Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain
Abstract
:1. Introduction
2. Study Area
2.1. Geology and Geomorphological Characteristics
2.2. Climatic and Hydrological Setting
2.3. Limnological Characteristics
3. Material and Methods
3.1. Bulk Geochemistry
3.1.1. LOI and δ13Corg
3.1.2. ICP-MS/OES
3.2. XRF Scanning
3.3. Analysis and Transformation of Geochemical Data
3.4. Chronological Model
4. Results
4.1. Sedimentological Sequence
4.2. Geochemistry
4.2.1. Overview
4.2.2. Profundal Setting
Al | Si | S | Cl | K | Ca | Ti | Mn | Fe | Sc | Ni | Cu | Zn | Br | Sr | Zr | Cr | Rb | Mo | Pb | Inc/Coh | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | |||||||||||||||||||||
Si | 0.579 | ||||||||||||||||||||
S | −0.127 | −0.333 | |||||||||||||||||||
Cl | −0.202 | −0.414 | 0.609 | ||||||||||||||||||
K | 0.509 | 0.924 | −0.418 | −0.384 | |||||||||||||||||
Ca | 0.466 | 0.820 | −0.030 | −0.308 | 0.783 | ||||||||||||||||
Ti | 0.520 | 0.900 | −0.443 | −0.380 | 0.981 | 0.759 | |||||||||||||||
Mn | 0.450 | 0.777 | −0.184 | −0.222 | 0.815 | 0.800 | 0.839 | ||||||||||||||
Fe | 0.516 | 0.875 | −0.426 | −0.341 | 0.969 | 0.742 | 0.984 | 0.849 | |||||||||||||
Sc | −0.113 | −0.200 | 0.353 | 0.175 | −0.254 | 0.048 | −0.282 | −0.132 | −0.262 | ||||||||||||
Ni | −0.073 | −0.064 | −0.048 | 0.105 | −0.023 | −0.171 | −0.024 | −0.061 | −0.001 | −0.153 | |||||||||||
−0.162 | −0.292 | 0.047 | 0.417 | −0.238 | −0.476 | −0.222 | −0.256 | −0.204 | −0.168 | 0.399 | |||||||||||
Zn | 0.347 | 0.588 | −0.259 | −0.275 | 0.662 | 0.548 | 0.657 | 0.536 | 0.653 | −0.140 | 0.044 | −0.152 | |||||||||
Br | −0.299 | −0.458 | 0.150 | 0.559 | −0.405 | −0.628 | −0.389 | −0.371 | −0.359 | −0.133 | 0.360 | 0.659 | −0.337 | ||||||||
Sr | −0.121 | −0.198 | 0.372 | 0.141 | −0.297 | 0.076 | −0.317 | −0.145 | −0.325 | 0.259 | −0.039 | −0.148 | −0.172 | −0.055 | |||||||
Zr | −0.149 | −0.207 | 0.281 | 0.176 | −0.279 | −0.052 | −0.288 | −0.156 | −0.286 | 0.133 | 0.080 | 0.007 | −0.177 | 0.208 | 0.835 | ||||||
Cr | 0.192 | 0.348 | 0.034 | 0.068 | 0.379 | 0.386 | 0.374 | 0.343 | 0.368 | 0.074 | −0.131 | −0.099 | 0.272 | −0.223 | −0.061 | −0.132 | |||||
Rb | 0.410 | 0.686 | −0.418 | −0.268 | 0.784 | 0.517 | 0.808 | 0.684 | 0.832 | −0.268 | 0.036 | −0.070 | 0.559 | −0.190 | −0.348 | −0.263 | 0.271 | ||||
Mo | −0.017 | −0.027 | 0.254 | 0.267 | −0.113 | 0.089 | −0.123 | −0.017 | −0.123 | 0.151 | 0.004 | 0.008 | −0.076 | 0.074 | 0.238 | 0.249 | −0.021 | −0.147 | |||
Pb | 0.122 | 0.274 | −0.307 | −0.115 | 0.350 | 0.160 | 0.354 | 0.279 | 0.376 | −0.178 | 0.129 | 0.073 | 0.242 | 0.081 | −0.158 | −0.082 | 0.033 | 0.394 | −0.063 | ||
Inc/Coh | −0.376 | −0.566 | 0.032 | 0.334 | −0.532 | −0.771 | −0.510 | −0.518 | −0.493 | −0.160 | 0.374 | 0.611 | −0.409 | 0.857 | −0.033 | 0.202 | −0.357 | −0.299 | 0.003 | 0.010 |
4.2.3. Littoral Setting
Al | Si | S | Cl | K | Ca | Ti | Mn | Fe | Sc | Ni | Cu | Zn | Br | Sr | Zr | Rb | Cr | Mo | Pb | Inc/Coh | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | |||||||||||||||||||||
Si | 0.515 | ||||||||||||||||||||
S | 0.176 | 0.310 | |||||||||||||||||||
Cl | 0.233 | 0.332 | −0.114 | ||||||||||||||||||
K | 0.146 | 0.384 | −0.370 | 0.644 | |||||||||||||||||
Ca | 0.268 | 0.511 | 0.792 | 0.062 | −0.104 | ||||||||||||||||
Ti | −0.059 | 0.011 | −0.120 | 0.148 | 0.175 | −0.101 | |||||||||||||||
Mn | 0.174 | 0.320 | −0.115 | 0.326 | 0.467 | 0.106 | 0.018 | ||||||||||||||
Fe | 0.156 | 0.386 | −0.353 | 0.617 | 0.874 | −0.144 | 0.167 | 0.582 | |||||||||||||
Sc | 0.079 | 0.280 | 0.414 | 0.169 | −0.054 | 0.494 | −0.117 | −0.017 | −0.057 | ||||||||||||
Ni | 0.053 | 0.128 | −0.164 | 0.419 | 0.307 | −0.155 | 0.693 | 0.016 | 0.296 | −0.073 | |||||||||||
Cu | 0.030 | 0.013 | −0.363 | 0.570 | 0.438 | −0.364 | 0.481 | 0.065 | 0.359 | −0.177 | 0.632 | ||||||||||
Zn | 0.074 | 0.032 | 0.000 | 0.036 | 0.034 | 0.063 | −0.019 | 0.102 | 0.098 | 0.074 | −0.008 | −0.030 | |||||||||
Br | 0.046 | 0.087 | −0.478 | 0.673 | 0.645 | −0.319 | 0.126 | 0.278 | 0.636 | −0.125 | 0.434 | 0.629 | −0.026 | ||||||||
Sr | 0.154 | 0.300 | −0.056 | 0.427 | 0.280 | 0.285 | 0.025 | 0.184 | 0.331 | 0.269 | 0.215 | 0.083 | 0.059 | 0.377 | |||||||
Zr | 0.074 | 0.134 | −0.354 | 0.492 | 0.475 | −0.155 | 0.292 | 0.207 | 0.486 | −0.040 | 0.512 | 0.461 | 0.026 | 0.619 | 0.724 | ||||||
Rb | −0.032 | 0.133 | −0.158 | 0.200 | 0.277 | −0.100 | 0.048 | 0.198 | 0.320 | −0.015 | 0.109 | 0.157 | 0.083 | 0.270 | 0.079 | 0.164 | |||||
Cr | 0.047 | 0.182 | 0.208 | 0.290 | 0.074 | 0.189 | 0.119 | 0.035 | 0.114 | 0.267 | 0.161 | 0.161 | 0.149 | 0.063 | 0.166 | 0.065 | 0.021 | ||||
Mo | 0.212 | 0.366 | 0.700 | 0.105 | −0.171 | 0.679 | −0.031 | −0.061 | −0.171 | 0.443 | 0.020 | −0.171 | −0.020 | −0.241 | 0.074 | −0.146 | −0.052 | 0.148 | |||
Pb | −0.029 | 0.118 | −0.309 | 0.332 | 0.433 | −0.176 | 0.036 | 0.177 | 0.458 | 0.058 | 0.159 | 0.235 | 0.015 | 0.431 | 0.203 | 0.271 | 0.269 | 0.003 | −0.203 | ||
Inc/Coh | −0.025 | −0.039 | −0.533 | 0.567 | 0.549 | −0.511 | 0.439 | 0.120 | 0.492 | −0.272 | 0.652 | 0.811 | −0.052 | 0.802 | 0.182 | 0.622 | 0.232 | 0.023 | −0.309 | 0.338 |
5. Discussion
5.1. Intrinsic Factors
5.1.1. Oxygenation, Meromixis and In-Lake Productivity
5.1.2. Evaporation and Lake Drawdown
5.2. Extrinsic Factors
5.2.1. Delivery of Detrital Material
5.2.2. Anthropogenic Water Management
5.3. Spatial Variations
5.4. Environmental and Human Impacts in the Semi-Arid Central Ebro Basin
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morellón, M.; Valero-Garcés, B.; Anselmetti, F.; Ariztegui, D.; Schnellmann, M.; Moreno, A.; Mata, P.; Rico, M.; Corella, J.P. Late Quaternary Deposition and Facies Model for Karstic Lake Estanya (North-Eastern Spain). Sedimentology 2009, 56, 1505–1534. [Google Scholar] [CrossRef]
- Valero-Garcés, B.; Morellón, M.; Moreno, A.; Corella, J.P.; Martín-Puertas, C.; Barreiro, F.; Pérez, A.; Giralt, S.; Mata-Campo, M.P. Lacustrine Carbonates of Iberian Karst Lakes: Sources, Processes and Depositional Environments. Sediment. Geol. 2014, 299, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Martín-Puertas, C.; Valero-Garcés, B.L.; Mata, M.P.; González-Sampériz, P.; Bao, R.; Moreno, A.; Stefanova, V. Arid and Humid Phases in Southern Spain during the Last 4000 Years: The Zoñar Lake Record, Córdoba. Holocene 2008, 18, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Matter, A. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In Modern and Ancient Lake Sediments; Wiley: Hoboken, NJ, USA, 1978; ISBN 9781444303698. [Google Scholar]
- Corella, J.P.; Loizeau, J.L.; le Dantec, N.; Hilbe, M.; Gerard, J.; le Dantec, N.; Stark, N.; González-Quijano, M.; Girardclos, S. The Role of Mass-Transport Deposits and Turbidites in Shaping Modern Lacustrine Deepwater Channels. Mar. Pet. Geol. 2016, 77, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Caran, S.C. Quaternary Paleoenvironmental and Paleoclimatic Reconstruction: A Discussion and Critique, with Examples from the Southern High Plains. Plains Anthropol. 1998, 43, 111–124. [Google Scholar] [CrossRef]
- Pellicer, X.M.; Corella, J.P.; Gutiérrez, F.; Roqué, C.; Linares, R.; Carbonel, D.; Zarroca, M.; Guerrero, J.; Comas, X. Sedimentological and Palaeohydrological Characterization of Late Pleistocene and Holocene Tufa Mound Palaeolakes Using Trenching Methods in the Spanish Pyrenees. Sedimentology 2016, 63, 1786–1819. [Google Scholar] [CrossRef] [Green Version]
- Sáez, A.; Valero-Garcés, B.L.; Moreno, A.; Bao, R.; Pueyo, J.J.; González-Sampériz, P.; Giralt, S.; Taberner, C.; Herrera, C.; Gibert, R.O. Lacustrine Sedimentation in Active Volcanic Settings: The Late Quaternary Depositional Evolution of Lake Chungará (Northern Chile). Sedimentology 2007, 54, 1191–1222. [Google Scholar] [CrossRef] [Green Version]
- Schröder, T.; van ’t Hoff, J.; Ortiz, J.E.; de Torres Pèrez-Hidalgo, T.J.; López-Sáez, J.A.; Melles, M.; Holzhausen, A.; Wennrich, V.; Viehberg, F.; Reicherter, K. Shallow Hypersaline Lakes as Paleoclimate Archives: A Case Study from the Laguna Salada, Málaga Province, Southern Spain. Quat. Int. 2018, 485, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.E.; Grant, W.D.; Duckworth, A.W.; Owenson, G.G. Microbial Diversity of Soda Lakes. Extremophiles 1998, 2, 191–200. [Google Scholar] [CrossRef]
- Jellison, R.; Williams, W.D.; Timms, B.; Alcocer, J.; Aladin, N.V. Salt Lakes: Values, Threats and Future. In Aquatic Ecosystems: Trends and Global Prospects; BioOne: Washington, DC, USA, 2008; ISBN 9780511751790. [Google Scholar]
- Hassani, A.; Azapagic, A.; D’Odorico, P.; Keshmiri, A.; Shokri, N. Desiccation Crisis of Saline Lakes: A New Decision-Support Framework for Building Resilience to Climate Change. Sci. Total Environ. 2020, 703, 134718. [Google Scholar] [CrossRef]
- Hardie, L.A.; Smoot, J.P.; Eugster, H.P. Saline Lakes and Their Deposits: A Sedimentological Approach. In Modern and Ancient Lake Sediments; Wiley Online Books: Hoboken, NJ, USA, 1978; pp. 7–41. ISBN 9781444303698. [Google Scholar]
- Last, F.M. Carbonate Microbialite Formation in a Prairie Saline Lake in Saskatchewan, Canada: Paleohydrologic and Paleoenvironmental Implications; University of Manitoba: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Hammer, U.T. Saline Lake Ecosystems of the World, 1st ed.; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Zhang, C.; Scholz, C.A.; Harris, A.D. Sedimentary Fills and Sensitivity Analysis of Deep Lacustrine Facies in Multi-Segment Rift Basins: Insights from 3D Forward Modeling. Sediment. Geol. 2020, 408, 105753. [Google Scholar] [CrossRef]
- Bonk, A.; Müller, D.; Ramisch, A.; Kramkowski, M.A.; Noryśkiewicz, A.M.; Sekudewicz, I.; Gąsiorowski, M.; Luberda-Durnaś, K.; Słowiński, M.; Schwab, M.; et al. Varve Microfacies and Chronology from a New Sediment Record of Lake Gościąż (Poland). Quat. Sci. Rev. 2021, 251, 106715. [Google Scholar] [CrossRef]
- Czymzik, M.; Brauer, A.; Dulski, P.; Plessen, B.; Naumann, R.; von Grafenstein, U.; Scheffler, R. Orbital and Solar Forcing of Shifts in Mid- to Late Holocene Flood Intensity from Varved Sediments of Pre-Alpine Lake Ammersee (Southern Germany). Quat. Sci. Rev. 2013, 61, 96–110. [Google Scholar] [CrossRef]
- Chawchai, S.; Kylander, M.E.; Chabangborn, A.; Löwemark, L.; Wohlfarth, B. Testing Commonly Used X-Ray Fluorescence Core Scanning-Based Proxies for Organic-Rich Lake Sediments and Peat. Boreas 2016, 45, 180–189. [Google Scholar] [CrossRef]
- Gebregiorgis, D.; Giosan, L.; Hathorne, E.C.; Anand, P.; Nilsson-Kerr, K.; Plass, A.; Lückge, A.; Clemens, S.C.; Frank, M. What Can We Learn From X-Ray Fluorescence Core Scanning Data? A Paleomonsoon Case Study. Geochemistry, Geophys. Geosystems 2019, 21, e2019GC008414. [Google Scholar] [CrossRef] [Green Version]
- Martín-Puertas, C.; Valero-Garcés, B.L.; Mata, M.P.; Moreno, A.; Giralt, S.; Martínez-Ruiz, F.; Jiménez-Espejo, F. Geochemical Processes in a Mediterranean Lake: A High-Resolution Study of the Last 4,000 Years in Zoñar Lake, Southern Spain. J. Paleolimnol. 2011, 46, 405–421. [Google Scholar] [CrossRef]
- Corella, J.P.; Benito, G.; Monteoliva, A.P.; Sigro, J.; Calle, M.; Valero-Garcés, B.L.; Stefanova, V.; Rico, E.; Favre, A.C.; Wilhelm, B. A 1400-Years Flood Frequency Reconstruction for the Basque Country (N Spain): Integrating Geological, Historical and Instrumental Datasets. Quat. Sci. Rev. 2021, 262, 106963. [Google Scholar] [CrossRef]
- Morellón, M.; Valero-Garcés, B.; Moreno, A.; González-Sampériz, P.; Mata, P.; Romero, O.; Maestro, M.; Navas, A. Holocene Palaeohydrology and Climate Variability in Northeastern Spain: The Sedimentary Record of Lake Estanya (Pre-Pyrenean Range). Quat. Int. 2008, 181, 15–31. [Google Scholar] [CrossRef]
- Finlayson, C.M. Salt Lakes. In The Wetland Book; Springer: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Last, W.M. Geolimnology of Salt Lakes. Geosci. J. 2002, 6, 347–369. [Google Scholar] [CrossRef]
- De Wit, R. Lake La Salada de Chiprana (NE Spain), an Example of an Athalassic Salt Lake in a Cultural Landscape. In Lake Sciences and Climate Change; Rashed, M.N., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 43–60. [Google Scholar]
- Valero-Garcés, B.L.; Navas, A.; Machin, J.; Stevenson, T.; Davis, B.; Valero-Garces, B.L.; Navas, A.; Machin, J.; Stevenson, T.; Davis, B.; et al. Responses of a Saline Lake Ecosystem in a Semiarid Region to Irrigation and Climate Variability. AMBIO A J. Hum. Environ. 2000, 29, 344–350. [Google Scholar] [CrossRef]
- Morellón, M.; Valero-Garcés, B.; Vegas-Vilarrúbia, T.; González-Sampériz, P.; Romero, Ó.; Delgado-Huertas, A.; Mata, P.; Moreno, A.; Rico, M.; Corella, J.P. Lateglacial and Holocene Palaeohydrology in the Western Mediterranean Region: The Lake Estanya Record (NE Spain). Quat. Sci. Rev. 2009, 28, 2582–2599. [Google Scholar] [CrossRef] [Green Version]
- González-Sampériz, P.; Aranbarri, J.; Pérez-Sanz, A.; Gil-Romera, G.; Moreno, A.; Leunda, M.; Sevilla-Callejo, M.; Corella, J.P.; Morellón, M.; Oliva, B.; et al. Environmental and Climate Change in the Southern Central Pyrenees since the Last Glacial Maximum: A View from the Lake Records. Catena 2017, 149, 668–688. [Google Scholar] [CrossRef]
- Doyle, C.; Schröder, S.; Aznar, J.P.C.; Valero Garces, B. Facies Variability and Depositional Settings of Laguna Salada de Chiprana, an Iberian Hypersaline Lake. Sedimentology 2022, 69, 2615–2641. [Google Scholar] [CrossRef]
- IGME Mapa Geologico de Espana, 1:50000; (Serie, MAGNA); Hoja 988, Puente-Genil; IGME: Madrid, Spain, 2003.
- Luzón, A. Oligocene-Miocene Alluvial Sedimentation in the Northern Ebro Basin, NE Spain: Tectonic Control and Palaeogeographical Evolution. Sediment. Geol. 2005, 177, 19–39. [Google Scholar] [CrossRef]
- De Wit, R.; Guerrero, M.C.; Legaz, A.; Jonkers, H.M.; Blocier, L.; Gumiaux, C.; Gautret, P. Conservation of a Permanent Hypersaline Lake: Management Options Evaluated from Decadal Variability of Coleofasciculus Chthonoplastes Microbial Mats. Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Gorny, C.; Busby, C.; Pluhar, C.J.; Hagan, J.; Putirka, K. An In-Depth Look at Distal Sierra Nevada Palaeochannel Fill: Drill Cores through the Table Mountain Latite near Knights Ferry. Int. Geol. Rev. 2009, 51, 824–842. [Google Scholar] [CrossRef]
- Domínguez-Castro, F.; García-Herrera, R.; Ribera, P.; Barriendos, M. A Shift in the Spatial Pattern of Iberian Droughts during the 17th Century. Clim. Past 2010, 6, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Jódar, J.; Rubio, F.M.; Custodio, E.; Martos-Rosillo, S.; Pey, J.; Herrera, C.; Turu, V.; Pérez-Bielsa, C.; Ibarra, P.; Lambán, L.J. Hydrogeochemical, Isotopic and Geophysical Characterization of Saline Lake Systems in Semiarid Regions: The Salada de Chiprana Lake, Northeastern Spain. Sci. Total Environ. 2020, 728, 138848. [Google Scholar] [CrossRef]
- Vidondo, B.; Martínez, B.; Montes, C.; Guerrero, M.C. Physico-Chemical Characteristics of a Permanent Spanish Hypersaline Lake: La Salada de Chiprana (NE Spain). Hydrobiologia 1993, 267, 113–125. [Google Scholar] [CrossRef]
- Guerrero, M.C.; Balsa, J.; Pascual, M.; Martínez, B. Caracterización Limnológica de La Laguna Salada de Chiprana (Zaragoza, España) y Sus Comunidades de Bacterias Fototróficas. Limnetica 1991, 7, 83–96. [Google Scholar] [CrossRef]
- Diaz, P.; Guerrero, M.C.; Alcorlo, P.; Baltanas, A.; Florin, M.; Montes, C. Anthropogenic Perturbations to the Trophic Structure in a Permanent Hypersaline Shallow Lake: La Salada de Chiprana (North-Eastern Spain). Int. J. Salt Lake Res. 1998, 7, 187–210. [Google Scholar] [CrossRef]
- Vereș, D. A Comparative Study Between Loss on Ignition and Total Carbon Analysis on Mineralogenic Sediments. Stud. Univ. Babes-Bolyai, Geol. 2002, 47, 171–182. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and Evaluation of a New Multi-Function X-Ray Core Scanner. Geol. Soc. Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Gadd, P.; Heijnis, H.; Chagué-Goff, C.; Zawadzki, A.; Fierro, D.; Atahan, P.; Croudace, I.W.; Goralewski, J. ITRAX Core Scanner Capabilities Combined with Other Geochemical and Radiochemical Techniques to Evaluate Environmental Changes in a Local Catchment, South Sydney, NSW, Australia. In Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; Volume 17. [Google Scholar]
- Edelmann, D.; Móri, T.F.; Székely, G.J. On Relationships between the Pearson and the Distance Correlation Coefficients. Stat. Probab. Lett. 2021, 169, 108960. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF Core Scanners for Quantitative Geochemical Logging of Sediment Cores: Theory and Application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Bishop, T. Using Itrax Data in R. Available online: https://tombishop1.github.io/itraxBook/ (accessed on 19 June 2022).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica; University of Copenhagen: Copenhagen, Denmark, 2001. [Google Scholar]
- Blaauw, M. Methods and Code for “classical” Age-Modelling of Radiocarbon Sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 Cal KBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Davis, B. Paleolimnology and Holocene Environmental Change from Endoreic Lakes in the Ebro Basin, North-East; University of Newcastle Upon Tyne: Newcastle upon Tyne, UK, 1994. [Google Scholar]
- Zhang, X.; Zhang, H.; Chang, F.; Ashraf, U.; Peng, W.; Wu, H.; Liu, Q.; Liu, F.; Zhang, Y.; Duan, L. Application of Corrected Methods for High-Resolution Xrf Core Scanning Elements in Lake Sediments. Appl. Sci. 2020, 10, 8012. [Google Scholar] [CrossRef]
- Corella, J.P.; Stefanova, V.; El Anjoumi, A.; Rico, E.; Giralt, S.; Moreno, A.; Plata-Montero, A.; Valero-Garcés, B.L. A 2500-Year Multi-Proxy Reconstruction of Climate Change and Human Activities in Northern Spain: The Lake Arreo Record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.P.; Brauer, A.; Mangili, C.; Rull, V.; Vegas-Vilarrúbia, T.; Morellón, M.; Valero-Garcés, B.L. The 1.5-Ka Varved Record of Lake Montcortès (Southern Pyrenees, NE Spain). Quat. Res. 2012, 78, 323–332. [Google Scholar] [CrossRef]
- Vegas-Vilarrúbia, T.; Corella, J.P.; Pérez-Zanón, N.; Buchaca, T.; Trapote, M.C.; López, P.; Sigró, J.; Rull, V. Historical Shifts in Oxygenation Regime as Recorded in the Laminated Sediments of Lake Montcortès (Central Pyrenees) Support Hypoxia as a Continental-Scale Phenomenon. Sci. Total Environ. 2018, 612, 1577–1592. [Google Scholar] [CrossRef]
- Mackereth, F.J.H. Some Chemical Observations on Post-Glacial Lake Sediments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1966, 250, 165–213. [Google Scholar] [CrossRef]
- Lin, J.G.; Chen, S.Y. The Relationship between Adsorption of Heavy Metal and Organic Matter in River Sediments. Environ. Int. 1998, 24, 345–352. [Google Scholar] [CrossRef]
- Marchand, C.; Allenbach, M.; Lallier-Vergès, E. Relationships between Heavy Metals Distribution and Organic Matter Cycling in Mangrove Sediments (Conception Bay, New Caledonia). Geoderma 2011, 160, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Żarczyński, M.; Wacnik, A.; Tylmann, W. Tracing Lake Mixing and Oxygenation Regime Using the Fe/Mn Ratio in Varved Sediments: 2000 year-Long Record of Human-Induced Changes from Lake Żabińskie (NE Poland). Sci. Total Environ. 2019, 657, 585–596. [Google Scholar] [CrossRef]
- Seguin, J.; Avramidis, P.; Haug, A.; Kessler, T.; Schimmelmann, A.; Unkel, I. Reconstruction of Palaeoenvironmental Variability Based on an Inter-Comparison of Four Lacustrine Archives on the Peloponnese (Greece) for the Last 5000 Years. E&G Quat. Sci. J. 2020, 69, 165–186. [Google Scholar] [CrossRef]
- Harris, N.B. Sepm The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM Spec. Publ. 2005. [Google Scholar]
- Mueller, A.D.; Islebe, G.A.; Hillesheim, M.B.; Grzesik, D.A.; Anselmetti, F.S.; Ariztegui, D.; Brenner, M.; Curtis, J.H.; Hodell, D.A.; Venz, K.A. Climate Drying and Associated Forest Decline in the Lowlands of Northern Guatemala during the Late Holocene. Quat. Res. 2009, 71, 133–141. [Google Scholar] [CrossRef]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-Resolution X-Ray Fluorescence Core Scanning Analysis of Les Echets (France) Sedimentary Sequence: New Insights from Chemical Proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- IGME Mapa Geologico de Espana, 1:50000; (Serie, MAGNA); Hoja 137, Miranda de Ebro; IGME: Madrid, Spain, 2003.
- Naeher, S.; Gilli, A.; North, R.P.; Hamann, Y.; Schubert, C.J. Tracing Bottom Water Oxygenation with Sedimentary Mn/Fe Ratios in Lake Zurich, Switzerland. Chem. Geol. 2013, 352, 125–133. [Google Scholar] [CrossRef]
- Makri, S.; Wienhues, G.; Bigalke, M.; Gilli, A.; Rey, F.; Tinner, W.; Vogel, H.; Grosjean, M. Variations of Sedimentary Fe and Mn Fractions under Changing Lake Mixing Regimes, Oxygenation and Land Surface Processes during Late-Glacial and Holocene Times. Sci. Total Environ. 2021, 755, 143418. [Google Scholar] [CrossRef] [PubMed]
- Litt, T.; Krastel, S.; Sturm, M.; Kipfer, R.; Örcen, S.; Heumann, G.; Franz, S.O.; Ülgen, U.B.; Niessen, F. “PALEOVAN”, International Continental Scientific Drilling Program (ICDP): Site Survey Results and Perspectives. Quat. Sci. Rev. 2009, 28, 1555–1567. [Google Scholar] [CrossRef]
- Scholz, C.A.; Cohen, A.S.; Johnson, T.C.; King, J.; Talbot, M.R.; Brown, E.T. Scientific Drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project—An Overview of the Past 145,000years of Climate Variability in Southern Hemisphere East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 303, 3–19. [Google Scholar] [CrossRef]
- Brown, E.T. Lake Malawi’s Response to “Megadrought” Terminations: Sedimentary Records of Flooding, Weathering and Erosion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 303, 120–125. [Google Scholar] [CrossRef]
- Giralt, S.; Moreno, A.; Bao, R.; Sáez, A.; Prego, R.; Valero-Garcés, B.L.; Pueyo, J.J.; González-Sampériz, P.; Taberner, C. A Statistical Approach to Disentangle Environmental Forcings in a Lacustrine Record: The Lago Chungará Case (Chilean Altiplano). J. Paleolimnol. 2008, 40, 195–215. [Google Scholar] [CrossRef] [Green Version]
- Corella, J.P.; Amrani, A.E.; Sigró, J.; Morellón, M.; Rico, E.; Valero-Garcés, B.L. Recent Evolution of Lake Arreo, Northern Spain: Influences of Land Use Change and Climate. J. Paleolimnol. 2011, 46, 469–485. [Google Scholar] [CrossRef]
- Corella, J.P.; Moreno, A.; Morellón, M.; Rull, V.; Giralt, S.; Rico, M.T.; Pérez-Sanz, A.; Valero-Garcés, B.L. Climate and Human Impact on a Meromictic Lake during the Last 6,000 Years (Montcortès Lake, Central Pyrenees, Spain). J. Paleolimnol. 2011, 46, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Valero-Garcés, B.L.; González-Sampériz, P.; Rico, M. Flood Response to Rainfall Variability during the Last 2000 Years Inferred from the Taravilla Lake Record (Central Iberian Range, Spain). J. Paleolimnol. 2008, 40, 943–961. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, A.P.; Phedorin, M.A.; Enushchenko, I.V.; Vershinin, K.E.; Melgunov, M.S.; Khodzher, T.V. A Reconstruction of the Thawing of the Permafrost during the Last 170years on the Taimyr Peninsula (East Siberia, Russia). Glob. Planet. Change 2012, 98-99, 139–152. [Google Scholar] [CrossRef]
- Guyard, H.; Chapron, E.; St-Onge, G.; Anselmetti, F.S.; Arnaud, F.; Magand, O.; Francus, P.; Mélières, M.A. High-Altitude Varve Records of Abrupt Environmental Changes and Mining Activity over the Last 4000 Years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat. Sci. Rev. 2007, 26, 2644–2660. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, B.; Yang, M. Relationships among Heavy Metals and Organic Matter in Sediment Cores from Lake Nanhu, an Urban Lake in Wuhan, China. J. Freshw. Ecol. 2010, 25, 243–249. [Google Scholar] [CrossRef]
- Martínez-Cortizas, A.; Costa-Casais, M.; López-Sáez, J.A. Environmental Change in NW Iberia between 7000 and 500 Cal BC. Quat. Int. 2009, 200, 77–89. [Google Scholar] [CrossRef]
- Barriendos, M. Climatic Variations in the Iberian Peninsula during the Late Maunder Minimum (AD 1675-1715): An Analysis of Data from Rogation Ceremonies. Holocene 1997, 7, 105–111. [Google Scholar] [CrossRef]
- Vegas-Vilarrúbia, T.; Corella, J.P.; Sigró, J.; Rull, V.; Dorado-Liñan, I.; Valero-Garcés, B.; Gutiérrez-Merino, E. Regional Precipitation Trends since 1500 CE Reconstructed from Calcite Sublayers of a Varved Mediterranean Lake Record (Central Pyrenees). Sci. Total Environ. 2022, 826, 153773. [Google Scholar] [CrossRef]
- Visscher, P.T.; Stolz, J.F. Microbial Mats as Bioreactors: Populations, Processes, and Products. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 219, 87–100. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Jonkers, H.M.; Ludwig, R.; De Wit, R.; Pringault, O.; Muyzer, G.; Niemann, H.; Finke, N.; De Beer, D. Structural and Functional Analysis of a Microbial Mat Ecosystem from a Unique Permanent Hypersaline Inland Lake: “La Salada de Chiprana” (NE Spain). FEMS Microbiol. Ecol. 2003, 44, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; De Wit, R. Effect of Nitrogen and Phosphorus Additions on a Benthic Microbial Mat from a Hypersaline Lake. Aquat. Microb. Ecol. 2003, 32, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Vegas-Vilarrúbia, T.; González-Sampériz, P.; Morellón, M.; Gil-Romera, G.; Pérez-Sanz, A.; Valero-Garcés, B. Diatom and Vegetation Responses to Late Glacial and Early Holocene Climate Changes at Lake Estanya (Southern Pyrenees, NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M. The Lagoons of Peninsular Spain. Limnetica 1998, 15, 1–176. [Google Scholar] [CrossRef]
Site | Water Depth (m) | Temperature (C) | Dissolved Oxygen (mg/L) | Conductivity (uS/cm) | TDS (mg/L) | pH |
---|---|---|---|---|---|---|
November 2019 | ||||||
Chiprana—Southern Main Lagoon | 0.5 | 11.42 | 8.65 | 46,013 | 40,388 | 9.22 |
Chiprana—Western Main Lagoon | 0.2 | 12.12 | 8.30 | 47,317 | 40,796 | 10.05 |
Chiprana—Side Lagoon | 0.3 | 12.09 | 8.55 | 47,566 | 41,035 | 9.68 |
December 2021 | ||||||
Chiprana—Main Lagoon—Surface | 0 | 8.85 | 7.86 | 39,767.20 | 37,378.00 | 9.60 |
Chiprana—Main Lagoon—2 m | 2 | 8.798 | 7.38 | 39,583.70 | 37,260 | 10.10 |
Chiprana—Main Lagoon—4 m | 4 | 24.404 | 1.76 | 113,728.70 | 74,775 | 3.23 |
Depth (cm) | Chronological Dating Method | Core | Dated Material | 14C Age (yr BP) | Age (yr BP) | Status |
---|---|---|---|---|---|---|
0 | Modern | CHI19-1A | Sediment | 2019 | N/A | |
1 | 210Pb | CHI97-1A | Sediment | 1994.19 | Accepted | |
2 | 137Cs | CHI07-1A | Sediment | 1970 | Accepted | |
3 | 210Pb | CHI97-1A | Sediment | 1986.63 | Rejected | |
5 | 137Cs | CHI07-1A | Sediment | 1963 | Accepted | |
5 | 210Pb | CHI97-1A | Sediment | 1975.5 | Rejected | |
9 | 210Pb | CHI97-1A | Sediment | 1956.32 | Rejected | |
10.7 | 137Cs | CHI07-1A | Sediment | 1960 | Accepted | |
23.5 | 137Cs | CHI07-1A | Sediment | 1950 | Accepted | |
11 | 210Pb | CHI97-1A | Sediment | 1947.74 | Rejected | |
13 | 210Pb | CHI97-1A | Sediment | 1929.49 | Rejected | |
15 | 210Pb | CHI97-1A | Sediment | 1903.94 | Rejected | |
17 | 210Pb | CHI97-1A | Sediment | 1872.6 | Rejected | |
50 | 14C | CHI97-1A | Carophyllaceae seeds | 315 ± 60 | Accepted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, C.; Corella, J.P.; Schröder, S.; Strauss, H.; Bishop, T.; Yarwood, J.; Valero-Garcés, B. Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain. Geosciences 2022, 12, 381. https://doi.org/10.3390/geosciences12100381
Doyle C, Corella JP, Schröder S, Strauss H, Bishop T, Yarwood J, Valero-Garcés B. Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain. Geosciences. 2022; 12(10):381. https://doi.org/10.3390/geosciences12100381
Chicago/Turabian StyleDoyle, Connor, Juan Pablo Corella, Stefan Schröder, Harald Strauss, Thomas Bishop, Jonathan Yarwood, and Blas Valero-Garcés. 2022. "Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain" Geosciences 12, no. 10: 381. https://doi.org/10.3390/geosciences12100381
APA StyleDoyle, C., Corella, J. P., Schröder, S., Strauss, H., Bishop, T., Yarwood, J., & Valero-Garcés, B. (2022). Spatio-Temporal Variations in the Geochemistry of Laguna Salada de Chiprana, NE Spain. Geosciences, 12(10), 381. https://doi.org/10.3390/geosciences12100381