. 4–10. [Google Scholar]
- Falcone, G.; Naso, G.; Mori, F.; Mendicelli, A.; Acunzo, G.; Peronace, E.; Moscatelli, M. Effect of Base Conditions in One-Dimensional Numerical Simulation of Seismic Site Response: A Technical Note for Best Practice. GeoHazards 2021, 2, 430–441. [Google Scholar] [CrossRef]
- Kuhlemeyer, R.L.; Lysmer, J. Finite Element Method Accuracy for Wave Propagation Problems. J. Soil Mech. Found. Div. 1973, 99, 421–427. [Google Scholar] [CrossRef]
- Falcone, G.; Romagnoli, G.; Naso, G.; Mori, F.; Moscatelli, M.; Peronace, E. Effect of bedrock stiffness and thickness on numerical simulation of seismic site response. Italian case studies. Soil Dyn. Earthq. Eng. 2020, 139, 106361. [Google Scholar] [CrossRef]
- Boulanger, R.W.; Montgomery, J. Nonlinear deformation analyses of an embankment dam on a spatially variable liquefiable deposit. Soil Dyn. Earthq. Eng. 2016, 91, 222–233. [Google Scholar] [CrossRef]
- Paull, N.A.; Boulanger, R.W.; DeJong, J.T. Accounting for spatial variability in nonlinear dynamic analyses of embankment dams on liquefiable deposits. J. Geotech. Geoenviron. Eng. 2020, 146, 4020124. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures; Pearson Education India: Noida, India, 2007; ISBN 8131713296. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 008047277X. [Google Scholar]
- Verrucci, L.; Pagliaroli, A.; Lanzo, G.; Di Buccio, F.; Biasco, A.P.; Cucci, C. Damping formulations for finite difference linear dynamic analyses: Performance and practical recommendations. Comput. Geotech. 2022, 142, 104568. [Google Scholar] [CrossRef]
- Lanzo, G.; Pagliaroli, A.; D’Elia, B. Numerical Study on the Frequency-Dependent Viscous Damping in Dynamic Response Analyses of Ground; Earthquake Resistant Engineering Structures IV; WIT Press: Boston, MA, USA, 2003; pp. 315–324. [Google Scholar]
- Bassal, P.C.; Boulanger, R.W. System Response of an Interlayered Deposit with Spatially Preferential Liquefaction Manifestations. J. Geotech. Geoenviron. Eng. 2021, 147, 1–23. [Google Scholar] [CrossRef]
- LAC-Fast Lagrangian Analysis of Continua. Online Manual Table of Contents. Dynamic Analysis; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2021.
- Régnier, J.; Bonilla, L.F.; Bard, P.Y.; Bertrand, E.; Hollender, F.; Kawase, H.; Sicilia, D.; Arduino, P.; Amorosi, A.; Asimaki, D.; et al. International benchmark on numerical simulations for 1D, nonlinear site response (Prenolin): Verification phase based on canonical cases. Bull. Seismol. Soc. Am. 2016, 106, 2112–2135. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Tropeano, G.; d’Onofrio, A.; Silvestri, F. Interpreting the deformation phenomena of a levee damaged during the 2012 Emilia earthquake. Soil Dyn. Earthq. Eng. 2019, 124, 389–398. [Google Scholar] [CrossRef]
- Chiaradonna, A.; Lirer, S.; Flora, A. A liquefaction potential integral index based on pore pressure build-up. Eng. Geol. 2020, 272, 105620. [Google Scholar] [CrossRef]
Geometry | Code | Reference | Total Stress | Effective Stress | ||
---|---|---|---|---|---|---|
Equivalent Linear | Non- Linear | Loosely Coupled | Fully Coupled | |||
1D | EERA | [19] | X | |||
Strata | [20] | X | ||||
DEEPSOIL | [21] | X | X | X | ||
SCOSSA | [16,22] | X | X | |||
Cyclic1D | [23] | X | ||||
2D | Quake/W | [24] | X | X | X | |
PLAXIS | [25] | X | X | |||
FLAC | [26] | X | X | X | ||
3D | FLAC3D | [27] | X | X | X |
Non-Linear Code | α | β | D (-) | f1 (Hz) | f2 (Hz) | ξ* (-) | f* (Hz) |
---|---|---|---|---|---|---|---|
0.17671 | 0.00024 | 0.0075 | 2.5 | 7.5 | 0.0065 | 4.33 | |
DEEPSOIL | X | X | X | ||||
SCOSSA | X | X | X | ||||
Cyclic1D | X | X | X * | X * | X * | ||
Quake/W | X | X | X | ||||
PLAXIS | X | X | X * | X * | X * | ||
FLAC | X | X | |||||
FLAC3D | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaradonna, A. Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes. Geosciences 2022, 12, 83. https://doi.org/10.3390/geosciences12020083
Chiaradonna A. Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes. Geosciences. 2022; 12(2):83. https://doi.org/10.3390/geosciences12020083
Chicago/Turabian StyleChiaradonna, Anna. 2022. "Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes" Geosciences 12, no. 2: 83. https://doi.org/10.3390/geosciences12020083
APA StyleChiaradonna, A. (2022). Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes. Geosciences, 12(2), 83. https://doi.org/10.3390/geosciences12020083