Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring
Abstract
:1. Introduction
2. The Molise Coast
2.1. Physiographic and Geomorphological Features
2.2. Meteomarine Features of the Molise Coast
2.3. The Test Areas
3. Materials and Methods
3.1. Evaluation of Shoreline Changes through the DSAS Tool
3.2. Monitoring of Morpho-Topographic Changes in the Test Areas Based on UAV-Derived Data
3.3. Coastal Vulnerability Assessment
4. Results
4.1. Long- and Mid-Term Shoreline Changes along the Molise Coast from 1954 to 2016
4.2. Morpho-Topographic Changes of the Beach–Dune Systems in the Test Areas from 2019 to 2021
- Test Area A
- Comparing data obtained for profiles P1–P7 (Table 5) for 2019 and 2021 highlights the following trends: A slight restriction of the backshore width, and aside from a few exceptions, the decrease of backshore, foreshore, and total slopes as well as a slight decrease in the height of the ordinary berm. However, no dune front retreat occurred along these profiles from 2019 to 2021.
- Test Area B
- Comparing data obtained for profiles C1–C5 highlights the following trends: A slight restriction of the backshore as well as partial increases and decreases of the backshore and foreshore slopes, which resulted in an overall increase of the total beach slopes along C1 and C2 from 2019 to 2021 and their substantial stability along C3–C5. In addition, berm heights alternately increased or decreased. Finally, all profiles showed some dune front retreat, between 0.4 and 2.1 m.
4.3. Long- to Short-Term Shoreline Changes in the Test Areas and Related Erosion Indexes
4.4. Coastal Vulnerability Assessment
4.4.1. The Wave Run-Up Height Index IRU
4.4.2. The Short-Term Erosion Index IR
4.4.3. Variations in the CVA Parameters
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spencer, T.; French, J.R. Coastal processes and landforms. Geol. Soc. Lond. Mem. 2022, 58, M58-2021-2034. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M.; Knight, J. Introduction to Coastal Processes & Geomorphology, 2nd ed.; Routledge: Oxfordshire, UK, 2011. [Google Scholar]
- Short, A.; Jackson, D. Beach Morphodynamics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Nicholls, R.; Wong, P.; Burket, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., Van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Woodroffe, C. The Natural Resilience of Coastal Systems: Primary Concepts; University of Wollongong: Wollongong, NSW, Australia, 2007. [Google Scholar]
- He, Y.; Wu, Y.; Lu, C.; Wu, M.; Chen, Y.; Yang, Y. Morphological change of the mouth bar in relation to natural and anthropogenic interferences. Cont. Shelf Res. 2019, 175, 42–52. [Google Scholar] [CrossRef]
- Zimmermann, M.; Erikson, L.H.; Gibbs, A.E.; Prescott, M.M.; Escarzaga, S.M.; Tweedie, C.E.; Kasper, J.L.; Duvoy, P.X. Nearshore bathymetric changes along the Alaska Beaufort Sea coast and possible physical drivers. Cont. Shelf Res. 2022, 242, 104745. [Google Scholar] [CrossRef]
- Valentine, K.; Mariotti, G. Wind-driven water level fluctuations drive marsh edge erosion variability in microtidal coastal bays. Cont. Shelf Res. 2019, 176, 76–89. [Google Scholar] [CrossRef]
- Pirazzoli, P.A.; Tomasin, A. Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int. J. Climatol. 2003, 23, 963–973. [Google Scholar] [CrossRef]
- Buccino, M.; Paola, G.D.; Ciccaglione, M.C.; Giudice, G.D.; Rosskopf, C.M. A medium-term study of molise coast evolution based on the one-line equation and “equivalent wave” concept. Water 2020, 12, 2831. [Google Scholar] [CrossRef]
- UN. The Ocean Conference. Factsheet: People and Oceans. New York 2017. Available online: https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (accessed on 1 February 2022).
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmão, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos. Trans. R. Soc. A 2011, 369, 161–181. [Google Scholar] [CrossRef]
- MATTM. National Macro Data on the Coast Line Changes from 1960 to 2012. Available online: http://www.pcn.minambiente.it/mattm/en/project-coasts/ (accessed on 1 February 2022).
- Minervino Amodio, A.; Di Paola, G.; Rosskopf, C.M. Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data. ISPRS Int. J. Geo-Inf. 2022, 11, 155. [Google Scholar] [CrossRef]
- Gioia, D.; Amodio, A.M.; Maggio, A.; Sabia, C.A. Impact of land use changes on the erosion processes of a degraded rural landscape: An analysis based on high-resolution DEMs, historical images, and soil erosion models. Land 2021, 10, 673. [Google Scholar] [CrossRef]
- Flores-de-Santiago, F.; Valderrama-Landeros, L.; Rodríguez-Sobreyra, R.; Flores-Verdugo, F. Assessing the effect of flight altitude and overlap on orthoimage generation for UAV estimates of coastal wetlands. J. Coast. Conserv. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Nield, J.M.; Wiggs, G.F.; Squirrell, R.S. Aeolian sand strip mobility and protodune development on a drying beach: Examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surf. Processes Landf. 2011, 36, 513–522. [Google Scholar] [CrossRef]
- Coveney, S.; Stewart Fotheringham, A.; Charlton, M.; McCarthy, T. Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS. Comput. Geosci. 2010, 36, 489–499. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Iannantuono, E.; Rosskopf, C.M. Recent evolution and erosion risk of the Molise coast (southern Italy). Boll. Della Soc. Geol. Ital. 2009, 128, 759–771. [Google Scholar] [CrossRef]
- Rosskopf, C.M.; Di Paola, G.; Atkinson, D.E.; Rodríguez, G.; Walker, I.J. Recent shoreline evolution and beach erosion along the central Adriatic coast of Italy: The case of Molise region. J. Coast. Conserv. 2018, 22, 879–895. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Environ. Earth Sci. 2018, 77, 1–19. [Google Scholar] [CrossRef]
- Bracone, V.; Amorosi, A.; Aucelli, P.P.C.; Rosskopf, C.M.; Scarciglia, F.; Di Donato, V.; Esposito, P. The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence-stratigraphic perspective. Basin Res. 2012, 24, 213–233. [Google Scholar] [CrossRef]
- Berardo, F.; Carranza, M.L.; Frate, L.; Stanisci, A.; Loy, A. Seasonal habitat preference by the flagship species Testudo hermanni: Implications for the conservation of coastal dunes. Comptes Rendus-Biol. 2015, 338, 343–350. [Google Scholar] [CrossRef]
- Stanisci, A.; Acosta, A.; Carranza, M.L.; Feola, S.; Giuliano, M. Habitats of European Community Interest along Molise coast and their naturalistic value based on flora. Fitosociologia 2007, 44, 171–175. [Google Scholar]
- Cavaleri, L.; Bertotti, L.; Tescaro, N. The modelled wind climatology of the Adriatic Sea. Theor. Appl. Climatol. 1997, 56, 231–254. [Google Scholar] [CrossRef]
- Signell, R.P.; Carniel, S.; Cavaleri, L.; Chiggiato, J.; Doyle, J.D.; Pullen, J.; Sclavo, M. Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J. Mar. Syst. 2005, 53, 217–233. [Google Scholar] [CrossRef]
- Bonaldo, D.; Bucchignani, E.; Ricchi, A.; Carniel, S. Wind storminess in the adriatic sea in a climate change scenario. Acta Adriat. 2017, 58, 195–208. [Google Scholar] [CrossRef]
- Parea, G.C. Trasporto dei Sedimento ed Erosione Costiera Lungo il Litorale fra il Tronto ed il Fortore (Adriatico Centrale). 1978, pp. 361–367. Available online: https://discovery.sba.uniroma3.it/primo-explore/fulldisplay/39cab_almap2156010230002653/ (accessed on 15 July 2022).
- Aucelli, P.P.C.; De Pippo, T.; Iannantuono, E.; Rosskopf, C.M. Caratterizzazione morfologico-dinamica e meteomarina della costa molisana nel settore compreso tra la foce del torrente Sinarca e Campomarino Lido (Italia meridionale). Studi Costieri 2007, 75–92. [Google Scholar]
- Lionello, P.; Barriopedro, D.; Ferrarin, C.; Nicholls, R.J.; Orlić, M.; Raicich, F.; Reale, M.; Umgiesser, G.; Vousdoukas, M.; Zanchettin, D. Extreme floods of Venice: Characteristics, dynamics, past and future evolution (review article). Nat. Hazards Earth Syst. Sci. 2021, 21, 2705–2731. [Google Scholar] [CrossRef]
- ISPRA. Stazioni mariografiche—Ortona. 2022. Available online: https://www.mareografico.it/?session=0S382360463875O7087KIA65&syslng=ita&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0&code=STAZ&idst=17&idreq=1@1@2&set=date (accessed on 1 February 2022).
- Martínez Del Pozo, J.Á.; Anfuso, G. Spatial approach to medium-term coastal evolution in south Sicily (Italy): Implications for coastal erosion management. J. Coast. Res. 2008, 24, 33–42. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; 2018-1179; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Eltner, A.; Baumgart, P.; Maas, H.G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surf. Processes Landf. 2015, 40, 741–755. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from Internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Rodríguez, G. Coastal vulnerability to wave storms of Sele littoral plain (southern Italy). Nat. Hazards 2014, 71, 1795–1819. [Google Scholar] [CrossRef]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast. Conserv. 2018, 22, 1001–1015. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Kriebel, D.L.; Dean, R.G. Convolution method for time-dependent beach-profile response. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 204–226. [Google Scholar] [CrossRef]
- Crowell, M.; Leatherman, S.P.; Buckley, M. Shoreline change rate analysis: Long term versus short term data. Shore Beach 1993, 61, 13–20. [Google Scholar]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.G.; Gabbianelli, G. Seasonal dune and beach monitoring using photogrammetry from UAV surveys to apply in the ICZM on the Ravenna coast (Emilia-Romagna, Italy). Remote Sens. Appl. Soc. Environ. 2017, 7, 27–39. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
Recording Period (Ortona Buoy) | Main Wave Direction (°N) | Secondary Wave Direction (°N) | Effective Fetch (km) | Hs (m) | Ts (s) | Ht (m) | Tt (s) |
---|---|---|---|---|---|---|---|
1990–2006 | 340–10 | 70–100 | 476 | 0.7 | 3.5 | 3.5 | 6.6 |
Date | Data Source | Scale | RMSE (m) |
---|---|---|---|
1954 | Aerial photo | 1:36,000 | 5 |
2004 | Orthophoto map | 1:2500 | 3 |
2016 | Google Earth image | 1:500 | 1 |
Variable | 1 | 2 | 3 | 4 |
---|---|---|---|---|
IR (%) | ≤15 | 16–30 | 31–50 | >50 |
IRu (%) | ≤40 | 41–60 | 61–80 | >80 |
E (m/y) | ≥−0.5 | −0.6–−1.0 | −1.1–−2.0 | <−2.0 |
Low | Medium | High | Very High | |
CVA | ≤6 | 7–9 | 10–12 | ≥13 |
Segment | 1954–2016 | 1954–2004 | 2004–2016 | |||
---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | NSM (m) | LRR (m/y) | NSM (m) | LRR (m/y) | |
S1 | −132.5 | −2.2 | −142.1 | −2.6 | −26.1 | −2.1 |
S2 | −6.9 | 0.1 | 6.2 | 0.3 | −13.1 | −1.2 |
S3 | 33.9 | 0.7 | 27.5 | 0.7 | 6.4 | 0.5 |
S4 | 15.0 | 0.3 | 7.2 | 0.1 | 7.9 | 0.7 |
S5 | 4.8 | 0.2 | −1.9 | −0.1 | 6.7 | 0.7 |
S6 | 60.9 | 1.1 | 49.9 | 1.0 | 9.1 | 0.8 |
S7 | −172.0 | −2.7 | −169.8 | −3.4 | −14.0 | −1.2 |
S8 | 23.4 | 0.3 | 26.7 | 0.5 | 3.7 | 0.3 |
S9 | 9.4 | 0.3 | 9.8 | 0.2 | −5.7 | −0.5 |
Profiles | Backshore Width—L (m) | Backshore Slope—βb (%) | Foreshore Slope—βf (%) | Total Slope—mo (%) | Berm—B (m) | Dune Front Retreat (m) | D50 (mm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2021 | 2019 | 2021 | 2019 | 2021 | 2019 | 2021 | 2019 | 2021 | - | - | |
P1 | 34.1 | 30.7 | 3.7 | 1.1 | 5.7 | 6.0 | 4.0 | 2.9 | 0.3 | 0.5 | - | 0.47 |
P2 | 28.8 | 21.9 | 2.7 | 2.2 | 25.4 | 8.4 | 6.2 | 3.6 | 1.4 | 0.4 | - | |
P3 | 27.9 | 20.4 | 2.8 | 2.4 | 21.8 | 10.8 | 6.5 | 4.8 | 1.4 | 0.8 | - | |
P4 | 28.5 | 24.4 | 6.2 | 4.1 | 14.2 | 10.0 | 8.1 | 5.4 | 1.1 | 0.8 | - | |
P5 | 23.9 | 20.5 | 4.7 | 5.3 | 8.0 | 6.4 | 5.7 | 5.6 | 0.8 | 0.5 | - | |
P6 | 22.5 | 21.2 | 6.7 | 4.5 | 17.5 | 8.7 | 10.3 | 5.9 | 1.1 | 0.6 | - | |
P7 | 18.9 | 16.5 | 4.0 | 5.6 | 13.1 | 6.8 | 6.3 | 6.0 | 0.7 | 0.5 | - | |
C1 | 10.5 | 8.4 | 9.8 | 15.6 | 8.6 | 18.2 | 9.3 | 22.2 | 0.6 | 0.3 | 0.4 | 0.50 |
C2 | 9.2 | 7.5 | 9.4 | 22.8 | 10.9 | 10.1 | 10.0 | 17.5 | 0.5 | 0.6 | 1.2 | |
C3 | 24.1 | 20.0 | 4.2 | 4.8 | 10.0 | 5.3 | 5.1 | 5.0 | 0.5 | 0.6 | 0.4 | |
C4 | 6.8 | 6.1 | 8.9 | 19.8 | 14.9 | 5.3 | 10.6 | 11.3 | 0.5 | 0.5 | 2.1 | |
C5 | 4.9 | 5.9 | 15.8 | 6.0 | 3.5 | 10.3 | 9.5 | 8.2 | 0.2 | 0.6 | 1.5 |
Beach Profiles | 1954–2016 | 2004–2016 | |||||
---|---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | E1 | NSM (m) | LRR (m/y) | E2 | ||
Petacciato beach | P1 | 48.0 | 0.9 | 1 | −3.3 | −0.1 | 1 |
P2 | 67.1 | 1.2 | 1 | 6.8 | 0.6 | 1 | |
P3 | 71.3 | 1.3 | 1 | 4.7 | 0.4 | 1 | |
P4 | 67.7 | 1.2 | 1 | 3.3 | 0.3 | 1 | |
P5 | 60.0 | 1.0 | 1 | 1.2 | 0.1 | 1 | |
P6 | 68.0 | 1.1 | 1 | 9.2 | 0.8 | 1 | |
P7 | 61.3 | 1.0 | 1 | 5.2 | 0.5 | 1 | |
Campomarino beach | C1 | 11.0 | 0.3 | 1 | −7.8 | −0.7 | 2 |
C2 | 15.0 | 0.3 | 1 | −5.1 | −0.4 | 1 | |
C3 | 18.1 | 0.4 | 1 | −11.3 | −1.0 | 2 | |
C4 | 0.4 | 0.1 | 1 | −34.6 | −3.1 | 4 | |
C5 | −0.3 | 0.1 | 1 | −37.7 | −3.2 | 4 |
Beach Profiles | 2016–2019 | 2016–2020 | 2016–2021 | 2019–2021 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NSM (m) | LRR (m/y) | E2019 | NSM (m) | LRR (m/y) | E2020 | NSM (m) | LRR (m/y) | E2021 | NSM (m) | ||
Petacciato beach | P1 | 22.8 | 6.5 | 1 | 18.9 | 4.8 | 1 | 18.5 | 3.7 | 1 | −4.3 |
P2 | 19.2 | 5.5 | 1 | 12.5 | 3.5 | 1 | 11.6 | 2.4 | 1 | −7.6 | |
P3 | 16.9 | 4.8 | 1 | 14.3 | 3.6 | 1 | 9.7 | 2.3 | 1 | −7.2 | |
P4 | 14.0 | 4.0 | 1 | 9.7 | 2.6 | 1 | 10.1 | 2.0 | 1 | −3.9 | |
P5 | 17.7 | 5.0 | 1 | 12.7 | 3.4 | 1 | 14.2 | 2.7 | 1 | −3.5 | |
P6 | −1.2 | −0.4 | 1 | 0.6 | 0.1 | 1 | −1.7 | −0.2 | 1 | −0.5 | |
P7 | 2.3 | 0.7 | 1 | 3.4 | 0.7 | 1 | 0.7 | 0.3 | 1 | −1.6 | |
Campomarino beach | C1 | −4.2 | −1.2 | 3 | 1.4 | −0.1 | 1 | −7.3 | −0.8 | 2 | −3.1 |
C2 | −16.9 | −4.8 | 4 | −10.4 | −3.0 | 4 | −18.8 | −3.1 | 4 | −1.9 | |
C3 | −18.8 | −5.3 | 4 | −18.2 | −4.4 | 4 | −22.6 | −4.1 | 4 | −3.8 | |
C4 | −7.2 | −2.0 | 4 | −6.6 | −1.6 | 3 | −6.8 | −1.3 | 3 | 0,4 | |
C5 | −14.7 | −4.2 | 4 | −8.9 | −2.5 | 4 | −13.7 | −2.4 | 4 | 1.0 |
Petacciato Beach | Campomarino Beach | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | C1 | C2 | C3 | C4 | C5 | ||
2019 Hs = 0.7 m | XRu2% (m) | 4.1 | 2.9 | 3 | 3.1 | 3.6 | 3.1 | 3.2 | 3.5 | 3.3 | 3.4 | 3.1 | 5.3 |
XRu2%/L (%) | 12.0 | 10.2 | 10.7 | 11.0 | 15.0 | 13.6 | 16.9 | 33.5 | 35.9 | 14.0 | 45.9 | 109.1 | |
IRu2% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 4 | |
2019 Ht = 3.5 m | XRu2% (m) | 17.3 | 12.4 | 12.6 | 13.3 | 15.2 | 12.9 | 13.4 | 14.8 | 13.9 | 14.2 | 13.2 | 22.5 |
XRu2%/L (%) | 50.7 | 43.0 | 45.0 | 46.5 | 63.4 | 57.2 | 71.1 | 141.1 | 151.4 | 59.0 | 193.5 | 459.9 | |
IRu2% | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 4 | 4 | 2 | 4 | 4 | |
2020 Hs = 0.7 m | XRu2% (m) | 3.2 | 3.1 | 3.2 | 3 | 3.4 | 3 | 3 | 3.2 | 3.1 | 3.1 | 2.9 | 3.3 |
XRu2%/L (%) | 18.0 | 15.9 | 13.2 | 12.7 | 19.1 | 19.8 | 19.6 | 27.1 | 31.6 | 12 | 48.4 | 36.2 | |
IRu2% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | |
2020 Ht = 3.5 m | XRu2% (m) | 13.3 | 13.1 | 13.4 | 12.5 | 14.2 | 12.5 | 12.8 | 13.6 | 13.2 | 12.9 | 12.3 | 13.8 |
XRu2%/L (%) | 42.8 | 66.3 | 55.6 | 53.5 | 80.4 | 83.5 | 82.8 | 114.4 | 133.3 | 50.8 | 204.1 | 152.8 | |
IRu2% | 3 | 3 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 4 | 4 | |
2021 Hs = 0.7 m | XRu2% (m) | 4 | 3.5 | 3.3 | 3.4 | 3.9 | 3.5 | 3.8 | 3 | 3.4 | 4.2 | 4.2 | 3.4 |
XRu2%/L (%) | 13.1 | 16.2 | 16.2 | 13.8 | 19.0 | 16.5 | 23.1 | 36.2 | 44.9 | 21.2 | 69.5 | 56.7 | |
IRu2% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | |
2021 Ht = 3.5 m | XRu2% (m) | 16.9 | 14.9 | 14 | 14.2 | 16.5 | 14.8 | 16.1 | 12.8 | 14.2 | 17.9 | 17.9 | 14.1 |
XRu2%/L (%) | 55.0 | 68.1 | 68.4 | 53.8 | 80.2 | 69.7 | 97.3 | 152.5 | 189.1 | 89.4 | 293.2 | 239.3 | |
IRu2% | 2 | 3 | 3 | 2 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
Petacciato Beach | Campomarino Beach | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | C1 | C2 | C3 | C4 | C5 | ||
2019 Hs = 0.7 m | R (m) | 2.9 | 0.1 | 0.2 | 1.0 | 0.1 | 1.9 | 0.26 | 2.0 | 3.3 | 0.1 | 3.1 | 3.7 |
R/L (%) | 8.6 | 0.5 | 0.8 | 3.4 | 0.1 | 8.4 | 1.4 | 19.4 | 29.6 | 0.6 | 45.4 | 74.7 | |
IR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 4 | |
2019 Ht = 3.5 m | R (m) | 5.2 | 6.3 | 6.7 | 9.3 | 7.4 | 11.0 | 8.8 | 12.4 | 13.7 | 7.0 | 14.1 | 15.8 |
R/L (%) | 15.1 | 22.0 | 24.0 | 32.5 | 30.9 | 48.9 | 44.1 | 118.2 | 148.6 | 29.1 | 207.7 | 321.5 | |
IR | 1 | 3 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 2 | 4 | 4 | |
2020 Hs = 0.7 m | R (m) | 0.7 | 0.6 | 1.2 | 1.9 | 2.4 | 2.2 | 1.5 | 2.8 | 1.1 | 0.1 | 3.3 | 3.7 |
R/L (%) | 2.3 | 2.8 | 5.9 | 7.4 | 10.0 | 12.2 | 8.8 | 23.8 | 11.0 | 0.5 | 54.7 | 74.7 | |
IR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 4 | |
2020 Ht = 3.5 m | R (m) | 8.9 | 8.9 | 10.7 | 11.5 | 12.3 | 11.2 | 10.1 | 12.9 | 9.7 | 8.2 | 13.6 | 14.8 |
R/L (%) | 28.7 | 44.8 | 48.9 | 44.6 | 50.6 | 61.6 | 59.0 | 108.6 | 98.2 | 32.6 | 227.0 | 164.6 | |
IR | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | |
2021 Hs = 0.7 m | R (m) | 15.9 | 5.5 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 8.9 | 5.3 | 0.2 | 3.4 | 1.3 |
R/L (%) | 51.7 | 24.9 | 1.0 | 0.1 | 0.1 | 0.5 | 1.0 | 106.1 | 70.2 | 0.9 | 57.0 | 22.8 | |
IR | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 4 | 2 | |
2021 Ht = 3.5 m | R (m) | 1.0 | 3.5 | 5.7 | 6.9 | 8.5 | 8.6 | 9.3 | 20.3 | 16.7 | 6.4 | 14.6 | 11.4 |
R/L (%) | 3.2 | 15.8 | 27.8 | 28.1 | 41.7 | 40.6 | 56.4 | 241.9 | 222.2 | 31.9 | 239.4 | 192.4 | |
IR | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paola, G.; Minervino Amodio, A.; Dilauro, G.; Rodriguez, G.; Rosskopf, C.M. Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences 2022, 12, 353. https://doi.org/10.3390/geosciences12100353
Di Paola G, Minervino Amodio A, Dilauro G, Rodriguez G, Rosskopf CM. Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences. 2022; 12(10):353. https://doi.org/10.3390/geosciences12100353
Chicago/Turabian StyleDi Paola, Gianluigi, Antonio Minervino Amodio, Grazia Dilauro, Germàn Rodriguez, and Carmen M. Rosskopf. 2022. "Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring" Geosciences 12, no. 10: 353. https://doi.org/10.3390/geosciences12100353
APA StyleDi Paola, G., Minervino Amodio, A., Dilauro, G., Rodriguez, G., & Rosskopf, C. M. (2022). Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences, 12(10), 353. https://doi.org/10.3390/geosciences12100353