The Österplana Fossil Meteorites and… What Else? Terrestrial Cr-Spinels and Zircons in the Ordovician Limestones of the Thorsberg Quarry (Sweden)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results and Discussions
4.1. Cr-Spinels
4.2. Zircons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitz, B.; Tassinari, M.; Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 2001, 194, 1–15. [Google Scholar] [CrossRef]
- Schmitz, B. Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chem. Erde 2013, 73, 113–135. [Google Scholar] [CrossRef]
- Schmitz, B.; Schmieder, M.; Liao, S.; Martin, E.; Terfelt, F. Impact-Crater Ages and Micrometeorite Paleofluxes Compared: Evidence for the Importance of Ordinary Chondrites in the Flux of Meteorites and Asteroids to Earth the Past 500 Million Years; Geological Society of America: Boulder, CO, USA, 2022; Special Papers, in press. [Google Scholar]
- Bridges, J.C.; Schmitz, B.; Hutchison, R.; Greenwood, R.C.; Tassinari, M.; Franchi, I.A. Petrographic classification of mid-Ordovician fossil meteorites from Sweden. Meteorit. Planet. Sci. 2007, 42, 1781–1789. [Google Scholar] [CrossRef]
- Greenwood, R.C.; Schmitz, B.; Bridges, J.B.; Hutchison, R.W.; Franchi, I.A. Disruption of the L-chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains. Earth Planet. Sci. Lett. 2007, 262, 204–213. [Google Scholar] [CrossRef]
- Heck, P.R.; Schmitz, B.; Baur, H.; Wieler, R. Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden and new evidence for the L chondrite parent body breakup event. Meteorit. Planet. Sci. 2008, 43, 517–528. [Google Scholar] [CrossRef]
- Schmitz, B.; Huss, G.R.; Meier, M.M.M.; Peucker-Ehrenbrink, B.; Church, R.P.; Cronholm, A.; Davies, M.B.; Heck, P.R.; Johansen, A.; Keil, K.; et al. A fossil winonaite-like meteorite in Ordovician limestone: A piece of the impactor that broke up the L-chondrite parent body? Earth Planet. Sci. Lett. 2014, 400, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, B.; Yin, Q.-Z.; Sanborn, M.E.; Tassinari, M.; Caplan, C.E.; Huss, G.R. A new type of solar-system material recovered from Ordovician marine limestone. Nat. Comm. 2016, 7, 11851. [Google Scholar] [CrossRef]
- Schmitz, B.; Farley, K.A.; Goderis, S.; Heck, P.R.; Bergström, S.M.; Boschi, S.; Claeys, P.; Debaille, V.; Dronov, A.; Van Ginneken, M.; et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 2019, 5, eaax4184. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.Y.; Huyskens, M.H.; Yin, Q.-Z.; Schmitz, B. Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone. Earth Planet. Sci. Lett. 2020, 547, 116442. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Pober, E.; Faupl, P. The chemistry of detrital spinels and its implications for the geodynamic evolution of the Eastern Alps. Geol. Rund. 1988, 77, 641–670. [Google Scholar] [CrossRef]
- Lenaz, D.; Princivalle, F. Crystal-chemistry of detrital chromites in sandstones from Trieste (NE Italy). Neues Jahrb. Miner. Monat. 1996, 429–434. [Google Scholar]
- Lenaz, D.; Princivalle, F. The crystal chemistry of detrital chromian spinel from the Southeastern Alps and Outer Dinarides: The discrimination of supplies from areas of similar tectonic setting? Can. Miner. 2005, 43, 1305–1314. [Google Scholar] [CrossRef]
- Cookenboo, H.O.; Bustin, R.M.; Wilks, K.R. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian Cordillera. J. Sedim. Petrol. 1997, 67, 116–123. [Google Scholar]
- Lenaz, D.; Kamenetsky, V.; Crawford, A.J.; Princivalle, F. Melt inclusions in detrital spinel from SE Alps (Italy-Slovenia): A new approach to provenance studies of sedimentary basins. Contrib. Miner. Petrol. 2000, 139, 748–758. [Google Scholar] [CrossRef]
- Lenaz, D.; Kamenetsky, V.; Princivalle, F. Cr-spinel supply in Brkini, Istrian and Krk Island flysch basins (Slovenia, Italy and Croatia). Geol. Mag. 2003, 140, 335–372. [Google Scholar] [CrossRef]
- Lenaz, D.; Mazzoli, C.; Spišiak, J.; Princivalle, F.; Maritan, L. Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): Evidence for an ocean-spreading zone in the Northern Vardar suture? Int. J. Earth Sci. 2009, 98, 345–355. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Miner. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Kamenetsky, V.S. Methodology for the study of melt inclusions in Cr-spinels and implications for parental melts of MORB from FAMOUS areas. Earth Planet. Sci. Lett. 1996, 142, 479–486. [Google Scholar] [CrossRef]
- Shimizu, K.; Komiya, T.; Hirose, K.; Shimizu, N.; Maruyama, S. Cr-spinel, an excellent micro-container for retaining primitive melts—Implications for a hydrous plume origin for komatiites. Earth Planet. Sci. Lett. 2001, 189, 177–188. [Google Scholar] [CrossRef]
- Shimizu, K.; Shimizu, N.; Komiya, T.; Suzuki, K.; Maruyama, S.; Tatsumi, Y. CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth Planet. Sci. Lett. 2009, 288, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Heaman, L.M.; Bowins, R.; Crocket, J. The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. Geochim. Cosmochim. Acta 1990, 54, 1597–1607. [Google Scholar] [CrossRef]
- Hoskins, P.W.O.; Ireland, T.R. Rare Earth Element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.L. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Miner. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Owen, M.R. Hafnium content of detrital zircons, a new tool for provenance study. J Sedim. Petrol. 1987, 57, 824–830. [Google Scholar]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Miner. Petrol. 1999, 97, 205–217. [Google Scholar] [CrossRef]
- Hartmann, L.A.; Leite, J.A.D.; Silva, I.C.; Remus, M.V.D.; McNaughton, N.J.; Groves, D.I.; Fletcher, I.R.; Santos, J.O.S.; Vasconcellos, M.A.Z. Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Aust. J. Earth Sci. 2000, 47, 829–844. [Google Scholar] [CrossRef]
- Hoskins, P.W.O.; Shaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of zircon textures. Rev. Miner. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Galeotti, S.; Sahy, D.; Agnini, C.; Condon, D.; Fornaciari, E.; Francescone, F.; Giusberti, L.; Pälike, H.; Spofforth, D.J.; Rio, D. Astrochronology and radio-isotopic dating of the Alano di Piave section (NE Italy), candidate GSSP for the Priabonian stage (late Eocene). Earth Planet. Sci. Lett. 2019, 525, 115746. [Google Scholar] [CrossRef]
- Jarosewich, E.; Nelen, J.A.; Norberg, J.A. Reference samples for electron microprobe analysis. Geostand. Newsl. 1980, 4, 43–47. [Google Scholar] [CrossRef]
- Petrelli, M.; Laeger, K.; Perugini, D. High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: Implications for glass analysis in volcanic products. Geosci. J. 2016, 20, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, M.; Morgavi, D.; Vetere, F.; Perugini, D. Elemental imaging and petro-volcanological applications of an improved laser ablation inductively coupled quadrupole plasma mass spectrometry. Period. Miner. 2016, 85, 25–39. [Google Scholar]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Maibam, B.; Lenaz, D.; Foley, S.; Berndt, J.; Belousova, E.; Wangjam, M.; Goswami, J.N.; Kapsiotis, A. U-Pb and Hf isotope study of detrital zircon and Cr-spinel in the Banavara quartzite and implications for the evolution of the Dharwar Craton, south India. Geol. Mag. 2021, 158, 1671–1682. [Google Scholar] [CrossRef]
- Alwmark, C.; Schmitz, B. Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. Earth Planet. Sci. Lett. 2007, 253, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Lenaz, D.; Princivalle, F.; Schmitz, B. First crystal-structure determination of chromites from an acapulcoite and ordinary chondrites. Miner. Mag. 2015, 79, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, E.J.; O’Driscoll, B.; Lenaz, D.; Zanetti, A.; Gertisser, R. Chromitite petrogenesis in the mantle section of the Ballantrae Ophiolite Complex (Scotland). Lithos 2019, 344–345, 51–67. [Google Scholar] [CrossRef]
- Derbyshire, E.J.; O’Driscoll, B.; Lenaz, D.; Gertisser, R.; Kronz, A. Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos 2013, 162–163, 279–300. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Leuthold, J.; Lenaz, D.; Skogby, H.; Day, J.M.D.; Adetunji, J. Melt Percolation, Melt-Rock Reaction and Oxygen Fugacity in Supra-Subduction Zone Mantle and Lower Crust from the Leka Ophiolite Complex, Norway. J. Petrol. 2021, 62, 1–26. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F.; Moloshag, V.; Alimov, V. Platinum Group Minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Can. Miner. 1999, 37, 1099–1115. [Google Scholar]
- Garuti, G.; Pushkarev, E.V.; Thalhammer, O.A.R.; Zaccarini, F. Chromitites of the Urals (Part 1): Overview of chromite mineral chemistry and geo-tectonic setting. Ofioliti 2012, 37, 27–53. [Google Scholar]
- Zakrzewski, M. Chromian spinels from Kuså, Bergslagen, Sweden. Am. Miner. 1989, 74, 448–455. [Google Scholar]
- Clos, F.; Gilio, M.; van Roermund, H.L.M. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of te Seve Nappe Complex, Sweden. Lithos 2014, 192–195, 8–20. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Walker, R.J.; Day, J.M.D.; Ash, R.D.; Daly, J.S. Generations of melt extraction, melt-rock interaction and high-temperature metasomatism preserved in peridotites of the ~497 Ma Leka ophiolite complex. J. Petrol. 2015, 56, 1797–1828. [Google Scholar] [CrossRef] [Green Version]
- Hanski, E.J.; Kamenetsky, V.S. Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland: Evidence for coexistence and mixing of komatiitic and picritic magmas. Chem. Geol. 2013, 343, 25–37. [Google Scholar] [CrossRef]
- Alapieti, T.T.; Kujanpaa, J.; Lahtinen, J.J.; Papunen, H. The Kemi stratiform chromitite deposit, Northern Finland. Econ. Geol. 1989, 84, 1057–1077. [Google Scholar] [CrossRef]
- Malpas, J.; Strong, D.F. A comparison of chrome-spinels in ophiolites and mantle diapirs of Newfoundland. Geochim. Cosmochim. Acta 1975, 39, 1045–1060. [Google Scholar] [CrossRef]
- Colman-Sadd, S.P.; Dunning, G.R.; Dec, T. Dunnage-Gander relationships and Ordovician orogeny in central newfoundland: A sediment provenance and U/Pb age study. Am. J. Sci. 1992, 292, 317–355. [Google Scholar] [CrossRef]
- Lenaz, D.; Schmitz, B.; Alvarez, W. The terrestrial Cr-spinels in the Maiolica limestones: Where are they from? In 250 Million Years of Earth History in Central Italy: Celebrating 25 years of the Geological Observatory of Coldigioco; Koeberl, C., Bice, D.M., Eds.; Geological Society of America: Boulder, CO, USA, 2019; Volume 542, pp. 121–131. [Google Scholar]
- Harley, S.L.; Kelly, N.M.; Möller, A. Zircon behavior and the thermal histories of mountain chains. Elements 2007, 3, 31–36. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Miner. Petrol. 2015, 158, 757–783. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Miner. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Lukács, R.; Guillong, M.; Bachmann, O.; Fodor, L.; Harangi, S. Tephrostratigraphy and Magma Evolution Based on Combined Zircon Trace Element and U-Pb Age Data: Fingerprinting Miocene Silicic Pyroclastic Rocks in the Pannonian Basin. Front. Earth Sci. 2021, 9, 615768. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Rehnström, E.F. The Tornquist sea and Baltica-Avalonia docking. Tectonophysics 2003, 362, 67–82. [Google Scholar] [CrossRef]
- Robinson, P.; Tucker, R.D.; Bradley, D.; Berry, H.N.; Berry, I.V.; Osberg, P.H. Palaeozoic orogens in New England, USA. Geol. Fören. Förh. 1998, 120, 119–148. [Google Scholar]
- Tucker, R.D.; McKerrow, W.S. Early Palaeozoic chronology: A review in light of new U–Pb zircon ages from Newfoundland and Britain. Can. J. Earth Sci. 1995, 32, 368–379. [Google Scholar] [CrossRef]
- Min, K.; Renne, P.R.; Huff, W.D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 2001, 185, 121–134. [Google Scholar] [CrossRef]
- Huff, W.D.; Bergström, S.M.; Kolata, D.R. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance. Geology 1992, 20, 875–878. [Google Scholar] [CrossRef]
- Lindskog, A.; Costa, M.; Rasmussen, C.Ø.; Connelly, J. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nat. Comm. 2017, 8, 14066. [Google Scholar] [CrossRef]
- Haynes, J.T.; Huff, W.D.; Melson, W.G. Major Ordovician tephras generated by caldera-forming explosive volcanism on continental crust: Evidence from biotite compositions. In Ordovician of the World. Cuadernos del Museo Geominero; Gutiérrez-Marco, J.C., Rábano, I., García-Bellido, D., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2011; Volume 14, pp. 229–235. ISBN 978-84-7840-857-3. [Google Scholar]
- Woodcock, N.H. Ordovician Volcanism and Sedimentation on Eastern Avalonia. In Geological History of Britain and Ireland, 2nd ed.; Woodcock, N., Strachan, R., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Phillips, B.A.; Kerr, A.C.; Bevins, R. A re-appraisal of the petrogenesis and tectonic setting of the Ordovician Fishguard Volcanic Group, SW Wales. Geol. Mag. 2016, 153, 410–425. [Google Scholar] [CrossRef]
- Bevins, R.; Atkinson, N.; Ixer, R.; Evans, J. U-Pb zircon age constraints for the Ordovician Fishguard Volcanic Group and further evidence for the provenance of the Stonehenge bluestones. J. Geol. Soc. 2017, 174, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Fritschle, T.; Daly, J.S.; McConnell, B.; Whitehouse, M.J.; Menuge, J.F.; Buhre, S.; Mertz-Kraus, R.; Döpke, D. Peri-Gondwanan Ordovician arc magmatism in southeastern Ireland and the Isle of Man: Constraints on the timing of Caledonian deformation in Ganderia. GSA Bull. 2018, 130, 1918–1939. [Google Scholar] [CrossRef]
- Schoonmaker, A.; Kidd, W.S.F.; DeLong, S.E.; Bender, J.F. Lawrence Head Volcanics and Dunnage Mélange, Newfoundland Appalachians: Origin by Ordovician Ridge Subduction or in Back-Arc Rift? Geosci. Can. 2014, 41, 523–556. [Google Scholar] [CrossRef] [Green Version]
- Zagorevski, A.; van Staal, C.R.; McNicoll, V.; Lissenberg, C.J.; Valverde-Vaquero, P. Lower to Middle Ordovician evolution of peri-Laurentian arc and backarc complexes in Iapetus: Constraints from the Annieopsquotch accretionary tract, central Newfoundland. GSA Bull. 2006, 118, 324–342. [Google Scholar] [CrossRef]
- Zagorevski, A.; van Staal, C.R.; McNicoll, V.; Rogers, N. Upper Cambrian to Upper Ordovician peri-Gondwanan island arc activity in the Victoria lake supergroup, central Newfoundland: Tectonic development of the Northern Ganderian margin. Am. J. Sci. 2007, 307, 339–370. [Google Scholar] [CrossRef]
- Zagorevski, A.; McNicoll, V.; Rogers, N.; van Hees, G.H. Middle Ordovician disorganized arc rifting in the peri-Laurentian Newfoundland Appalachians: Implications for evolution of intra-oceanic arc systems. J. Geol. Soc. 2016, 173, 76–93. [Google Scholar] [CrossRef]
- Brennan, D.T.; Link, P.K.; Li, Z.-H.; Martin, L.; Johnson, T.; Evans, N.J.; Li, J. Closing the “North American Magmatic” gap: Crustal evolution of the Clearwater Block from multi-isotope and trace element zircon data. Precambrian Res. 2022, 369, 106533. [Google Scholar] [CrossRef]
- Liu, H.; McKenzie, N.R.; Colleps, C.L.; Chen, W.; Ying, Y.; Stockli, L.; Sardsud, A.; Stockli, D.F. Zircon isotope-trace element compositions track Paleozoic-Mesozoic slab dynamics and terrane accretion in Southeast Asia. Earth Planet. Sci. Lett. 2022, 578, 117298. [Google Scholar] [CrossRef]
- Marchese Rizzi, M.A.; Dillenburg, S.R.; Takehara, L.; Girelli, T.J.; Wust, C.F.; Lana, C.D.C.; Chemale Junior, F. Andean fingerprint on placer sand from the southern Brazilian coast. Sedim. Geol. 2022, 428, 106061. [Google Scholar] [CrossRef]
- Zeh, A.; Wilson, A.H. U-Pb-Hf isotopes and shape parameters of zircon from the Mozaan Group (South Africa) with implications for depositional ages, provenance and Witwatersrand-Pongola Supergroup correlations. Precambrian Res. 2022, 368, 10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenaz, D.; Velicogna, M.; Petrelli, M.; Schmitz, B. The Österplana Fossil Meteorites and… What Else? Terrestrial Cr-Spinels and Zircons in the Ordovician Limestones of the Thorsberg Quarry (Sweden). Geosciences 2022, 12, 54. https://doi.org/10.3390/geosciences12020054
Lenaz D, Velicogna M, Petrelli M, Schmitz B. The Österplana Fossil Meteorites and… What Else? Terrestrial Cr-Spinels and Zircons in the Ordovician Limestones of the Thorsberg Quarry (Sweden). Geosciences. 2022; 12(2):54. https://doi.org/10.3390/geosciences12020054
Chicago/Turabian StyleLenaz, Davide, Matteo Velicogna, Maurizio Petrelli, and Birger Schmitz. 2022. "The Österplana Fossil Meteorites and… What Else? Terrestrial Cr-Spinels and Zircons in the Ordovician Limestones of the Thorsberg Quarry (Sweden)" Geosciences 12, no. 2: 54. https://doi.org/10.3390/geosciences12020054
APA StyleLenaz, D., Velicogna, M., Petrelli, M., & Schmitz, B. (2022). The Österplana Fossil Meteorites and… What Else? Terrestrial Cr-Spinels and Zircons in the Ordovician Limestones of the Thorsberg Quarry (Sweden). Geosciences, 12(2), 54. https://doi.org/10.3390/geosciences12020054