Seismicity and the State of Stress in the Dezful Embayment, Zagros Fold and Thrust Belt
Abstract
:1. Introduction
2. Regional Tectonic Setting
3. Dezful Embayment Stratigraphy
4. Data Collection
5. Constraining the State of Stress from Borehole Data
5.1. Methodology
5.2. Stress Orientation
5.3. Stress Magnitude
6. State of the Stress from Earthquake Focal Mechanisms
6.1. Methodology
6.2. Stress Orientation
6.3. Relative Stress Magnitudes and Style of Faulting
7. Seismicity and State of Stress
8. Discussion
9. Conclusions
- Geomechanics study of 25 boreholes confirms that the stresses in the sedimentary cover is normal to strike-slip faulting. This finding is consistent with fault slip tendency analysis of the sedimentary cover, and the relatively few earthquakes at shallower depths, as well as the leak-off test results reported by other researchers.
- The style of faulting and relative stress magnitudes and stress orientation in the area were investigated using Simpson’s (1997) approach in 108 well-constrained earthquake focal mechanisms. This analysis shows that the Anderson fault parameter, , varies from 2 (strike-slip faulting) to 3 (reverse faulting) in the Dezful Embayment, with the highest frequency being between 2.0–2.2, suggesting that the style of faulting in the basement is compressional (a reverse to a strike-slip faulting regime) because the Shmin and SV magnitudes are close to one another but far less than the maximum horizontal stress value.
- Studying both the sedimentary cover and the basement of the Dezful Embayment shows a change from the normal/strike-slip faulting stress regime in the former to a thrust–fault stress regime in the latter.
- Critically stressed fault analysis using the Mohr-Coulomb failure criterion was applied to both the sedimentary cover and the basement in the Dezful Embayment. The analysis shows that the fault plane most likely to slip in the basement is 30–50° dip angle fault aligned NW-SE. The local shallow depth faults, mostly lying NW-SE, are not critically stressed, and in fact, at the current state of stress, they are mechanically quiescent.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics 1995, 241, 193–224. [Google Scholar] [CrossRef]
- Talebian, M.; Jackson, J. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys. J. Int. 2004, 156, 506–526. [Google Scholar] [CrossRef]
- Bordenave, M.L.; Hegre, J.A. Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geol. Soc. Lond. Spéc. Publ. 2010, 330, 291–353. [Google Scholar] [CrossRef]
- Hauksson, E. State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence. Bull. Seismol. Soc. Am. 1994, 84, 917–934. [Google Scholar]
- Levandowski, W.; Herrmann, R.B.; Briggs, R.; Boyd, O.; Gold, R. An updated stress map of the continental United States reveals heterogeneous intraplate stress. Nat. Geosci. 2018, 11, 433–437. [Google Scholar] [CrossRef]
- Dusseault, M.B. Geomechanical challenges in petroleum reservoir exploitation. KSCE J. Civ. Eng. 2011, 15, 669–678. [Google Scholar] [CrossRef]
- McGarr, A.; Simpson, D.; Seeber, L. 40 Case histories of induced and triggered seismicity. Int. Geophys. 2002, 81, 647–661. [Google Scholar] [CrossRef]
- Shen, L.W.; Schmitt, D.R.; Haug, K. Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: Fox Creek, Alberta. Tectonophysics 2019, 764, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Dusseault, M.B.; Bruno, M.S.; Barrera, J. Casing Shear: Causes, Cases, Cures. SPE Drill. Complet. 2001, 16, 98–107. [Google Scholar] [CrossRef]
- Allen, M.B.; Saville, C.; Blanc, E.J.-P.; Talebian, M.; Nissen, E. Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt. Tectonics 2013, 32, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.; Fitch, T. Basement faulting and the focal depths of the larger earthquakes in the Zagros mountains (Iran). Geophys. J. R. Astron. Soc. 1981, 64, 561–586. [Google Scholar] [CrossRef] [Green Version]
- Nissen, E.; Tatar, M.; Jackson, J.A.; Allen, M.B. New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys. J. Int. 2011, 186, 928–944. [Google Scholar] [CrossRef] [Green Version]
- Talebian, M.; Jackson, J. Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophys. J. Int. 2002, 150, 422–439. [Google Scholar] [CrossRef] [Green Version]
- Tatar, M.; Hatzfeld, D.; Ghafory-Ashtiany, M. Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophys. J. Int. 2004, 156, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, O.; Mouthereau, F.; Kargar, S.; Meyer, B. Late Cenozoic and modern stress fields in the western Fars (Iran): Implications for the tectonic and kinematic evolution of central Zagros. Tectonics 2006, 25, 94. [Google Scholar] [CrossRef] [Green Version]
- Yamini-Fard, F.; Hatzfeld, D.; Tatar, M.; Mokhtari, M. Microearthquake seismicity at the intersection between the Kazerun fault and the Main Recent Fault (Zagros, Iran). Geophys. J. Int. 2006, 166, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Yaghoubi, A.A.; Zeinali, M. Determination of magnitude and orientation of the in-situ stress from borehole breakout and effect of pore pressure on borehole stability—Case study in Cheshmeh Khush oil field of Iran. J. Pet. Sci. Eng. 2009, 67, 116–126. [Google Scholar] [CrossRef]
- Haghi, A.H.; Chalaturnyk, R.; Ghobadi, H. The state of stress in SW Iran and implications for hydraulic fracturing of a naturally fractured carbonate reservoir. Int. J. Rock Mech. Min. Sci. 2018, 105, 28–43. [Google Scholar] [CrossRef]
- Mouthereau, F.; Lacombe, O.; Tensi, J.; Bellahsen, N.; Kargar, S.; Amrouch, K. Mechanical Constraints on the Development of the Zagros Folded Belt (Fars). In Thrust Belts and Foreland Basins; Springer: Berlin/Heidelberg, Germany, 2007; pp. 247–266. [Google Scholar]
- Bahroudi, A.; Koyi, H. Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: An analogue modelling approach. J. Geol. Soc. 2003, 160, 719–733. [Google Scholar] [CrossRef]
- Sepehr, M.; Cosgrove, J. Structural framework of the Zagros Fold–Thrust Belt, Iran. Mar. Pet. Geol. 2004, 21, 829–843. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Hatzfeld, D.; Nankali, H.; Tavakoli, F.; Nilforoushan, F.; Tatar, M.; Vernant, P.; Chéry, J.; Masson, F. Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophys. J. Int. 2006, 167, 1077–1088. [Google Scholar] [CrossRef]
- Sepehr, M.; Cosgrove, J.W. The role of major fault zones in controlling the geometry and spatial organization of structures in the Zagros Fold-Thrust Belt. Geol. Soc. Lond. Spéc. Publ. 2007, 272, 419–436. [Google Scholar] [CrossRef]
- Sherkati, S.; Letouzey, J. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar. Pet. Geol. 2004, 21, 535–554. [Google Scholar] [CrossRef]
- Yaghoubi, A. List of the Earthquake Recorded by IRSC Since 2010 in the Dezful Embayment. Harvard Dataverse. 2020. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZABGNF (accessed on 5 June 2021).
- Bordenave, M.L.; Burwood, R. The Albian Kazhdumi Formation of the Dezful Embayment, Iran: One of the Most Efficient Petroleum Generating Systems. In Sandstone Petroleum Reservoirs; Katz, B.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 183–207. [Google Scholar]
- Alavi, M. Tectonics of the zagros orogenic belt of iran: New data and interpretations. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Alavi, M. Structures of the Zagros fold-thrust belt in Iran. Am. J. Sci. 2007, 307, 1064–1095. [Google Scholar] [CrossRef]
- Jahani, S.; Callot, J.P.; de Lamotte, D.F.; Letouzey, J.; Leturmy, P. The Salt Diapirs of the Eastern Fars Province (Zagros, Iran): A Brief Outline of their Past and Present. In Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems; Lacombe, O., Lavé, J., Roure, F.M., Verges, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 289–308. [Google Scholar]
- Pirouz, M. Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting. Acta Diabetol. 2017, 107, 1603–1621. [Google Scholar] [CrossRef]
- Bahroudi, A.; Koyi, H.A. Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin. Mar. Pet. Geol. 2004, 21, 1295–1310. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Sardar, H.; Namjouyan, M.; Mirzaahmadian, Y. Optimization of reservoir cut-off parameters: A case study in SW Iran. Pet. Geosci. 2011, 17, 355–363. [Google Scholar] [CrossRef]
- Sardar, H.; Mahbaz, S.B. Rock physics modeling in sandstone member of Asmari reservoir (a case study from Mansuri oil field). In SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Tulsa, OK, USA, 2009; pp. 2203–2207. [Google Scholar]
- Motiei, H. Stratigraphy of Zagros (In Farsi); Geological Survey of Iran: Tehran, Iran, 1994. [Google Scholar]
- McKenzie, D. Active Tectonics of the Mediterranean Region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.; McKenzie, D. Active tectonics of the Alpine--Himalayan Belt between western Turkey and Pakistan. Geophys. J. Int. 1984, 77, 185–264. [Google Scholar] [CrossRef]
- Ni, J.; Barazangi, M. Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas. J. Geophys. Res. Space Phys. 1986, 91, 8205. [Google Scholar] [CrossRef]
- Baker, C.; Jackson, J.; Priestley, K. Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: Strike-slip faulting within a fold-and-thrust belt. Geophys. J. Int. 1993, 115, 41–61. [Google Scholar] [CrossRef] [Green Version]
- Priestley, K.; Baker, C.; Jackson, J. Implications of earthquake focal mechanism data for the active tectonics of the south Caspian Basin and surrounding regions. Geophys. J. Int. 1994, 118, 111–141. [Google Scholar] [CrossRef]
- Maggi, A.; Jackson, J.A.; Priestley, K.; Baker, C. A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? Geophys. J. Int. 2000, 143, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.; Brazier, R.; Nyblade, A.; Rodgers, A.; Al-Amri, A. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity. Bull. Seismol. Soc. Am. 2009, 99, 2044–2049. [Google Scholar] [CrossRef]
- Peyret, M.; Rolandone, F.; Dominguez, S.; Djamour, Y.; Meyer, B. Source model for the Mw 6.1, 31 March 2006, Chalan-Chulan earthquake (Iran) from InSAR. Terra Nova 2008, 20, 126–133. [Google Scholar] [CrossRef]
- Hosseini, H.; Pakzad, M.; Naserieh, S. Iranian regional centroid moment tensor catalog: Solutions for 2012–2017. Phys. Earth Planet. Inter. 2019, 286, 29–41. [Google Scholar] [CrossRef]
- Plumb, R.A.; Cox, J.W. Stress directions in eastern North America determined to 4.5 km from borehole elongation measurements. J. Geophys. Res. Space Phys. 1987, 92, 4805–4816. [Google Scholar] [CrossRef]
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Schmitt, D.R.; Currie, C.A.; Zhang, L. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics 2012, 580, 1–26. [Google Scholar] [CrossRef]
- Gaarenstroom, L.; Tromp, R.A.J.; de Jong, M.C.; Brandenburg, A.M. Overpressures in the Central North Sea: Implications for trap integrity and drilling safety. In Geological Society, London, Petroleum Geology Conference Series; Geological Society of London: London, UK, 1993; Volume 4, pp. 1305–1313. [Google Scholar]
- Ward, C.; Andreassen, E. Pressure-While-Drilling Data Improve Reservoir Drilling Performance. SPE Drill. Complet. 1998, 13, 19–24. [Google Scholar] [CrossRef]
- Brace, W.F.; Kohlstedt, D.L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. Space Phys. 1980, 85, 6248–6252. [Google Scholar] [CrossRef]
- Byerlee, J. Friction of Rocks, in Rock Friction and Earthquake Prediction; Springer: Berlin/Heidelberg, Germany, 1978; pp. 615–626. [Google Scholar]
- Heidbach, O.; Rajabi, M.; Reiter, K.; Ziegler, M.; Wsm Team. World stress map 2016. Science 2016, 277, 1956–1962. [Google Scholar]
- Talebi, H.; Alavi, S.A.; Sherkati, S.; Ghassemi, M.R.; Golalzadeh, A. In-situ stress regime in the Asmari reservoir of the Zeloi and Lali oil fields, northwest of the Dezful embayment in Zagros fold-thrust belt, Iran. Geosciences 2018, 106, 53–68. [Google Scholar]
- Hosseini, E.; Ghojogh, J.N.; Habibnia, B. Study of Faults in Asmari Formation by FMI Image Log, Case Study: Lali Oilfield. Am. J. Oil Chem. Technol. 2015, 3, 5. [Google Scholar]
- Nabaei, M.; Moazzeni, A.R.; Ashena, R.; Roohi, A. Complete Loss, Blowout and Explosion of Shallow Gas, Infelicitous Horoscope in Middle East. In SPE European Health, Safety and Environmental Conference in Oil and Gas Exploration and Production; Society of Petroleum Engineers (SPE): Vienna, Austria, 2011. [Google Scholar]
- Salehi, M.; Miri, A.; Sherkati, S.; Bahroudi, A. Analysis of pore pressure effect on abnormal thickness variation of Dashtak Fm. as a detachment layer in Fars region of Zagros fold and thrust belt. In International Geophysical Conference and Oil & Gas Exhibition; Society of Exploration Geophysicists and The Chamber of Geophysical: Tulsa, OK, USA, 2012. [Google Scholar]
- Atashbari, V. Origin of Overpressure and Pore Pressure Prediction in Carbonate Reservoirs of the Abadan Plain Basin, in Australian School of Petroleum. Ph.D. Dissertation, University of Adelaide, Adelaide, Australia, 2016. [Google Scholar]
- Soleimani, B.; Hassani-Giv, M.; Fard, I.A. Formation Pore Pressure Variation of the Neocomian Sedimentary Succession (the Fahliyan Formation) in the Abadan Plain Basin, SW of Iran. Geofluids 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.; Lashkaripour, G.R.; Ghabezloo, S.; Moghaddas, N.H.; Tajareh, M.H. Mechanical earth modeling and fault reactivation analysis for CO2-enhanced oil recovery in Gachsaran oil field, south-west of Iran. Environ. Earth Sci. 2019, 78, 112. [Google Scholar] [CrossRef]
- Najibi, A.R.; Ghafoori, M.; Lashkaripour, G.R.; Asef, M.R. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J. Pet. Sci. Eng. 2015, 126, 78–82. [Google Scholar] [CrossRef]
- Asef, M.R.; Farrokhrouz, M. Governing parameters for approximation of carbonates UCS. Electron. J. Geotech. Eng. 2010, 15, 1581–1592. [Google Scholar]
- Najibi, A.R.; Asef, M.R. Prediction of seismic-wave velocities in rock at various confining pressures based on unconfined dataPrediction of seismic-wave velocities in rock at various confining pressures based on unconfined data. Geophysics 2014, 79, 235–242. [Google Scholar] [CrossRef]
- Haghnejad, A.; Ahangari, K.; Noorzad, A. Investigation on Various Relations Between Uniaxial Compressive Strength, Elasticity and Deformation Modulus of Asmari Formation in Iran. Arab. J. Sci. Eng. 2014, 39, 2677–2682. [Google Scholar] [CrossRef]
- Farrokhrouz, M.; Asef, M.R.; Kharrat, R. Empirical estimation of uniaxial compressive strength of shale formations. Geophysics 2014, 79, D227–D233. [Google Scholar] [CrossRef]
- Asadi, S.; Javan, M.M.; Bohloli, B.; Mutabashiani, S. Experimental, Numerical and Analytical Investigation the Initiation and Propagation of Hydraulic Fracturing. World Appl. Sci. J. 2013, 22, 637–646. [Google Scholar]
- Mazidi, S.M.; Haftani, M.; Bohloli, B.; Cheshomi, A. Measurement of uniaxial compressive strength of rocks using reconstructed cores from rock cuttings. J. Pet. Sci. Eng. 2012, 86, 39–43. [Google Scholar] [CrossRef]
- Koleini, M. Engineering Geological Assessment and Rock Mass Characterization of the Asmari Formation (Zagros Range) as Large Dam Foundation Rocks in Southwestern Iran. Ph.D. Dissertation, University of Pretoria, Pretoria, South Africa, 2012. [Google Scholar]
- Moos, D.; Zoback, M.D. Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes. J. Geophys. Res. Space Phys. 1990, 95, 9305–9325. [Google Scholar] [CrossRef]
- Taghipour, M.; Ghafoori, M.; Lashkaripour, G.R.; Moghaddas, N.H.; Molaghab, A. Estimation of the current stress field and fault reactivation analysis in the Asmari reservoir, SW Iran. Pet. Sci. 2019, 16, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.T.; Andalibi, M.J.; Gheitanchi, M.R.; Jackson, J.A.; Karegar, S.; Priestley, K. Seismological and field observations from the 1990 November 6 Furg (Hormozgan) earthquake: A rare case of surface rupture in the Zagros mountains of Iran. Geophys. J. Int. 2005, 163, 567–579. [Google Scholar] [CrossRef] [Green Version]
- Zoback, M.L. First and Second Order Patterns of Tectonic Stress: The World Stress Map Project. J. Geophys. Res. 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Gephart, J.W.; Forsyth, D.W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence. J. Geophys. Res. Space Phys. 1984, 89, 9305–9320. [Google Scholar] [CrossRef]
- Michael, A. Determination of stress from slip data: Faults and folds. J. Geophys. Res. Space Phys. 1984, 89, 11517–11526. [Google Scholar] [CrossRef]
- Lund, B.; Townend, J. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys. J. Int. 2007, 170, 1328–1335. [Google Scholar] [CrossRef] [Green Version]
- Hardebeck, J.L.; Michael, A. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. J. Geophys. Res. Space Phys. 2006, 111, 172. [Google Scholar] [CrossRef]
- Martinez-Garzon, P.; Kwiatek, G.; Ickrath, M.; Bohnhoff, M. MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool. Seismol. Res. Lett. 2014, 85, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Angelier, J. Tectonic analysis of fault slip data sets. J. Geophys. Res. Space Phys. 1984, 89, 5835–5848. [Google Scholar] [CrossRef]
- Simpson, R.W. Quantifying Anderson’s fault types. J. Geophys. Res. Solid Earth 1997, 102, 17909–17919. [Google Scholar] [CrossRef]
- Yang, W.; Hauksson, E. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophys. J. Int. 2013, 194, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Hurd, O.; Zoback, M.D. Intraplate earthquakes, regional stress and fault mechanics in the Central and Eastern U.S. and Southeastern Canada. Tectonophysics 2012, 581, 182–192. [Google Scholar] [CrossRef]
- Snee, J.-E.L.; Zoback, M.D. State of stress in Texas: Implications for induced seismicity. Geophys. Res. Lett. 2016, 43, 10208–10214. [Google Scholar] [CrossRef]
- Lei, X.; Su, J.; Wang, Z. Growing seismicity in the Sichuan Basin and its association with industrial activities. Sci. China Earth Sci. 2020, 63, 1633–1660. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Ferrill, D.A.; Henderson, D.B. Slip-tendency analysis and fault reactivation. Geology 1996, 24, 275–278. [Google Scholar] [CrossRef]
- Zoback, M.D.; Harjes, H.-P. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J. Geophys. Res. Space Phys. 1997, 102, 18477–18491. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Sass, J.H. Heat flow and energetics of the San Andreas Fault Zone. J. Geophys. Res. Space Phys. 1980, 85, 6185–6222. [Google Scholar] [CrossRef] [Green Version]
- Rudkiewicz, J.L.; Sherkati, S.; Letouzey, J. Evolution of Maturity in Northern Fars and in the Izeh Zone (Iranian Zagros) and Link with Hydrocarbon Prospectivity. In Thrust Belts and Foreland Basins; Springer: Berlin/Heidelberg, Germany, 2007; pp. 229–246. [Google Scholar]
- Sonder, L.J. Effects of density contrasts on the orientation of stresses in the lithosphere: Relation to principal stress directions in the Transverse Ranges, California. Tectonics 1990, 9, 761–771. [Google Scholar] [CrossRef]
- Ahlers, S.; Hergert, T.; Henk, A. Numerical Modelling of Salt-Related Stress Decoupling in Sedimentary Basins–Motivated by Observational Data from the North German Basin. Geosciences 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Cornet, F.H.; Röckel, T. Vertical stress profiles and the significance of “stress decoupling”. Tectonophysics 2012, 581, 193–205. [Google Scholar] [CrossRef]
- Roth, F.; Fleckenstein, P. Stress orientations found in north-east Germany differ from the West European trend. Terra Nova 2001, 13, 289–296. [Google Scholar] [CrossRef]
- Molinaro, M.; Leturmy, P.; Guezou, J.-C.; De Lamotte, D.F.; Eshraghi, S.A. The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran: From thin-skinned to thick-skinned tectonics. Tectonics 2005, 24. [Google Scholar] [CrossRef]
- Tingay, M.; Bentham, P.; De Feyter, A.; Kellner, A. Present-day stress-field rotations associated with evaporites in the offshore Nile Delta. GSA Bull. 2010, 123, 1171–1180. [Google Scholar] [CrossRef]
Field | Well Name Abbreviation | SHmax Azimuth (deg) | Type | Number | Total Length (m) | Depth (m) | Orientation (deg.) | S.D. | WSM (Quality) |
---|---|---|---|---|---|---|---|---|---|
Aghajari | AJ-215 | 32 | BO | 5 | 110 | 2475 | 122 | 7.3 | C |
Balarud | BL-2 | 147.6 | BO | 6 | 140 | 2243 | 57.6 | 2.1 | B |
BL-2 | 152.5 | DIF | 6 | 464 | 2174 | 152.5 | 11.1 | B | |
BL-3 | 175 | BO | 1 | 1616 | 85 | D | |||
BL-3 | 174.9 | DIF | 10 | 269 | 1805 | 174.9 | 20 | B | |
BL-4 | 42.9 | BO | 19 | 503 | 1846 | 132.92 | 19.9 | B | |
BL-4 | 109.9 | DIF | 3 | 18 | 1705 | 109.9 | 18.6 | D | |
BL-6 | 169.08 | DIF | 24 | 623 | 1934 | 169.08 | 12.9 | A | |
Bibi-Hakimih | BH-177 | 87.2 | BO | 51 | 210 | 1972 | 177.2 | 11.6 | A |
BH-179 | 90.3 | BO | 109 | 520 | 2121 | 180.3 | 10.8 | A | |
Chahar Bisheh | CB-4 | 52 | BO | 149 | 295 | 1953 | 142.0 | 9.9 | A |
Cheshmeh-khosh | CK-8 | 176 | BO | 25 | 238 | 3548 | 86.00 | 4.2 | A |
CK-9 | 75 | BO | 43 | 221 | 4172 | 165.00 | 26.0 | C | |
CK-22 | 182.6 | BO | 10 | 106 | 3522 | 92.6 | 6.9 | A | |
Dalpari | DP-08 | 157.3 | BO | 30 | 150 | 2340 | 67.3 | 32.1 | D |
Dehloran | DH-23 | 31.4 | BO | 52 | 415 | 4164 | 121.4 | 7.14 | A |
Khesht | KH-2 | 138 | BO | 28 | 402 | 2810 | 48.0 | 9.8 | A |
KH-2 | 142.75 | DIF | 4 | 191 | 2845 | 322.75 | 8.7 | C | |
KH-5 | 124.05 | BO | 36 | 197 | 2994 | 34.05 | 8.7 | A | |
KH-5 | 119.4 | DIF | 19 | 215 | 2984 | 299.4 | 17.8 | B | |
Lali | LL-22 | 44.2 | BO | 35 | 230 | 2278 | 44.2 | 11.2 | A |
LL-29 | 135 | BO | 158 | 466 | 2547 | 46.10 | 43.3 | E | |
Mansouri | MI-99 | 72.02 | BO | 22 | 179 | 3259 | 162.02 | 5.02 | A |
Maroun | MN446 | 75.7 | BO | 167 | 125 | 4293 | 165.70 | 5.3 | A |
Naft_Sefied | NS-47 | 72.75 | BO | 29 | 270 | 1625 | 162.75 | 9.78 | A |
Paydar | P-2 | 1.3 | BO | 89 | 681 | 3304 | 91.30 | 6.8 | A |
P-2 | 179.2 | DIF | 99 | 576 | 3294 | 179.2 | 20.3 | A | |
P-6 | 10.7 | BO | 213 | 310 | 4045 | 100.7 | 5.7 | A | |
P-7 | 9.8 | BO | 135 | 230 | 4035 | 99.8 | 6.2 | A | |
Ramshir | RR-19 | 59.65 | BO | 32 | 248 | 3061 | 149.65 | 6.70 | A |
RR-19 | 70.8 | DIF | 3 | 48 | 2818 | 70.8 | 3.9 | D | |
Yaran | YRRN-2 | 43.6 | BO | 11 | 140 | 3980 | 133.60 | 7.5 | A |
Field | Lat (°N) | Long (°W) | Depth (m) | Shmin Magnitude (MPa) | Shmin Gradient (MPa/km) | Reference |
---|---|---|---|---|---|---|
Gachsaran | 30.32 | 50.48 | 2410 | 35.1 | 14.5 | Amiri, et al. [58] |
2578 | 37.7 | 14.6 | ||||
Ahvaz | 31.19 | 48.4 | 3450 | 52.44 | 15.2 | Haghi, Chalaturnyk and Ghobadi [18] |
3513 | 53.4 | 15.2 |
Lat (°N) | Long (°W) | Number of Focal Mechanisms | S1 Azimuth (°) | S1 Plunge (°) | R = (1 − φ) | Faulting Regime |
---|---|---|---|---|---|---|
48 | 33 | 68 | 205 | 3.8 | 0.70 ± 0.2 | R |
52 | 29 | 31 | 223 | 5.7 | 0.78 ± 0.25 | R |
51.6 | 29.8 | 23 | 221 | 4.3 | 0.84 ± 0.15 | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghoubi, A.; Mahbaz, S.; Dusseault, M.B.; Leonenko, Y. Seismicity and the State of Stress in the Dezful Embayment, Zagros Fold and Thrust Belt. Geosciences 2021, 11, 254. https://doi.org/10.3390/geosciences11060254
Yaghoubi A, Mahbaz S, Dusseault MB, Leonenko Y. Seismicity and the State of Stress in the Dezful Embayment, Zagros Fold and Thrust Belt. Geosciences. 2021; 11(6):254. https://doi.org/10.3390/geosciences11060254
Chicago/Turabian StyleYaghoubi, Ali, SeyedBijan Mahbaz, Maurice B. Dusseault, and Yuri Leonenko. 2021. "Seismicity and the State of Stress in the Dezful Embayment, Zagros Fold and Thrust Belt" Geosciences 11, no. 6: 254. https://doi.org/10.3390/geosciences11060254
APA StyleYaghoubi, A., Mahbaz, S., Dusseault, M. B., & Leonenko, Y. (2021). Seismicity and the State of Stress in the Dezful Embayment, Zagros Fold and Thrust Belt. Geosciences, 11(6), 254. https://doi.org/10.3390/geosciences11060254