Gaussian Transformation Methods for Spatial Data
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bostan, P.A.; Heuvelink, G.B.M.; Akyurek, S.Z. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 115–126. [Google Scholar] [CrossRef]
- Theodoridou, P.G.; Varouchakis, E.A.; Karatzas, G.P. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools. J. Hydrol. 2017, 555, 242–252. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Theodoridou, P.G.; Karatzas, G.P. Spatiotemporal geostatistical modeling of groundwater levels under a Bayesian framework using means of physical background. J. Hydrol. 2019, 575, 487–498. [Google Scholar] [CrossRef]
- Clark, I.; Harper, W.V. Practical Geostatistics 2000; Ecosse North America Llc: Columbus, OH, USA, 2000. [Google Scholar]
- Mcgrath, D.; Zhang, J.E.; Qu, L.T. Temporal and spatial distribution of sediment total organic carbon in an estuary river. J. Environ. Qual. 2004, 35, 93–100. [Google Scholar]
- Gringarten, E.; Deutsch, C.V. Teacher’s aide: Variogram interpretation and modeling. Math. Geol. 2001, 33, 507–534. [Google Scholar] [CrossRef]
- Armstrong, M. Basic Linear Geostatistics; Springer: Berlin, Germany, 1998. [Google Scholar]
- Pardo-Iguzquiza, E.; Dowd, P. Empirical maximum likelihood Kriging: The general case. Math. Geol. 2005, 37, 477–492. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Deutsch, C.V.; Journel, A.G. GSLIB. Geostatistical Software Library and User’s Guide; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Asa, E.; Saafi, M.; Membah, J.; Billa, A. Comparison of Linear and Nonlinear Kriging Methods for Characterization and Interpolation of Soil Data. J. Comput. Civ. Eng. 2012, 26, 11–18. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T.; Karatzas, G.P. Improving kriging of groundwater level data using nonlinear normalizing transformations-a field application. Hydrol. Sci. J. 2012, 57, 1404–1419. [Google Scholar] [CrossRef]
- Wu, X.; Marshall, L.; Sharma, A. The influence of data transformations in simulating Total Suspended Solids using Bayesian inference. Environ. Modell. Softw. 2019, 121, 104493. [Google Scholar] [CrossRef]
- Verdin, A.; Rajagopalan, B.; Kleiber, W.; Funk, C. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resour. Res. 2015, 51, 908–921. [Google Scholar] [CrossRef]
- McInerney, D.; Thyer, M.; Kavetski, D.; Bennett, B.; Lerat, J.; Gibbs, M.; Kuczera, G. A simplified approach to produce probabilistic hydrological model predictions. Environ. Modell. Softw. 2018, 109, 306–314. [Google Scholar] [CrossRef]
- Wang, Q.J.; Shrestha, D.L.; Robertson, D.E.; Pokhrel, P. A log-sinh transformation for data normalization and variance stabilization. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Varouchakis, E.A.; Hristopulos, D.T.; Karatzas, G.P.; Corzo Perez, G.A.; Diaz, V. Spatiotemporal geostatistical analysis of precipitation combining ground and satellite observations. Hydrol. Res. 2021. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Brus, D.J.; Rico-Ramirez, M.A.; Heuvelink, G.B.M. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model. Adv. Water Resour. 2017, 107, 126–138. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G. Interpolation of precipitation under topographic influence at different time scales. Water Resour. Res. 2013, 49, 4545–4565. [Google Scholar] [CrossRef]
- Markonis, Y.; Batelis, S.C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D. Temporal and spatial variability of rainfall over Greece. Theor. Appl. Climatol. 2017, 130, 217–232. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D.; Montanari, A. Characterizing and Modeling Seasonality in Extreme Rainfall. Water Resour. Res. 2018, 54, 6242–6258. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D. Projecting the future of rainfall extremes: Better classic than trendy. J. Hydrol. 2020, 588, 125005. [Google Scholar] [CrossRef]
- Malamos, N.; Koutsoyiannis, D. Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 2: Application to synthesized and rainfall data. Hydrol. Sci. J. 2016, 61, 527–540. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Paschalis, A.; Theodoratos, N. Two-dimensional Hurst–Kolmogorov process and its application to rainfall fields. J. Hydrol. 2011, 398, 91–100. [Google Scholar] [CrossRef]
- Diodato, N. The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int. J. Climatol. 2005, 25, 351–363. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degré, A. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar] [CrossRef]
- Special Water Secretariat of Greece. National Water Monitoring Network, Groundwater Data, Athens, Greece (In Greek). Available online: http://nmwn.ypeka.gr/?q=groundwater-stations (accessed on 20 October 2020).
- Enomoto, C.; Lohr, C.; Hackley, P.; Valentine, B.; Dulong, F.; Hatcherian, J. Petroleum Geology Data from Mesozoic Rock Samples in the Eastern US Gulf Coast Collected 2011 to 2017. US Geol. Survey Data Release 2018. [Google Scholar] [CrossRef]
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar]
- Hristopulos, D.T. Random Fields for Spatial Data Modeling; Springer/Nature: Dordrecht, The Netherlands, 2020. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox transformation technique: A review. JRSSD 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Weisberg, S. Yeo-Johnson power transformations. Dep. Appl. Stat. Univ. Minn. Retrieved June 2001, 1, 2003. [Google Scholar]
- Atkinson, A.B. The box-cox transformation: Review and extensions. Stat. Sci. 2020, 36, 239–255. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Varouchakis, E.A. Evarouchakis/Modified-Box-Cox: Modified Box-Cox. Available online: https://zenodo.org/record/4688056#.YIy4jvkzaUk (accessed on 20 October 2020).
Method | Advantages | Disadvantages |
---|---|---|
Log | Right skewed data, log10(x) is especially good at handling higher order powers of 10 | Zero values Negative values |
Square Root | Right skewed data | Negative values |
Square | Left skewed data | Negative values |
Cube Root | Right skewed data Negative values | Not as effective at normalizing as log transform |
1/x | Making small values bigger and big values smaller | Zero values Negative values |
Statistical Metrics | Original Data | Cube Root | Box-Cox | Yeo and Johnson Box-Cox Extension | Modified Box-Cox |
---|---|---|---|---|---|
Kurtosis (k) | 5.78 | 3.31 | 2.61 | 3.21 | 3.00 |
Skewness (s) | 1.41 | 0.6 | 0.12 | 0.27 | 0.22 |
Detrended Data | Cube Root | Box-Cox | Yeo and Johnson Box-Cox Extension | Modified Box-Cox | |
Kurtosis (k) | 5.46 | 1.5 | NA | 4.34 | 4.17 |
Skewness (s) | 0.98 | 0.29 | NA | 0.18 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varouchakis, E.A. Gaussian Transformation Methods for Spatial Data. Geosciences 2021, 11, 196. https://doi.org/10.3390/geosciences11050196
Varouchakis EA. Gaussian Transformation Methods for Spatial Data. Geosciences. 2021; 11(5):196. https://doi.org/10.3390/geosciences11050196
Chicago/Turabian StyleVarouchakis, Emmanouil A. 2021. "Gaussian Transformation Methods for Spatial Data" Geosciences 11, no. 5: 196. https://doi.org/10.3390/geosciences11050196
APA StyleVarouchakis, E. A. (2021). Gaussian Transformation Methods for Spatial Data. Geosciences, 11(5), 196. https://doi.org/10.3390/geosciences11050196