Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea
Abstract
:1. Introduction
2. Geologic Background
3. Materials and Methods
3.1. Heat-Probe Measurements
3.2. Estimation of Heat Flow from BSR Depth
3.3. Heat Flow Modeling
3.4. Coring and Stratigraphy
3.5. PARASOUND Imaging
3.6. Multibeam Data
4. Results
4.1. General Sediment Description and Physical Properties
4.2. S1 Channel
4.3. S2 Channel
4.3.1. Eastern Levee
4.3.2. Slope-Failure Region Near S2 Channel
5. Discussion
5.1. What Is the Effect of Topography on Heat Flow Especially inside the Channel Incision?
5.2. Can Recent Sedimentation or Erosion Explain the Mismatch between Model and Data?
5.3. BSR-Depth Variations, Base of Gas Hydrate Stability
5.3.1. Zone 1 and P2000 P-Cable 3D Data
5.3.2. Zone 2
5.3.3. Zone 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yefremova, A.G.; Zhizchenko, B.P. Occurrence of crystal hydrates of gases in the sediments of modern marine basins. Akad. Nauk SSSR 1974, 214, 1179–1181. [Google Scholar]
- Ginsburg, G.D. Gas hydrate accumulation in deep-water marine sediments. In Gas Hydrates: Relevance to World Margin Stability and Climate Change; Henriet, J.-P., Mienert, J., Eds.; Geological Society, Special Publications: London, England, 1998; Volume 137, pp. 51–62. Available online: https://sp.lyellcollection.org/content/specpubgsl/137/1/51.full.pdf (accessed on 1 June 2021).
- Vassilev, A.; Dimitrov, L. Spatial and quantity evaluation of the Black Sea gas hydrates. Russ. Geol. Geophys. 2002, 43, 672–684. [Google Scholar]
- Bohrmann, G.; Ivanov, M.; Foucher, J.-P.; Spiess, V.; Bialas, J.; Greinert, J.; Weinrebe, W.; Abegg, F.; Aloisi, G.; Artemov, Y.; et al. Mud volcanoes and gas hydrates in the Black Sea: New data from Dvurechenskii and Odessa mud volcanoes. Geo Mar. Lett. 2003, 23, 239–249. [Google Scholar] [CrossRef]
- Starostenko, V.I.; Rusakov, O.M.; Shnyukov, E.F.; Kobolev, V.P.; Kuta, R.I. Methane in the northern Black Sea: Characterization of its geomorphological and geological environments. Geol. Soc. Lond. Spec. Publ. 2010, 340, 57–75. [Google Scholar] [CrossRef]
- Haeckel, M.; Bialas, J.; Klaucke, I.; Wallmann, K.; Bohrmann, G.; Schwalenberg, K. SUGAR participants. Gas hydrate occurrences in the Black Sea—New observations from the German SUGAR project. Fire Ice US UD DoE Methane Hydrate Newsl. 2015, 15, 6–9. Available online: http://oceanrep.geomar.de/30761/1/Haeckel%20et.al.pdf (accessed on 1 June 2021).
- Haeckel, M.; Zander, T.; Burwicz, E.; Bialas, J.; Berndt, C.; Dannowski, A.; Hensen, C.; Hölz, S.; Jegen, M.; Klaucke, I.; et al. The Gas Hydrate System of the Danube Deep-Sea Fan in the Black Sea. In Proceedings of the 9th International Conference on Gas Hydrates, Denver, CO, USA, 25–30 June 2017. [Google Scholar]
- Minshull, T.A.; Marín-Moreno, H.; Betlem, P.; Bialas, J.; Buenz, S.; Burwicz, E.; Cameselle, A.L.; Cifci, G.; Giustiniani, M.; Hillman, J.I.T.; et al. Hydrate occurrence in Europe: A review of Available evidence. J. Mar. Petrol. Geol. 2020, 111, 735–764. [Google Scholar] [CrossRef]
- Popescu, I.; De Batist, M.; Lericolais, G.; Nouzé, H.; Poort, J.; Panin, N.; Versteeg, W.; Gillet, H. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Mar. Geol. 2006, 227, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Popescu, I.; Lericolais, G.; Panin, N.; De Batist, M.; Gillet, H. Seismic expression of gas and gas hydrates across the western Black Sea. Geo Mar. Lett. 2007, 27, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Bialas, J.; Klaucke, I.; Haeckel, M. FS MARIA S. MERIAN Fahrtbericht/Cruise Report MSM-34/1 & 2–SUGAR Site; GEOMAR Report No 15; GEOMAR Helmholtz Centre for Ocean Research: Kiel, Germany, 2014; 109p. [Google Scholar] [CrossRef]
- Küçük, H.M.; Dondurur, D.; Özel, Ö.; Sinayuç, Ç.; Merey, S.; Parlaktuna, M.; Çifç, G. Gas and Gas Hydrate Potential Offshore Amasra, Bartin and Zonguldak and Possible Agent for Multiple BSR Occurrence. Geophys. Res. Abstr. 2015, 17, EGU2015-10310-1, 2015 EGU General Assembly 2015. [Google Scholar]
- Hillman, J.I.T.; Klaucke, I.; Bialas, J.; Feldman, H.; Drexler, T.; Awwiller, D.; Atgin, O.; Çifçi, G. Gas migration pathways and slope failures in the Danube Fan, Black Sea. J. Mar. Petrol. Geo. 2018, 92, 1069–1084. [Google Scholar] [CrossRef] [Green Version]
- Hillman, J.I.T.; Burwicz, E.; Zander, T.; Bialas, J.; Klaucke, I.; Feldman, H.; Drexler, T.; Ahrwiller, D. Investigating a gas hydrate system in apparent disequilibrium in the Danube Fan, Black Sea. Earth Planet. Sci. Lett. 2018, 502, 1–11. [Google Scholar] [CrossRef]
- Bialas, J.; Bohlen, T.; Dannowski, A.; Eisenberg-Klein, G.; Gassner, L.; Gehrmann, R.; Heeschen, K.; Hölz, S.; Jegen, M.; Klaucke, I.; et al. Joint interpretation of geophysical field experiments in the danube deep-sea fan, Black Sea. Mar. Pet. Geol. 2020, 121, 104551. [Google Scholar] [CrossRef]
- Minshull, T.A.; Keddie, A. Measuring the geotherm with gas hydrate bottom-simulating reflectors: A novel approach using three-dimensional seismic data from the eastern Black Sea. Terra Nova 2010, 22, 131–136. [Google Scholar] [CrossRef]
- Riedel, M.; Freudenthal, T.; Bialas, J.; Papenberg, C.; Haeckel, M.; Bergenthal, M.; Pape, T.; Bohrmann, G. In situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube deep sea fan, Black Sea. Earth Planet. Sci. Lett. 2021, 563, 116869. [Google Scholar] [CrossRef]
- Zander, T.; Haeckel, M.; Berndt, C.; Chi, W.-C.; Klaucke, I.; Bialas, J.; Klaeschen, D.; Koch, S.; Atgin, O. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth Planet. Sci. Lett. 2017, 462, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Naudts, L.; Greinert, J.; Artemov, Y.; Staelens, P.; Poort, J.; Van Rensbergen, P.; De Batist, M. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar. Geol. 2006, 227, 177–199. [Google Scholar] [CrossRef] [Green Version]
- Riboulot, V.; Cattaneo, A.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Ballas, G.; Marsset, T.; Garziglia, S.; Ker, S. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania. Bull. Soc. Géol. Fr. 2017, 188, 26. [Google Scholar] [CrossRef] [Green Version]
- Riboulot, V.; Ker, S.; Sultan, N.; Thomas, Y.; Marsset, B.; Scalabrin, C.; Ruffine, L.; Boulart, C.; Ion, G. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Pape, T.; Bahr, A.; Klapp, S.A.; Abegg, F.; Bohrmann, G. High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth. Planet. Sci. Lett. 2011, 307, 35–46. [Google Scholar] [CrossRef]
- Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea–the Kerch seep area. Mar. Geol. 2012, 319, 57–74. [Google Scholar] [CrossRef]
- Römer, M.; Sahling, H.; dos Santos Ferreira, C.; Bohrmann, G. Methane gas emissions of the Black Sea-mapping from the Crimean continental margin to the Kerch Peninsula slope. Geo-Mar. Lett. 2019, 40, 467–480. [Google Scholar] [CrossRef]
- Ross, D.A.; Neprochnov, Y.P. Initial Reports of the Deep Sea Drilling Project; U.S. Government Printing Office: Washington, DC, USA, 1978; Volume 42, Part 2. Available online: http://deepseadrilling.org/42_2/volume/dsdp42pt2_01.pdf (accessed on 1 June 2021).
- Giunta, S.; Morigi, C.; Negri, A.; Guichard, F.; Lericolais, G. Holocene biostratigraphy and paleoenvironmental changes in the Black Sea based on calcareous nannoplankton. Mar. Micropaleontol. 2007, 63, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Soulet, G.; Delaygue, G.; Vallet-Coulomb, C.; Böttcher, M.E.; Sonzogni, C.; Lericolais, G.; Bard, E. Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 2010, 296, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Ker, S.; Riboulot, V.; GHASS Cruise Team. GHASS Cruise Report. 2015, p. 53. Available online: https://archimer.ifremer.fr/doc/00300/41141/ (accessed on 1 June 2021).
- Freudenthal, T.; Wefer, G. Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geosci. Instrum. Methods Data Syst. 2013, 2, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Bohrmann, G.; Ahrlich, F.; Bachmann, K.; Bergenthal, M.; Beims, M.; Betzler, C.; Brünjes, J.; Deusner, C.; Domeyer, B.; Düßmann, R.; et al. R/V METEOR Cruise Report M142, Drilling Gas Hydrates in the Danube Deep-Sea Fan, Black Sea, Varna–Varna–Varna, 4 November–22 November–09 December 2017. Berichte, MARUM–Zentrum für Marine Umweltwissenschaften, Fachbereich Geowissenschaften, Universität Bremen. 2018. No 320, 121 p, ISSN 2195-9633. Available online: https://media.suub.uni-bremen.de/handle/elib/3434 (accessed on 1 June 2021).
- Pape, T.; Haeckel, M.; Riedel, M.; Kölling, M.; Schmidt, M.; Wallmann, K.; Bohrmann, G. Formation pathways of light hydrocarbons in deep sediments of the Danube deep-sea fan, Western Black Sea. Mar. Pet. Geol. 2020, 122, 104627. [Google Scholar] [CrossRef]
- Ker, S.; Thomas, Y.; Riboulot, V.; Sultan, N.; Bernard, C.; Scalabrin, C.; Ion, G.; Marsset, B. Anomalously deep BSR related to a transient state of the gas hydrate system in the western Black Sea. Geophys. J. Int. 2019, 20, 442–459. [Google Scholar] [CrossRef] [Green Version]
- Grevemeyer, I.; Villinger, H. Gas hydrate stability and the assessment of heat flow through continental margins. Geophys. J. Int. 2001, 145, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Villinger, H.W.; Tréhu, A.M.; Grevemeyer, I. Seafloor Marine Heat Flux Measurements and Estimation of Heat Flux from Seismic Observations of Bottom Simulating Reflectors. In Geophysical Characterization of Gas Hydrates, Society of Exploration Geophysicists; Riedel, Willoughby, Chopra, Eds.; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 279–300. [Google Scholar] [CrossRef]
- Yamano, M.; Uyeda, S.; Aoki, Y.; Shipley, T.H. Estimates of heat flow derived from gas hydrates. Geology 1982, 10, 339–343. [Google Scholar] [CrossRef]
- Kinoshita, M.; Moore, G.F.; Kido, Y.N. Heat flow estimated from BSR and IODP borehole data: Implication of recent uplift and erosion of the imbricate thrust zone in the Nankai Trough off Kumano, Geochem. Geophys. Geosyst. 2011, 12, Q0AD18. [Google Scholar] [CrossRef] [Green Version]
- Ohde, A.; Otsuka, H.; Kioka, A.; Ashi, J. Distribution and depth of bottom-simulating reflectors in the Nankai subduction margin. Earth Planets Space 2018, 70, 60. [Google Scholar] [CrossRef] [Green Version]
- Kaul, N.; Villinger, H.; Rosenberger, A. Comparison of measured and BSR-derived heat flow values, Makran accretionary prism. Mar. Geol. 2000, 164, 37–51. [Google Scholar] [CrossRef]
- Harris, R.N.; Grevemeyer, I.; Ranero, C.R.; Villinger, H.; Barckhausen, U.; Henke, T.; Mueller, C.; Neben, S. Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors. Geochem. Geophys. Geosyst. 2010, 11, Q12S28. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.E.; Hyndman, R.D.; Villinger, H. Rates of fluid expulsion across the northern Cascadia accretionary prism: Constraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res. 1990, 95, 8869–8889. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Foucher, J.P.; Yamano, M.; Fisher, A.T. The ODP Leg 131 Scientific Party. Deep sea bottom simulating reflectors: Calibration of the base of the hydrate stability field as used for heat flow estimates. Earth Planet. Sci. Lett. 1992, 109, 289–301. [Google Scholar] [CrossRef]
- Riedel, M.; Tréhu, A.M.; Spence, G.D. Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom-simulating reflector distributions, heat-probe measurements and borehole temperature data. J. Mar. Geophys. Resear 2010, 31, 1–16. [Google Scholar] [CrossRef]
- Phrampus, B.J.; Harris, R.N.; Tréhu, A.M. Heat flow bounds over the Cascadia margin derived from bottom simulating reflectors and implications for thermal models of subduction. Geochem. Geophys. Geosyst. 2017, 18, 3309–3326. [Google Scholar] [CrossRef]
- Tréhu, A.M. Subsurface Temperatures Beneath Southern Hydrate Ridge, Proc. ODP, Sci. Results, 204; Tréhu, A.M., Bohrmann, G., Torres, M.E., Colwell, F.S., Eds.; College Station TX Ocean Drilling Program: College Station, TX, USA, 2006; pp. 1–26. [Google Scholar] [CrossRef]
- Villar-Muñoz, L.; Vargas-Cordero, I.; Bento, J.P.; Tinivella, U.; Fernandoy, F.; Giustiniani, M.; Behrmann, J.H.; Calderón-Díaz, S. Gas Hydrate Estimate in an Area of Deformation and High Heat Flow at the Chile Triple Junction. Geosciences 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Kunath, P.; Chi, W.-C.-; Berndt, C.; Chen, L.; Liu, C.-S.; Kläschen, D.; Muff, S. A Shallow Seabed Dynamic Gas Hydrate System off SW Taiwan: Results From 3-D Seismic, Thermal, and Fluid Migration Analyses. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019245-T. [Google Scholar] [CrossRef]
- Li, L.; Lei, X.; Zhang, G. Heat flow derived from BSR and its implications for gas hydrate stability zone in Shenhu Area of northern South China Sea. Mar. Geophys. Res. 2012, 33, 77–87. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, J.; Xu, X.; Wu, S.-G. The differences between the measured heat flow and BSR heat flow in the Shenhu gas hydrate drilling area, northern South China Sea. Energy Explor. Exploit. 2018, 37, 756–769. [Google Scholar] [CrossRef]
- Shankar, U.; Riedel, M.; Sathe, A.V. Geothermal modeling of the gas hydrate stability zone along the Krishna Godavari Basin. Mar. Geophys. Res. 2010, 31, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Shankar, U.; Riedel, M. Seismic and heat flow constraints from the Krishna-Godavari Basin gas hydrate system. Mar. Geol. 2010, 276, 1–13. [Google Scholar] [CrossRef]
- Robinson, A.G.; Rudat, J.H.; Banks, C.J.; Wiles, R.L.F. Petroleum geology of the Black Sea. J. Mar. Petrol. Geol. 1996, 13, 195–223. [Google Scholar] [CrossRef]
- Dinu, C.; Wong, H.K.; Tambrea, D.; Matenco, L. Stratigraphic and structural characteristics of the Romanian Black Sea Shelf. Tectonophysics 2005, 410, 417–435. [Google Scholar] [CrossRef]
- Ryan, W.B.; Pitman, W.C., III; Major, C.O.; Shimkus, K.; Moskalenko, V.; Jones, G.A.; Dimitrov, P.; Gorür, N.; Sakinc, M.; Yüce, H. An abrupt drowning of the Black Sea shelf. Mar. Geol. 1997, 138, 119–126. [Google Scholar] [CrossRef]
- Winguth, C.; Wong, H.K.; Panin, N.; Dinu, C.; Georgescu, P.; Ungureanu, G.; Kruglikov, V.V.; Podshuveit, V. Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Mar. Geol. 2000, 167, 127–146. [Google Scholar] [CrossRef]
- Wong, H.K.; Panin, N.; Dinu, C.; Georgescu, P.; Rahn, C. Morphology and post-Chaudian (Late Pleistocene) evolution of the submarine Danube fan complex. Terra Nova 1994, 6, 502–511. [Google Scholar] [CrossRef]
- Wong, H.K.; Winguth, C.; Panin, N.; Dinu, C.; Wollschlager, M.; Georgescu, P.; Ungureanu, G.; Krugliakov, V.V.; Podshuveit, V. The Danube and Dniepr fans, morphostructure and evolution. Geo Eco Mar. 1997, 2, 77–102. [Google Scholar]
- Popescu, I.; Lericolais, G.; Panin, N.; Wong, H.; Droz, L. Late Quaternary channel avulsions on the Danube deep-sea fan, Black Sea. Mar. Geol. 2001, 179, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Popescu, I.; Lericolais, G.; Panin, N.; Normand, A.; Dinu, C.; Le Drezen, E. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Mar. Geol. 2004, 206, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Lericolais, G.; Bulois, C.; Gillet, H.; Guichard, F. High frequency sea level fluctuations recorded in the Black Sea since the LGM. Glob. Planet. Chang. 2009, 66, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Lericolais, G.; Bourget, J.; Popescu, I.; Jermannaud, P.; Mulder, T.; Jorry, S.; Panin, N. Late Quaternary deep-sea sedimentation in the western Black Sea: New insights from recent coring and seismic data in the deep basin. Glob. Planet. Chang. 2013, 103, 232–247. [Google Scholar] [CrossRef] [Green Version]
- Constantinescu, A.; Toucanne, S.; Dennielou, B.; Jorry, S.; Mulder, T.; Lericolais, G. Evolution of the Danube deep-sea fan since the last glacial maximum: New insights into black sea water-level fluctuations. Mar. Geol. 2015, 367, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Manheim, F.T.; Schug, D.M. Interstitial waters of Black Sea cores. Init. Repts. Deep Sea Drill. Proj. 1978, 42, 637–651. Available online: http://deepseadrilling.org/42_2/volume/dsdp42pt2_23.pdf (accessed on 1 June 2021).
- Özsoy, E.; Ünlüata, Ü. Oceanography of the Black Sea: A review of some recent results. Earth Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Degens, E.T.; Ross, D.A. The Black Sea–Geology, Chemistry, and Biology; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1974. [Google Scholar] [CrossRef]
- Poort, J.; Vassilev, A.; Dimitrov, L. Did postglacial catastrophic flooding trigger massive changes in the Black Sea gas hydrate reservoir? Terra Nova 2005, 17, 135–140. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Davis, E.E.; Wright, J.A. The measurement of marine geothermal heat flow by a multi-penetration probe with digital acoustic telemetry and in situ thermal conductivity. Mar. Geophys. Res. 1979, 4, 181–205. [Google Scholar] [CrossRef]
- Riedel, M.; Freudenthal, T.; Bergenthal, M.; Haeckel, M.; Wallmann, K.; Spangenberg, E.; Bialas, J.; Bohrmann, G. Physical Properties and core-log seismic integration from drilling at the Danube Deep sea fan, Black Sea. J. Mar. Petrol. Geol. 2020, 114, 104192. [Google Scholar] [CrossRef]
- Dannowski, A.; Bialas, J.; Zander, T.; Klaeschen, D. Shear Wave Modelling of High Resolution OBS Data in a Gas Hydrate Environment in the Danube Deep-Sea Fan, Black Sea. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Tishchenko, P.; Hensen, C.; Wallmann, K.; Wong, C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 2005, 219, 35–52. [Google Scholar] [CrossRef]
- Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys. J. Int. 2007, 169, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Blum, P. Physical Properties Handbook: A Guide to the Shipboard Measurement of Physical Properties of Deep-Sea Cores. ODP Tech. Note 26. 1997. Available online: http://www-odp.tamu.edu/publications/tnotes/tn26/index.htm (accessed on 1 June 2021).
- Bahr, A.; Lamy, F.; Arz, H.; Kuhlmann, H.; Wefer, G. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Mar. Geol. 2005, 214, 309–322. [Google Scholar] [CrossRef]
- Bahr, A.; Arz, H.W.; Lamy, F.; Wefer, G. Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells. Earth. Planet. Sci. Lett. 2006, 241, 863–875. [Google Scholar] [CrossRef]
- Bahr, A.; Lamy, F.; Arz, H.W.; Major, C.; Kwiecien, O.; Wefer, G. Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochem. Geophys. Geosyst. 2008, 9, Q01004. [Google Scholar] [CrossRef] [Green Version]
- Hay, B.J.; Arthur, M.A.; Dean, W.E.; Neff, E.D.; Honjo, S. Sediment deposition in the Late Holocene abyssal Black Sea with climatic and chronological implications. Deep Sea Res. 1991, 38 (Suppl. S2), 1211–1235. [Google Scholar] [CrossRef]
- Major, C.; Ryan, W.; Lericolais, G.; Hajdas, I. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. Mar. Geol. 2002, 190, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Lamy, F.; Arz, H.W.; Bond, G.C.; Bahr, A.; Pätzold, J. Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 2006, 21, PA1008. [Google Scholar] [CrossRef] [Green Version]
- Kwiecien, O.; Arz, H.W.; Lamy, F.; Wulf, S.; Bahr, A.; Röhl, U.; Haug, G.H. Estimated reservoir ages of the Black Sea since the Last Glacial. Radiocarbon 2008, 50, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Soulet, G.; Ménot, G.; Bayon, G.; Rostek, F.; Ponzevera, E.; Toucanne, S.; Lericolais, G.; Bard, E. Abrupt drainage cycles of the Fennoscandian Ice Sheet. Proceedings of the National Academy of Sciences 2013, 110, 6682–6687. [Google Scholar] [CrossRef] [Green Version]
- Calvert, S.E.; Vogel, J.S.; Southon, J.R. Carbon accumulation rates and the origin of the Holocene sapropel in the Black Sea. Geology 1987, 15, 918–921. [Google Scholar] [CrossRef]
- Eckert, S.; Brumsack, H., Jr.; Severmann, S.; Schnetger, B.; März, C.; Fröllje, H. Establishment of euxinic conditions in the Holocene Black Sea. Geology 2013, 41, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Piper, D.Z.; Calvert, S.E. Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years. Geochim. Cosmochim. Acta 2011, 75, 5597–5624. [Google Scholar] [CrossRef]
- Soulet, G.; Ménot, G.; Garreta, V.; Rostek, F.; Zaragosi, S.; Lericolais, G.; Bard, E. Black sea “lake” reservoir age evolution since the last glacial—Hydrologic and climatic implications. E. Planet. Sci. Lett. 2011, 308, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Caress, D.W.; Chayes, D.N.; dos Santos Ferreira, C. MB-System: Mapping the Seafloor 2017. Available online: http://www.mbari.org/products/research-software/mb-system/ (accessed on 1 June 2021).
- Woodside, W.; Messmer, J.H. Thermal conductivity of porous media. I. Unconsolidated Sands. J. Applied. Physics. 1961, 32, 1688–1699. [Google Scholar] [CrossRef]
- Brigaud, F.; Vasseur, G. Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. 1982, 98, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Wangen, M. Heat flow. In Physical Principles of Sedimentary Basin Analysis; Cambridge University Press: Cambridge, UK, 2010; pp. 105–193. [Google Scholar] [CrossRef]
- Bjørlykke, K. Petroleum Geoscience: From Sedimentary Environments to Rock Physics, Chapter 9: Heat Transport in Sedimentary Basins; Springer: Berlin/Heidelberg, Germany, 2015; pp. 273–277. [Google Scholar]
- Lachenbruch, A.H. Rapid estimation of the topographic disturbance to superficial thermal gradients. Rev. Geophysics 1968, 6, 365–400. [Google Scholar] [CrossRef]
- Ganguly, N.; Spence, G.D.; Chapman, N.R.; Hyndman, R.D. Heat flow variations from bottom simulating reflectors on the Cascadia margin. Mar. Geol. 2000, 164, 53–68. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedel, M.; Bialas, J.; Villinger, H.; Pape, T.; Haeckel, M.; Bohrmann, G. Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea. Geosciences 2021, 11, 240. https://doi.org/10.3390/geosciences11060240
Riedel M, Bialas J, Villinger H, Pape T, Haeckel M, Bohrmann G. Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea. Geosciences. 2021; 11(6):240. https://doi.org/10.3390/geosciences11060240
Chicago/Turabian StyleRiedel, Michael, Jörg Bialas, Heinrich Villinger, Thomas Pape, Matthias Haeckel, and Gerhard Bohrmann. 2021. "Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea" Geosciences 11, no. 6: 240. https://doi.org/10.3390/geosciences11060240
APA StyleRiedel, M., Bialas, J., Villinger, H., Pape, T., Haeckel, M., & Bohrmann, G. (2021). Heat Flow Measurements at the Danube Deep-Sea Fan, Western Black Sea. Geosciences, 11(6), 240. https://doi.org/10.3390/geosciences11060240