Analysis of Built-Up Areas of Small Polish Cities with the Use of Deep Learning and Geographically Weighted Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods of Analysis
3. Results
3.1. Share of Built-Up Areas in the Area of Small Cities in Poland in 2019
3.2. Hot Spots and Cold Spots of the Share of Built-Up Areas in the Area of Small Cities in Poland in 2019
3.3. Global and Local Model of the Share of Built-Up Land in the Area of Small Cities in Poland
4. Discussion and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czapiewski, K.; Bański, J.; Górczyńska, M. The Impact of Location on the Role of Small Towns in Regional Development: Mazovia, Poland. Eur. Countrys. 2016, 8, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Vaishar, A.; Št’astná, M.; Stonawská, K. Small Towns—Engines of Rural Development in the South-Moravian Region (Czechia): An Analysis of the Demographic Development. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1395–1405. [Google Scholar] [CrossRef] [Green Version]
- Agergaard, J.; Kirkegaard, S.; Birch-Thomsen, T. Between Village and Town: Small-Town Urbanism in Sub-Saharan Africa. Sustainability 2021, 13, 1417. [Google Scholar] [CrossRef]
- Tan, K.C. Small Towns in Chinese Urbanization. Geogr. Rev. 1986, 76, 265–275. [Google Scholar] [CrossRef]
- Gu, C.; Li, Y.; Han, S.S. Development and Transition of Small Towns in Rural China. Habitat Int. 2015, 50, 110–119. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban Land Expansion and Arable Land Loss in China—A Case Study of Beijing–Tianjin–Hebei Region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Brennan, C.; Hackler, D.; Hoene, C. Demographic Change in Small Cities, 1990 to 2000. Urban Aff. Rev. 2005, 40, 342–361. [Google Scholar] [CrossRef]
- Bell, D.; Jayne, M. Small Cities? Towards a Research Agenda. Int. J. Urban. Reg. Res. 2009, 33, 683–699. [Google Scholar] [CrossRef]
- Demazière, C. Dealing with Small and Medium-Sized Towns (SMSTs) in Urban Studies. Espaces Sociétés 2017, 168–169, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Statistics Poland Local Data Bank. Available online: https://bdl.stat.gov.pl/BDL (accessed on 23 February 2021).
- Demazière, C.; Serrano, J.; Vye, D. (Eds.) Introduction. Les villes petites et moyennes et leurs acteurs: Regards de chercheurs. In Villes Petites Et Moyennes (Norois); Presses Universitaires de Rennes: Rennes, France, 2012; pp. 7–10. [Google Scholar]
- Knox, P.; Mayer, H. Small Town Sustainability: Economic, Social, and Environmental Innovation; Walter de Gruyter: Basel, Switzerland, 2013. [Google Scholar]
- Mayer, H.; Knox, P. Small-Town Sustainability: Prospects in the Second Modernity. Eur. Plan Stud. 2010, 18, 1545–1565. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What Are the Differences between Sustainable and Smart Cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Jażdżewska, I.; Frykowski, M. Rozwój gospodarczy gmin a aktywność obywatelska mieszkańców wsi i małych miast województwa łódzkiego. In Oblicza Kapitału Społecznego. Studium Teoretyczne i Empiryczne; Bylok, F., Kwiatek, A., Eds.; Politechnika Częstochowska Wydział Zarządzania: Częstochowa, Poland, 2009; pp. 71–84. [Google Scholar]
- Kwiatek-Sołtys, A.; Mainet, H. Quality of Life and Attractiveness of Small Towns: A Comparison of France and Poland. Quaest. Geogr. 2014, 33, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Jayne, M. Small Cities: Urban. Experience beyond the Metropolis; Routledge: London, UK, 2006. [Google Scholar]
- Kamińska, W.; Mularczyk, M. Demographic Types of Small Cities in Poland. Misc. Geogr. 2014, 18, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Valtenbergs, V.; Ainhoa, G.; Ralfs, P. Selecting Indicators for Sustainable Development of Small Towns: The Case of Valmiera Municipality. Procedia Comput. Sci. 2013, 26, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Huovila, A.; Bosch, P.; Airaksinen, M. Comparative Analysis of Standardized Indicators for Smart Sustainable Cities: What Indicators and Standards to Use and When? Cities 2019, 89, 141–153. [Google Scholar] [CrossRef]
- Nesticò, A.; Maselli, G. Sustainability Indicators for the Economic Evaluation of Tourism Investments on Islands. J. Clean. Prod. 2020, 248, 119217. [Google Scholar] [CrossRef]
- Klusáková, L.; Ozouf-Marignier, M. Small Towns as European Cultural Heritage. Introduction. In Small Towns in Europe in the 20th and 21st Centuries; Klusáková, L., Ed.; Charles University in Prague, Karolinum Press: Prague, Czech Republic, 2017. [Google Scholar]
- Van Lindert, P.; Verkoren, O. Small Towns and beyond: Rural Transformation and Small Urban Centres in Latin America; Thela Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Wisner, B.; Pelling, M.; Mascarenhas, A.; Holloway, A.; Ndong, B.; Faye, P.; Ribot, J.; Simon, D. Small cities and towns in Africa: Insights into adaptation challenges and potentials. In Urban Vulnerability and Climate Change in Africa; Springer: Berlin/Heidelberg, Germany, 2015; pp. 153–196. [Google Scholar]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M.; Shahfahad. Analyses of Land Use Land Cover (LULC) Change and Built-up Expansion in the Suburb of a Metropolitan City: Spatio-Temporal Analysis of Delhi NCR Using Landsat Datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, W.; Huang, W.; Huang, L.; Zhang, D.; Yang, H.; Yuan, L. Characterizing Spatiotemporal Dynamics of Land Cover with Multi-Temporal Remotely Sensed Imagery in Beijing during 1978–2010. Arab. J. Geosci. 2013, 7, 3945–3959. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Zhong, H.; Xu, S.; Hu, X.; Wang, J.; Wu, J. Monitoring Urban Expansion and Land Use/Land Cover Changes of Shanghai Metropolitan Area during the Transitional Economy (1979–2009) in China. Environ. Monit. Assess. 2010, 177, 609–621. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Modelling Urban Growth and Landscape Changes in the Atlanta Metropolitan Area. Int. J. Geogr. Inf. Sci. 2003, 17, 463–488. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Using a Time Series of Satellite Imagery to Detect Land Use and Land Cover Changes in the Atlanta, Georgia Metropolitan Area. Int. J. Remote Sens. 2010, 23, 1775–1798. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Drivers of Land-Use/Land-Cover Changes and Dynamic Modeling for the Atlanta, Georgia Metropolitan Area. Photogramm. Eng. Remote Sens. 2002, 68, 1073–1082. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using Remote Sensing and GIS to Detect and Monitor Land Use and Land Cover Change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2008, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Bagan, H.; Yamagata, Y. Land-Cover Change Analysis in 50 Global Cities by Using a Combination of Landsat Data and Analysis of Grid Cells. Environ. Res. Lett. 2014, 9, 1–13. [Google Scholar] [CrossRef]
- Corbane, C.; Sabo, F.; Syrris, V.; Kemper, T.; Politis, P.; Pesaresi, M.; Soille, P.; Osé, K. Application of the Symbolic Machine Learning to Copernicus VHR Imagery: The European Settlement Map. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1153–1157. [Google Scholar] [CrossRef]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-Up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.; Ban, Y. Sentinel-1A SAR and Sentinel-2A MSI Data Fusion for Urban Ecosystem Service Mapping. Remote Sens. Appl Soc. Environ. 2017, 8, 41–53. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Zhu, Z.; Chen, H.; Tang, X.; Gong, J. Automatic Extraction of Built-Up Area from ZY3 Multi-View Satellite Imagery: Analysis of 45 Global Cities. Remote Sens. Environ. 2019, 226, 51–73. [Google Scholar] [CrossRef]
- Weber, C.; Puissant, A. Urbanization Pressure and Modeling of Urban Growth: Example of the Tunis Metropolitan Area. Remote Sens. Environ. 2002, 86, 341–352. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A.; Grove, M. Object-Based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data. Sensors 2008, 8, 1613–1636. [Google Scholar] [CrossRef] [Green Version]
- McConnachie, M.M.; Shackleton, C.M. Public Green Space Inequality in Small Towns in South Africa. Habitat Int. 2010, 34, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Gismalla, Y.A.; Bruen, M. Use of a GIS in Reconnaissance Studies for Small-Scale Hydropower Development in a Developing Country: A Case Study from Tanzania. IAHS Publ. Ser. Proc. Rep. Intern Assoc. Hydrol. Sci. 1996, 235, 307–312. [Google Scholar]
- Weng, Q. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Environ. Manag. 2001, 28, 737–748. [Google Scholar] [CrossRef]
- Wright, J.; Liu, J.; Bain, R.; Perez, A.; Crocker, J.; Bartram, J.; Gundry, S. Water Quality Laboratories in Colombia: A GIS-Based Study of Urban and Rural Accessibility. Sci. Total. Environ. 2014, 485–486, 643–652. [Google Scholar] [CrossRef]
- Stoica, I.-V.; Tulla, A.F.; Zamfir, D.; Petrișor, A.-I. Exploring the Urban Strength of Small Towns in Romania. Soc. Indic. Res. 2020, 152, 843–875. [Google Scholar] [CrossRef]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, C.; Wang, S.; Gao, S.; Liu, Z. Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach. Sustainability 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Bitter, C.; Mulligan, G.F.; Dall’erba, S. Incorporating Spatial Variation in Housing Attribute Prices: A Comparison of Geographically Weighted Regression and the Spatial Expansion Method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, K.; Kumar, R.; Reddy, K.M.; Rao, P.J.; Saxena, M.R.; Shankar, G.R. Optimization of Spatial Statistical Approaches to Identify Land Use/Land Cover Change Hot Spots of Pune Region of Maharashtra Using Remote Sensing and GIS Techniques. Geocarto Int. 2017, 32, 777–796. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, L.; Qiu, Q.; Wu, G. The Compactness of Spatial Structure in Chinese Cities: Measurement, Clustering Patterns and Influencing Factors. Ecosyst. Health Sustain. 2020, 6, 1743763. [Google Scholar] [CrossRef] [Green Version]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically Weighted Regression of the Urban Heat Island of a Small City. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Gao, J.; Li, S. Detecting Spatially Non-Stationary and Scale-Dependent Relationships between Urban Landscape Fragmentation and Related Factors Using Geographically Weighted Regression. Appl. Geogr. 2011, 31, 292–302. [Google Scholar] [CrossRef]
- Royuela, V.; Moreno, R.; Vayá, E. Influence of Quality of Life on Urban Growth: A Case Study of Barcelona, Spain. Reg. Stud. 2010, 44, 551–567. [Google Scholar] [CrossRef] [Green Version]
- Bagan, H.; Yamagata, Y. Analysis of Urban Growth and Estimating Population Density Using Satellite Images of Nighttime Lights and Land-Use and Population Data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Noresah, M.S.; Ruslan, R. Modelling Urban Spatial Structure Using Geographically Weighted Regression. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, The Australian National University Canberra, Cairns, QLD, Australia, 13–17 July 2009. [Google Scholar]
- Shariff, N.M.; Gairola, S.; Talib, A. Modelling Urban Land Use Change Using Geographically Weighted Regression and the Implications for Sustainable Environmental Planning. In Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010, Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Kwiatek-Sołtys, A. Small Towns in Poland-Barriers and Factors of Growth. Procedia Soc. Behav. Sci. 2011, 19, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Jażewicz, I. Rola Małych Miast w Przestrzeni Rolniczej Pomorza Środkowego. Studia Obsz. Wiej. 2006, 11, 159–172. [Google Scholar]
- Jażewicz, I. Przemiany Społeczno-Demograficzne i Gospodarcze w Małych Miastach Pomorza Środkowego w Okresie Transformacji Gospodarczej. Słupskie Pr. Geogr. 2005, 2, 71–79. [Google Scholar]
- Han, S.S. Urban Expansion in Contemporary China: What Can We Learn from a Small Town? Land Use Policy 2010, 27, 780–787. [Google Scholar] [CrossRef]
- White, A. Informal Practices, Unemployment, and Migration in Small-Town Poland. East. Eur. Politics Soc. 2015, 30, 404–422. [Google Scholar] [CrossRef]
- Parysek, J.J. Development of Polish Towns and Cities and Factors Affecting this Process at the Turn of the Century. Geogr. Pol. 2005, 78, 99–115. [Google Scholar]
- Nilsson, P. Natural Amenities in Urban Space–A Geographically Weighted Regression Approach. Landsc. Urban Plan. 2014, 121, 45–54. [Google Scholar] [CrossRef]
- Zuzańska-Żyśko, E. Economic Transformation of Small Silesian Towns in the Years 1990–1999. Geogr. Pol. 2005, 78, 136–149. [Google Scholar]
- Wear, D.N.; Bolstad, P. Land-Use Changes in Southern Appalachian Landscapes: Spatial Analysis and Forecast Evaluation. Ecosystems 1998, 1, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Handavu, F.; Chirwa, P.W.C.; Syampungani, S. Socio-Economic Factors Influencing Land-Use and Land-Cover Changes in the Miombo Woodlands of the Copperbelt Province in Zambia. For. Policy Econ. 2019, 100, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Adamiak, M.; Biczkowski, M.; Leśniewska-Napierala, K.; Nalej, M.; Napierala, T. Impairing Land Registry: Social, Demographic, and Economic Determinants of Forest Classification Errors. Remote Sens. 2020, 12, 2628. [Google Scholar] [CrossRef]
- In 1642 Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z Dnia 17 Listopada 2011r. w Sprawie Bazy Danych Obiektów Topograficznych Oraz Bazy Danych Obiektów Ogólnogeograficznych, a Także Standardowych Opracowań Kartograficznych. In Dz.U. 2011 nr 279 poz.; The President of the Council of Ministers: Warsaw, Poland, 2011; Volume 279, pp. 16096–16099.
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017; pp. 1251–1258. [Google Scholar]
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 30 January 2021).
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 26 July 2017; pp. 2881–2890. [Google Scholar]
- Bertels, J.; Eelbode, T.; Berman, M.; Vandermeulen, D.; Maes, F.; Bisschops, R.; Blaschko, M.B. Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory and Practice. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 92–100. [Google Scholar]
- Shen, H.; Li, H.; Qian, Y.; Zhang, L.; Yuan, Q. An Effective Thin Cloud Removal Procedure for Visible Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2014, 96, 224–235. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, Q.; Li, J.; Zhang, H.; Su, X. Cloud Removal with Fusion of High Resolution Optical and SAR Images Using Generative Adversarial Networks. Remote Sens. 2020, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud Removal in Sentinel-2 Imagery Using a Deep Residual Neural Network and SAR-Optical Data Fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Getis, A. Spatial Autocorrelation. In Handbook of Applied Spatial Analysis; Fischer, M.M., Getis, A., Eds.; Springer: Berlin, German, 2010; pp. 255–278. [Google Scholar]
- Anselin, L.; Getis, A. Spatial Statistical Analysis and Geographic Information Systems. Ann. Reg. Sci. 1992, 26, 19–33. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Brown, D.G.; Duh, J.-D. Spatial Simulation for Translating from Land Use to Land Cover. Int. J. Geogr. Inf. Sci. 2004, 18, 35–60. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Some Notes on Parametric Significance Tests for Geographically Weighted Regression. J. Reg. Sci. 1999, 39, 497–524. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression as a Statistical Model; University of Newcastle-upon-Tyne: Newcastle, UK, 2000. [Google Scholar]
- Matthews, S.A.; Yang, T.C. Mapping the Results of Local Statistics: Using Geographically Weighted Regression. Demogr. Res. 2012, 26, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Mennis, J. Mapping the Results of Geographically Weighted Regression. Cartogr. J. 2006, 43, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Syrris, V.; Sabo, F.; Politis, P.; Melchiorri, M.; Pesaresi, M.; Soille, P.; Kemper, T. Convolutional Neural Networks for Global Human Settlements Mapping from Sentinel-2 Satellite Imagery. Neural Comput. Appl. 2020, 1–24. [Google Scholar] [CrossRef]
- Ettehadi Osgouei, P.; Kaya, S.; Sertel, E.; Alganci, U. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sens. 2019, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Verma, N.K.; Ayele, E. Urban Built-up Area Extraction and Change Detection of Adama Municipal Area Using Time-Series Landsat Images. Int. J. Adv. Remote Sens. GIS 2016, 5, 1886–1895. [Google Scholar] [CrossRef]
- Konecka-Szydłowska, B.; Zuzańska-Żyśko, E.; Szmytkie, R. Role of Services in the Economies of Small Towns of Silesia Region and Wielkopolskie Voivodehip. Bull. Geogr. Socio Econ. Ser. 2010, 14, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Jażdżewska, I. Urban Network in Poland during Last Millennium. Konwersatorium Wiedzy Mieście 2020, 5, 7–20. [Google Scholar] [CrossRef]
- Kobojek, E.; Marszał, T. Local development and the role of small towns in space organisation in contemporary Poland. In Spatial Development of Contemporary Poland in Łódź University Geographical Rersearch; Marszał, T., Ed.; Łódź University Press: Łódź, Poland, 2014; pp. 37–60. [Google Scholar]
- Lamprecht, M. Small Towns and Development of Rural Areas: The Case of the Voivodship of Łódź. Eur. Spat. Res. Policy 2004, 11, 41–56. [Google Scholar]
- Jażdżewska, I. Rola małych miast w miejskiej sieci osadniczej Polski. In Podstawy i Perspektywy Rozwoju Małych Miast; Rydz, E., Ed.; Akademia Pomorska w Słupsku: Słupsk, Poland, 2007; pp. 31–46. [Google Scholar]
- Shubho, M.T.H.; Islam, I. An Integrated Approach to Modeling Urban Growth Using Modified Built-Up Area Extraction Technique. Int. J. Environ. Sci. Technol. 2020, 17, 1–18. [Google Scholar] [CrossRef]
Variable | Abbreviation | Measure [Unit] | Research Where the Variable Was Considered before |
---|---|---|---|
Population density | Pop_Density | persons/km2 | [7,19,62,63] |
Newly built residential buildings | Buildings | number of buildings | [49,64,65] |
Share of registered unemployed in the population of working age | Unemployment | % of unemployed | [19,57] |
Share of working age population in % of total population | Work_Pop | % of population | [7,57,62] |
Domestic economic entities newly registered in the REGON register | Enterprises | number of entities | [19,62,64] |
Dwellings equipped with facilities (bathroom)—as % of total dwellings | Living_Standard | % of total number of dwellings | [16,66] |
Socio-Economic Factors | Statistics | |||
---|---|---|---|---|
Minimum | Median | Average | Maximum | |
Pop_Density | 11 | 607 | 721.4 | 3444 |
Buildings | 0 | 8 | 13.7 | 364 |
Unemployment | 0.3 | 4.3 | 4.6 | 12.0 |
Work_Pop | 53.5 | 60.3 | 60.4 | 66.7 |
Enterprises | 4 | 45 | 64.3 | 604 |
Living_Standard | 69.1 | 93.8 | 92.4 | 99.7 |
Dataset | IoU | F1-Score | Binary Accuracy | Precision | Recall |
---|---|---|---|---|---|
2015 | 0.548 | 0.708 | 0.979 | 0.693 | 0.726 |
2019 | 0.588 | 0.741 | 0.963 | 0.679 | 0.814 |
Variable | Coefficient | Standard Error | t−Value | p−Value |
---|---|---|---|---|
Pop_Density | 0.9206 | 0.0207 | 44.4981 | p−value < 0.01 |
Buildings | 0.2014 | 0.0263 | 7.6640 | p−value < 0.01 |
Unemployment | −0.0695 | 0.0185 | −3.7638 | p−value < 0.01 |
Work_Pop | −0.0311 | 0.0192 | −1.6219 | 0.1565 |
Enterprises | −0.2115 | 0.0298 | −7.1048 | p−value < 0.01 |
Living_Standard | −0.0163 | 0.0204 | −0.8027 | 0.4477 |
Socio−Economic Factors | Minimum | Median | Average | Maximum |
---|---|---|---|---|
Pop_Density | 0.75 | 0.96 | 0.98 | 1.66 |
Buildings | 0.03 | 0.18 | 0.21 | 1.02 |
Unemployment | −0.31 | −0.09 | −0.10 | 0.10 |
Work_Pop | −0.20 | −0.02 | −0.03 | 0.70 |
Enterprises | −0.65 | −0.23 | −0.24 | 0.01 |
Living_Standard | −0.20 | −0.03 | −0.03 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak, M.; Jażdżewska, I.; Nalej, M. Analysis of Built-Up Areas of Small Polish Cities with the Use of Deep Learning and Geographically Weighted Regression. Geosciences 2021, 11, 223. https://doi.org/10.3390/geosciences11050223
Adamiak M, Jażdżewska I, Nalej M. Analysis of Built-Up Areas of Small Polish Cities with the Use of Deep Learning and Geographically Weighted Regression. Geosciences. 2021; 11(5):223. https://doi.org/10.3390/geosciences11050223
Chicago/Turabian StyleAdamiak, Maciej, Iwona Jażdżewska, and Marta Nalej. 2021. "Analysis of Built-Up Areas of Small Polish Cities with the Use of Deep Learning and Geographically Weighted Regression" Geosciences 11, no. 5: 223. https://doi.org/10.3390/geosciences11050223
APA StyleAdamiak, M., Jażdżewska, I., & Nalej, M. (2021). Analysis of Built-Up Areas of Small Polish Cities with the Use of Deep Learning and Geographically Weighted Regression. Geosciences, 11(5), 223. https://doi.org/10.3390/geosciences11050223