The Use of TERRA-ASTER Satellite for Landslide Detection
Abstract
:1. Introduction
- supervised classification via maximum likelihood classifier with a set of three indexes of spectral change.
- unsupervised classification with another set of three indexes of spectral change.
2. Study Area
- The northern part with the molasses (pink), the penninic and helvetic zone (dark and light green);
- The central part with the northern calcareous alps (blue);
- The southern part with the central alps and penninc metamorphic zone (purple).
3. Challenges and Chances in Remote Sensing Landslide Recognition
- the portion of denudation involved into the process;
- the time span between the two images taken before and after the event;
- the length of the transport trace;
- the width of the landslide scar;
- the degree of isolation of the single phenomena;
- the suitable signature contrast between the land cover type and the landslide.
4. Data and Methods
- Image pre-processing;
- Image processing;
- Image post-processing.
4.1. Image Pre-Processing
4.2. Image Processing
- The first with the three TCT differentiated images as RGB components;
- The second with NDVI instead of change of surface greenness.
4.3. Image Post-Processing
- a nationwide 10 m resolution ALS DTM;
- a local ALS DTM Vorarlberg (for the core study area only) with 1-m resolution.
4.4. Classification Method
- 0.81–1 indicates excellent agreement;
- 0.61–0.8 indicates substantial agreement;
- 0.41–0.6 indicates moderate agreement.
5. Results
- The area only covered by the aerial-photo 2005 (green) A for the double classification (DC) and B for the supervised classification (SC);
- The study area (black) C (DC) and D (SC);
- The central area (purple) E (DC) and F (SC);
- The satellite study area (yellow) G (DC) and H (SC).
5.1. Landslide Classification Accuracy
5.2. Landslide Validation
6. Discussion
- the image shown beside each aerial photos (in Figures 15 and 17–19) represents the RGB composites made of three index of spectral change (introduced in Table 2);
- the bigger points with a black contour are the validation data whereas the smaller red points without a contour are the classified pixel as a landslide with our method;
- the minimum mapping unit defined in our approach corresponds to two pixels (450 m2) belonging to the same phenomenon, even if they are not contiguous.
- Debris slide: such as the two illustrated (with white points) in Figure 15 show higher contrast with the surrounding areas and shorter to nonexistant trail from the scar to the accumulation area.
- Earth flow: such as the two illustrated (with yellow points) in Figure 15 show lower constrast with the surrounding areas but longer trail which indicates a flow-like movement over the topography. A distinctive characteristic of earth flows is the very unusual transport forms that they normally leave behind.
- Mixed class: in the special case of a landslide difficult to distinguish due to the location of the process (forest land cover), to the quality of the aerial photo (haze, cloud or shadow) or to the complexity of the process (e.g., landslide initiated as a debris slide but evolved into an earth flow) a mixed class was adopted instead.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Chen, L. Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 487–495. [Google Scholar] [CrossRef]
- Genevois, R.; Tecca, P.R. The Vajont Landslide: State of the art. Ital. J. Eng. Geol. Environ. 2013. [Google Scholar] [CrossRef]
- Heleno, S.; Matias, M.; Pina, P.; Sousa, A.J. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island. Nat. Hazards Earth Syst. Sci. 2016, 16, 1035–1048. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.; Hwang, J.; Chen, L.; Lin, T. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179–2190. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, M.C.Z.; Giles, D.P.; Murphy, W. Airborne remote sensing for landslide hazard assessment: A case study on the Jurassic escarpment slopes of Worcestershire; UK. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 285–300. [Google Scholar] [CrossRef]
- Tofani, V.; Segoni, S.; Agostini, A.; Catani, F.; Casagli, N. Technical Note: Use of remote sensing for landslide studies in Europe. Nat. Hazards Earth Syst. Sci. 2013, 13, 299–309. [Google Scholar] [CrossRef]
- Siyahghalati, S.; Saraf, A.K.; Pradhan, B.; Jebur, M.N.; Tehrany, M.S. Rule-based semi-automated approach for the detection of landslides induced by 18 September 2011 Sikkim; Himalaya; earthquake using IRS LISS3 satellite images, Geomatics. Nat. Hazards Risk 2016, 7, 326–344. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, P.; Zavala, B.; Berthier, E.; Audin, L. Supervised Method of Landslide Inventory Using Panchromatic SPOT5 Images and Application to the Earthquake-Triggered Landslides of Pisco (Peru; 2007; Mw8.0). Remote Sens. 2013, 5, 2590–2616. [Google Scholar] [CrossRef] [Green Version]
- Roessner, S.; Wetzel, H.-U.; Kaufmann, H.; Sarnagoev, A. Potential of satellite remote sensing and GIS for landslide hazard assessment in Southern Kyrgyzstan (Central Asia). Nat. Hazards 2005, 35, 395–416. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Kang-Tsung, C. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types; an update. Landslide 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Barlow, J.; Fran, J.S.; Martin, Y. High Spatial Resolution Satellite Imagery; DEM Derivatives; and Image Segmentation for the Detection of Mass Wasting Processes. Photogramm. Eng. Remote Sens. 2006, 72, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Feizizadeh, B.; Hoelbling, D. Object-Based Image Analysis and Digital Terrain Analysis for Locating Landslides in the Urmia Lake Basin; Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7. [Google Scholar] [CrossRef]
- Domakinis, C.; Oikonomidis, D.; Astaras, T. Landslide mapping in the coastal area between the Strymonic Gulf and Kavala (Macedonia; Greece) with the aid of remote sensing and geographical information systems. Int. J. Remote Sens. 2008, 29, 6893–6915. [Google Scholar] [CrossRef]
- Fauzi, M.F.A.; Wibowo, A.D.A.; Lim, S.L.; Tan, W.N. On the Detection of Possible Landslides in Post-Event Satellite Images: A Probability Map Approach. Int. J. Mach. Learn. Comput. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Keyport, R.N. A Comparison of Pixel-based versus object oriented analysis of landslides using historical remote sensing data. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2013. [Google Scholar]
- Borghuis, A.M.; Chang, K.; Lee, H.Y. Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery. Int. J. Remote Sens. 2007, 28, 1843–1856. [Google Scholar] [CrossRef]
- Liu, J.-K.; Hsiao, K.-H.; Shih, P.T.-Y. A Geomorphological Model for Landslide Detection. J. Mar. Sci. Technol. 2012, 20, 629–638. [Google Scholar]
- Eisank, C.; Hoelbling, D.; Friedl, B.; Chen, Y.-C.; Chang, K.-T. Expert knowledge for object-based landslide mapping in Taiwan. South-East. Eur. J. Earth Obs. Geomat. 2014, 3, 37. [Google Scholar]
- Wu, Z.; Hu, Z.; Fan, Q. Super-pixel-Based Unsupervised Change Detection using Multi-Dimensional Change Vector Analysis and SVM-Based Classification. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mittelmeertief. Available online: https://de.wikipedia.org/wiki/Mittelmeertief (accessed on 3 June 2021).
- Alpenhochwasser 2005. Available online: https://de.wikipedia.org/wiki/Alpenhochwasser_2005 (accessed on 3 June 2021).
- Hochwasser 2005. Die Katastrophenereignisse in Tirol und Vorarlberg. Available online: http://www.naturgefahren.at/karten/chronik/Katastrophen_oestr/HW2005.html (accessed on 18 December 2019).
- Tilch, N. Identifizierung gravitativer Massenbewegungen mittels mittels multitemporaler Luftbildauswertung in Vorarlberg und angrenzender Gebiete. Jahrb. Geol. Bundesanst. 2014, 154, 21–39. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; Geological Survey Circular: Reston, VA, USA, 2008; Volume 1325, p. 129. [Google Scholar]
- Fletcher, K. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services; (ESA SP-1322/2 March 2012); Contactivity BV: Leiden, The Netherlands, 2012; ISBN 978-92-9221-419-7. [Google Scholar]
- On Demand Surface Radiance TIR—Land Processes Distributed Active Archive Center 2014. Available online: https://lpdaac.usgs.gov/products/ast_09xtv003/ (accessed on 28 October 2019).
- Hulley, C.; Hook, S. A new methodology for cloud detection and classification with ASTER data. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Yarbrough, L.D.; Easson, G.; Kuszmaul, J.S. Using At-Sensor Radiance and Reflectance Tasseled Cap Transforms Applied to Change Detection for the ASTER Sensor. In Proceedings of the Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images: Multi Temp 2005, 16–18 May 2005, Beau Rivage Resort and Casino, Biloxi, Mississippi USA; King, R.L., Younan, N.H., Eds.; Beau Rivage Resort and Casino: Biloxi, MI, USA, 2005. [Google Scholar]
- Sibandze, P.; Mhangara, P.; Odindi, J.; Kganyago, M. A comparison of Normalised Difference Snow Index (NDSI) and Normalised Difference Principal Component Snow Index (NDPCSI) techniques in distinguishing snow from related land cover types. S. Afr. J. Geomat. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P.; Kauth, R.J. The Tasseled Cap De-Mystified. Photogramm. Eng. Remote Sens. 1986, 52, 81–86. [Google Scholar]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a Tasseled cap transformation based on LANDSAT 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Geofabrik GmbH Karlsruhe; OpenStreetMap data for Austria 2016. Available online: https://download.geofabrik.de/europe/austria.html (accessed on 28 October 2019).
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420090727. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences 2007, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Vecchiotti, F.; Tilch, N.; Haberler, A. The use of SPOT5 (Take 5) for Landslide Detection in Preparation for the Arrival of SENTINEL-2 Satellite. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Markart, G.; Perzl, F.; Kohl, B.; Luzian, R.; Kleemayr, K. Schadereignisse 22./23. August 2005-Ereignisdokumentation und analyse von ausgewählten Gemeinden des Bezirkes Bregenz (Vorarlberg); Institut für Naturgefahren und Waldgrenzregionen Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft: Wien, Austria, 2005. [Google Scholar]
- Schwarz, L.; Tilch, N.; Kociu, A. Landslide susceptibility mapping by means of artificial neural networks performed for the region Gasen-Haslau (eastern Styria, Austria). In Proceedings of the 6th EUREGEO—European Congress on Regional Geoscientific Cartography and Information Systems, Munich, Germany, 9–12 June 2009; Bayerisches Landesamt für Umwelt (Hg.): München, Germany, 2009; Volume 1, pp. 470–473. [Google Scholar]
Axis | B1 (0.52–0.60) | B2 (0.63–0.69) | B3 (0.76–0.86) | B4 (1.60–1.70) | B5 (2.145–2.185) | B6 (2.185–2.225) | B7 (2.235–2.285) | B8 (2.295–2.365) | B9 (2.36–2.43) |
---|---|---|---|---|---|---|---|---|---|
Brightness | −0.274 | 0.676 | 0.303 | −0.256 | −0.02 | 0.415 | −0.255 | 0.073 | −0.262 |
Greenness | −0.006 | −0.648 | 0.564 | 0.061 | −0.055 | 0.3944 | −0.193 | 0.021 | −0.249 |
Wetness | 0.166 | −0.087 | −0.703 | 0.187 | 0.04 | 0.5 | −0.287 | 0.03 | −0.318 |
Image Composites | Brightness Change | Greenness Change/NDVI | Wetness Change |
---|---|---|---|
1 | Brightness1–Brightness2 | Greenees1–Greeneess2 | Wetneess1–Wetneess2 |
2 | Brightness1–Brightness2 | NDVI1–NDVI2 | Wetneess1–Wetneess2 |
Change Detected | Code |
---|---|
No Change | 0 |
Fluvial–torrent process | 1 |
Fluvial–river process | 2 |
Vegetation change | 3 |
Anthropogenic change | 4 |
Erosion (unspecific process) | 5 |
Landslides | 10 |
SAT_VAL—Satellite Validation | |
---|---|
Code | Class |
0 | No change detected |
100 | Landslide |
200 | Torrent process |
300 | Vegetation change |
400 | Anthropogenic change |
500 | Erosion (unspecific process) |
600 | Shadows |
700 | Clouds |
SAT_POS—Satellite Position and Accuracy | |
---|---|
Code | Class |
100 | extremely good (completed mapped with scar --> polygon) |
200 | very good (almost complete, good position, with scar --> point) |
300 | good (almost complete, good position, without scar) |
400 | partial (good position) |
500 | not representative, no good position |
600 | uncertain |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchiotti, F.; Tilch, N.; Kociu, A. The Use of TERRA-ASTER Satellite for Landslide Detection. Geosciences 2021, 11, 258. https://doi.org/10.3390/geosciences11060258
Vecchiotti F, Tilch N, Kociu A. The Use of TERRA-ASTER Satellite for Landslide Detection. Geosciences. 2021; 11(6):258. https://doi.org/10.3390/geosciences11060258
Chicago/Turabian StyleVecchiotti, Filippo, Nils Tilch, and Arben Kociu. 2021. "The Use of TERRA-ASTER Satellite for Landslide Detection" Geosciences 11, no. 6: 258. https://doi.org/10.3390/geosciences11060258
APA StyleVecchiotti, F., Tilch, N., & Kociu, A. (2021). The Use of TERRA-ASTER Satellite for Landslide Detection. Geosciences, 11(6), 258. https://doi.org/10.3390/geosciences11060258