Near-Source Simulation of Strong Ground Motion in Amatrice Downtown Including Site Effects
Abstract
:1. Introduction
2. Available Data
3. Simulation Method
- The target event is recorded at a reference station, for which we calculated the Fourier transform (FFT phase and amplitude).
- Several earthquakes are recorded simultaneously at the reference station and at the other neighboring sites (in this way we can assume similar source effects at all stations), allowing us to calculate the empirical transfer functions respect to the reference site by means of the standard spectral ratio (SSR).
- FFT amplitude of the target event recorded at the reference station is multiplied by the SSR of each station; the result is an amplitude spectral content, modified by the contribution of a transfer function.
- The modified FFT amplitude spectrum is back-transformed to the time domain through the IFFT, using the FFT phase of the reference station.
4. Data Processing
5. Results
5.1. Standard Spectral Ratio (SSR)
- T1299 is affected by a slight deamplification with respect to AMT up to 10 Hz; above this value, the amplification increases by up to 2.5 (Figure 3).
- MZ10, MZ12, and MZ28 are amplified with respect to the reference site (MZ08 or AMT): MZ10 has a strong amplification of about 7.5 above 10 Hz with a NW–SE polarization; MZ12 and MZ28 show an average amplification of about 4 and 3, respectively, along the entire frequency range and with NNW–SSE polarization; MZ29, located at the base of the terrace close to the northern edge, has a high-frequency amplification (f > 10 Hz) most likely due the slope debris, whereas MZ31, located at the base of the southern slope, does not show any amplification (Figure S2 in Supplementary Materials).
- CS13-14-16-17-20-23-24, in Amatrice downtown, show an amplification larger than 2 in the frequency range 0.7–3.5 Hz, with a double peak between 1.5 to 2.5 Hz and a preferred NE–SW direction: the maximum amplitude of the peaks exceeds 5 at stations CS20, CS23, and CS24, and it reaches a value of about 4 at CS13, CS14, and CS17 (for this station the SSR has been evaluated only between 0.5 to about 7 Hz); CS16 appears as the most amplified seismic station in a wider frequency range (up to 10 Hz), with a maximum amplification of about 7.3 in the NE–SW direction (Figure 4 and Figure S2 in Supplementary Materials).
5.2. Tests
5.3. 24 August 2016 Simulation
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.-Q.; Zhou, X.-Y.; Zhang, P.-Z.; Igel, H. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake. Soil Dyn. Earthq. Eng. 2002, 22, 73–96. [Google Scholar] [CrossRef]
- Luzi, L.; Pacor, F.; Puglia, R.; Lanzano, G.; Felicetta, C.; D’Amico, M.; Michelini, A.; Faenza, L.; Lauciani, V.; Iervolino, I.; et al. The Central Italy Seismic Sequence between August and December 2016: Analysis of Strong-Motion Observations. Seism. Res. Lett. 2017, 88, 1219–1231. [Google Scholar] [CrossRef]
- Bradley, B.A.; Razafindrakoto, H.N.T.; Polak, V. Ground-Motion Observations from the 14 November 2016Mw 7.8 Kaikoura, New Zealand, Earthquake and Insights from Broadband Simulations. Seism. Res. Lett. 2017, 88, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Magnoni, F.; Casarotti, E.; Michelini, A.; Piersanti, A.; Komatitsch, D.; Peter, D.; Tromp, J. Spectral-Element Simulations of Seismic Waves Generated by the 2009 L’Aquila Earthquake. Bull. Seism. Soc. Am. 2013, 104, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Dujardin, A.; Causse, M.; Courboulex, F.; Traversa, P. Simulation of the Basin Effects in the Po Plain During the Emilia-Romagna Seismic Sequence (2012) Using Empirical Green’s Functions. Pure Appl. Geophys. Pageoph 2016, 173, 1993–2010. [Google Scholar] [CrossRef]
- Akinci, A.; Aochi, H.; Herrero, A.; Pischiutta, M.; Karanikas, D. Physics-Based Broadband Ground-Motion Simulations for Probable M w ≥7.0 Earthquakes in the Marmara Sea Region (Turkey). Bull. Seism. Soc. Am. 2017, 107, 1307–1323. [Google Scholar] [CrossRef]
- Gallovič, F.; Valentová, Ľ.; Ampuero, J.; Gabriel, A. Bayesian Dynamic Finite-Fault Inversion: Method and Synthetic Test. J. Geophys. Res. Solid Earth 2019, 124, 6949–6969. [Google Scholar] [CrossRef] [Green Version]
- Cultrera, G.; Ameri, G.; Saraò, A.; Cirella, A.; Emolo, A. Ground-motion simulations within ShakeMap methodology: Application to the 2008 Iwate-Miyagi Nairiku (Japan) and 1980 Irpinia (Italy) earthquakes. Geophys. J. Int. 2013, 193, 220–237. [Google Scholar] [CrossRef] [Green Version]
- Spudich, P.; Cirella, A.; Scognamiglio, L.; Tinti, E. Variability in synthetic earthquake ground motions caused by source variability and errors in wave propagation models. Geophys. J. Int. 2019, 219, 346–372. [Google Scholar] [CrossRef]
- Improta, L.; The Bollettino Sismico Italiano Working Group; Latorre, D.; Margheriti, L.; Nardi, A.; Marchetti, A.; Lombardi, A.M.; Castello, B.; Villani, F.; Ciaccio, M.G.; et al. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Tertulliani, A.; Azzaro, R.; Graziani, L.; Rovida, A.; Maramai, A.; Pessina, V.; Hailemikael, S.; Buffarini, G.; Bernardini, F.; et al. The 2016–2017 earthquake sequence in Central Italy: Macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull. Earthq. Eng. 2019, 17, 2407–2431. [Google Scholar] [CrossRef]
- Graziani, L.; Del Mese, S.; Tertulliani, A.; Arcoraci, L.; Maramai, A.; Rossi, A. Investigation on damage progression during the 2016–2017 seismic sequence in Central Italy using the European Macroseismic Scale (EMS-98). Bull. Earthq. Eng. 2019, 17, 5535–5558. [Google Scholar] [CrossRef]
- Fiorentino, G.; Forte, A.; Pagano, E.; Sabetta, F.; Baggio, C.; Lavorato, D.; Nuti, C.; Santini, S. Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes. Bull. Earthq. Eng. 2017, 16, 1399–1423. [Google Scholar] [CrossRef] [Green Version]
- Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M. Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophys. Res. Lett. 2016, 43, 10745. [Google Scholar] [CrossRef]
- Pizzi, A.; Di Domenica, A.; Gallovič, F.; Luzi, L.; Puglia, R. Fault Segmentation as Constraint to the Occurrence of the Main Shocks of the 2016 Central Italy Seismic Sequence. Tectonics 2017, 36, 2370–2387. [Google Scholar] [CrossRef]
- Cirella, A.; Pezzo, G.; Piatanesi, A. Rupture Kinematics and Structural-Rheological Control of the 2016 M w 6.1 Amatrice (Central Italy) Earthquake From Joint Inversion of Seismic and Geodetic Data. Geophys. Res. Lett. 2018, 45, 12302. [Google Scholar] [CrossRef]
- D’Amico, M.; Felicetta, C.; Russo, E.; Sgobba, S.; Lanzano, G.; Pacor, F.; Luzi, L. Italian Accelerometric Archive v 3.1; Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Faenza, L.; Lauciani, V.; Michelini, A. The ShakeMaps of the Amatrice, M6, earthquake. Ann. Geophys 2016, 59. [Google Scholar] [CrossRef]
- Spagnuolo, E.; Cirella, A.; Akinci, A. Investigating the Effectiveness of Rupture Directivity during the August 24, 2016 Mw 6.0 Central Italy earthquake. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Wen, R. Imprint of Rupture Directivity from Ground Motions of the 24 August 2016 M w 6.2 Central Italy Earthquake. Tectonics 2017, 36, 3178–3191. [Google Scholar] [CrossRef] [Green Version]
- Pischiutta, M.; Akinci, A.; Tinti, E.; Herrero, A. Broad-band ground-motion simulation of 2016 Amatrice earthquake, Central Italy. Geophys. J. Int. 2020, 224, 1753–1779. [Google Scholar] [CrossRef]
- Buttinelli, M.; Pezzo, G.; Valoroso, L.; De Gori, P.; Chiarabba, C. Tectonics Inversions, Fault Segmentation, and Triggering Mechanisms in the Central Apennines Normal Fault System: Insights From High-Resolution Velocity Models. Tectonics 2018, 37, 4135–4149. [Google Scholar] [CrossRef]
- Carannante, S.; Monachesi, G.; Cattaneo, M.; Amato, A.; Chiarabba, C. Deep structure and tectonics of the northern-central Apennines as seen by regional-scale tomography and 3-D located earthquakes. J. Geophys. Res. Solid Earth 2013, 118, 5391–5403. [Google Scholar] [CrossRef]
- Magnoni, F.; Casarotti, E. Kinematic finite fault and 3D seismic wave propagation of the 24 August 2016, Mw 6.0 Central Italy earthquake. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Milana, G.; Cultrera, G.; Bordoni, P.; Bucci, A.; Cara, F.; Cogliano, R.; Di Giulio, G.; Di Naccio, D.; Famiani, D.; Fodarella, A.; et al. Local site effects estimation at Amatrice (Central Italy) through seismological methods. Bull. Earthq. Eng. 2019, 18, 5713–5739. [Google Scholar] [CrossRef]
- Chiaretti, F.; Nibbi, L. Relazione Illustrativa della Microzonazione Sismica di Livello 3 del Comune di Amatrice ai sensi dell’Ordinanza del Commissario Straordinario n.24; 2017 (in Italian). Regione Lazio. Available online: http://www.regione.lazio.it/prl_ambiente/?vw=contenutidettaglio&id=238 (accessed on 25 April 2021).
- Vignaroli, G.; Mancini, M.; Bucci, F.; Cardinali, M.; Cavinato, G.; Moscatelli, M.; Putignano, M.; Sirianni, P.; Santangelo, M.; Ardizzone, F.; et al. Geology of the central part of the Amatrice Basin (Central Apennines, Italy). J. Maps 2019, 15, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Vignaroli, G.; Mancini, M.; Brilli, M.; Bucci, F.; Cardinali, M.; Giustini, F.; Voltaggio, M.; Yu, T.-L.; Shen, C.-C. Spatial-Temporal Evolution of Extensional Faulting and Fluid Circulation in the Amatrice Basin (Central Apennines, Italy) During the Pleistocene. Front. Earth Sci. 2020, 8, 130. [Google Scholar] [CrossRef]
- Grelle, G.; Gargini, E.; Facciorusso, J.; Maresca, R.; Madiai, C. Seismic site effects in the Red Zone of Amatrice hill detected via the mutual sustainment of experimental and computational approaches. Bull. Earthq. Eng. 2020, 18, 1955–1984. [Google Scholar] [CrossRef]
- Miano, A.; Jalayer, F.; Forte, G.; Santo, A. Empirical fragility assessment using conditional GMPE-based ground shaking fields: Application to damage data for 2016 Amatrice Earthquake. Bull. Earthq. Eng. 2020, 18, 6629–6659. [Google Scholar] [CrossRef]
- Cara, F.; Cultrera, G.; Riccio, G.; Amoroso, S.; Bordoni, P.; Bucci, A.; D’Alema, E.; D’Amico, M.; Cantore, L.; Carannante, S.; et al. Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies. Sci. Data 2019, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priolo, E.; Pacor, F.; Spallarossa, D.; Milana, G.; Laurenzano, G.; Romano, M.A.; Felicetta, C.; Hailemikael, S.; Cara, F.; Di Giulio, G.; et al. Seismological analyses of the seismic microzonation of 138 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bull. Earthq. Eng. 2020, 18, 5553–5593. [Google Scholar] [CrossRef] [Green Version]
- Felicetta, C.; Mascandola, C.; Spallarossa, D.; Pacor, F.; Hailemikael, S.; Di Giulio, G. Quantification of site effects in the Amatrice area (Central Italy): Insights from ground-motion recordings of the 2016–2017 seismic sequence. Soil Dyn. Earthq. Eng. 2021, 142, 106565. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Wasowski, J.; Pierri, P.; Moretti, A.; Ferrini, G. Multitemporal analysis of ambient noise polarization to characterize site response in the town of Amatrice, shattered by the 2016 central Italy earthquake. Geophys. J. Int. 2020, 224, 739–759. [Google Scholar] [CrossRef]
- Scognamiglio, L.; Tinti, E.; Quintiliani, M. Time Domain Moment Tensor (TDMT) [Data Set]; Istituto nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2006. [Google Scholar] [CrossRef]
- Mazza, S.; Basili, A.; Bono, A.; Luciani, V.; Mandiello, A.G.; Marcocci, C.; Mele, F.M.; Pintore, S.; Quintiliani, M.; Scognamiglio, L.; et al. AIDA—Seismic data acquisition, processing, storage and distribution the National Earthquake Center, INGV. Ann. Geophys. 2012, 55. [Google Scholar] [CrossRef]
- Presidency of Council Of Ministers—Civil Protection Department. Ital. Strong Motion Netw. 1972. [CrossRef]
- D’Amico, M.; Felicetta, C.; Schiappapietra, E.; Pacor, F.; Gallovič, F.; Paolucci, R.; Puglia, R.; Lanzano, G.; Sgobba, S.; Luzi, L. Fling Effects from Near-Source Strong-Motion Records: Insights from the 2016 Mw 6.5 Norcia, Central Italy, Earthquake. Seism. Res. Lett. 2018, 90, 659–671. [Google Scholar] [CrossRef]
- Moretti, M.; Pondrelli, S.; Margheriti, L.; Abruzzese, L.; Anselmi, M.; Arroucau, P.; Baccheschi, P.; Baptie, B.; Bonadio, R.; Bono, A.; et al. SISMIKO: Emergency Network Deployment and Data Sharing for the 2016 Central Italy Seismic Sequence. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- 3A network, Seismic Microzonation Network, 2016 Central Italy. Istituto Nazionale di Geofisica e Vulcanologia (INGV), Istituto di Geologia Ambientale e Geoingegneria (CNR-IGAG), Istituto per la Dinamica dei Processi Ambientali (CNR-IDPA), Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA), Agenzia Nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA). Rete del Centro di Microzonazione Sismica (CentroMZ), Sequenza Sismica del 2016 in Italia Centrale. Istituto Nazionale di Geofisica e Vulcanologia (INGV): Italy, 2018. Available online: https://doi.org/10.13127/SD/ku7Xm12Yy9. (accessed on 8 April 2021).
- Imtiaz, A.; Perron, V.; Hollender, F.; Bard, P.; Cornou, C.; Svay, A.; Theodoulidis, N. Wavefield Characteristics and Spatial Incoherency: A Comparative Study from Argostoli Rock- and Soil-Site Dense Seismic Arrays. Bull. Seism. Soc. Am. 2018, 108, 2839–2853. [Google Scholar] [CrossRef] [Green Version]
- Sgobba, S.; Lanzano, G.; Pacor, F.; Puglia, R.; D’Amico, M.; Felicetta, C.; Luzi, L. Spatial Correlation Model of Systematic Site and Path Effects for Ground-Motion Fields in Northern Italy. Bull. Seism. Soc. Am. 2019, 109, 1419–1434. [Google Scholar] [CrossRef]
- Schiappapietra, E.; Douglas, J. Modelling the spatial correlation of earthquake ground motion: Insights from the literature, data from the 2016–2017 Central Italy earthquake sequence and ground-motion simulations. Earth Science Rev. 2020, 203, 103139. [Google Scholar] [CrossRef]
- Esposito, S.; Iervolino, I. Spatial Correlation of Spectral Acceleration in European Data. Bull. Seism. Soc. Am. 2012, 102, 2781–2788. [Google Scholar] [CrossRef]
- Bonilla, L.F. Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets Space 2011, 63, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Theodoulidis, N.; The Argostoli NERA Team; Cultrera, G.; Cornou, C.; Bard, P.-Y.; Boxberger, T.; Di Giulio, G.; Imtiaz, A.; Kementzetzidou, D.; Makra, K. Basin effects on ground motion: The case of a high-resolution experiment in Cephalonia (Greece). Bull. Earthq. Eng. 2018, 16, 529–560. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seism. Soc. Am. 1998, 88, 228–241. [Google Scholar]
- Arias, A. A measure of earthquake intensity. In Seismic Design for Nuclear Power Plants; Robert, J.H., Ed.; Massachusetts Institute of Technology Press: Cambridge, MA, USA, 1970; pp. 438–483. [Google Scholar]
- Lanzano, G.; Luzi, L.; Pacor, F.; Felicetta, C.; Puglia, R.; Sgobba, S.; D’Amico, M. A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bull. Seism. Soc. Am. 2019, 109, 525–540. [Google Scholar] [CrossRef]
- Galli, P.; Castenetto, S.; Peronace, E. The Macroseismic Intensity Distribution of the 30 October 2016 Earthquake in Central Italy (Mw 6.6): Seismotectonic Implications. Tectonics 2017, 36, 2179–2191. [Google Scholar] [CrossRef]
UTC Time | Latitude [°N] | Longitude [°E] | Depth [km] | Mag Type | Magnitude | Transfer Function |
---|---|---|---|---|---|---|
2016-08-24T01:36:32 | 42.70 | 13.23 | 8 | Mw | 6.0 | AMT |
2016-10-16T09:32:35 | 42.75 | 13.18 | 9 | Mw | 4.0 | T1299,AMT |
2016-10-26T17:10:36 | 42.88 | 13.12 | 8 | Mw | 5.4 | T1299,AMT |
2016-10-26T19:18:07 | 42.91 | 13.09 | 10 | Mw | 5.9 | MZ,MZ08,AMT |
2016-10-26T21:42:01 | 42.86 | 13.12 | 10 | Mw | 4.5 | T1299,AMT |
2016-10-27T03:19:27 | 42.84 | 13.14 | 9 | Mw | 4.0 | T1299,AMT |
2016-10-27T08:21:45 | 42.88 | 13.10 | 9 | Mw | 4.3 | T1299,AMT |
2016-10-28T02:13:19 | 43.03 | 13.12 | 8 | ML | 3.5 | MZ,MZ08,AMT |
2016-10-29T16:24:33 | 42.81 | 13.10 | 11 | Mw | 4.1 | T1299,AMT |
2016-10-30T06:40:17 | 42.83 | 13.11 | 10 | Mw | 6.5 | MZ |
2016-10-30T07:13:05 | 42.69 | 13.23 | 11 | ML | 4.2 | T1299,AMT |
2016-10-30T11:58:17 | 42.85 | 13.06 | 10 | Mw | 4.0 | T1299,AMT |
2016-10-31T08:37:33 | 43.03 | 13.08 | 8 | ML | 3.5 | MZ,MZ08,AMT |
2016-10-31T12:30:16 | 42.92 | 13.01 | 11 | ML | 2.9 | MZ,MZ08,AMT |
2016-11-01T03:19:05 | 42.90 | 13.29 | 24 | ML | 3.8 | MZ,MZ08,AMT |
2016-11-01T04:09:15 | 42.59 | 13.34 | 17 | ML | 3.0 | MZ,MZ08,AMT |
2016-11-02T15:53:02 | 43.03 | 13.05 | 9 | ML | 3.4 | MZ,MZ08,AMT |
2016-11-02T19:26:47 | 42.92 | 13.21 | 8 | ML | 3.1 | MZ,MZ08,AMT |
2016-11-02T19:37:49 | 42.88 | 13.06 | 8 | Mw | 3.7 | MZ,MZ08,AMT |
2016-11-03T00:35:01 | 43.03 | 13.05 | 8 | Mw | 4.7 | MZ,MZ08,AMT |
2016-11-03T11:59:17 | 42.91 | 13.21 | 9 | ML | 3.5 | MZ/MZ08,AMT |
2016-11-03T14:41:29 | 42.99 | 13.07 | 9 | ML | 3.5 | MZ/MZ08,AMT |
2016-11-08T20:00:56 | 42.82 | 12.78 | 9 | ML | 3.2 | MZ/MZ08,AMT |
2016-11-10T13:50:59 | 42.88 | 13.13 | 8 | ML | 3.6 | T1299,AMT |
2016-11-10T15:57:33 | 42.98 | 13.05 | 7 | ML | 3.4 | MZ,MZ08,AMT |
2016-11-12T03:54:59 | 43.01 | 13.07 | 8 | ML | 3.1 | T1299,AMT |
2016-11-12T22:51:10 | 42.92 | 13.21 | 8 | ML | 3.2 | T1299,AMT |
2016-11-14T01:33:43 | 42.86 | 13.16 | 11 | ML | 4.1 | T1299,AMT |
2016-11-15T22:57:52 | 42.75 | 13.21 | 10 | ML | 3.3 | T1299,AMT |
2016-06-28T10.30.04 | 42.62 | 13.32 | 9 | ML | 1.8 | - |
2016-06-28T14.12.02 | 42.91 | 13.18 | 8 | ML | 2.2 | - |
2017-06-29T08.52.29 | 42.63 | 13.22 | 11 | ML | 2.6 | CS,T1299,AMT |
2017-06-29T08.55.46 | 42.63 | 13.21 | 11 | ML | 3.1 | CS,T1299,AMT |
2017-06-29T09.24.20 | 42.64 | 13.21 | 11 | ML | 1.5 | - |
2017-06-29T10.24.07 | 42.77 | 13.17 | 11 | ML | 1.8 | - |
Station Code | Latitude [°N] | Longitude [°E] | Altitude [m] | Working Period |
---|---|---|---|---|
AMT | 42.6325 | 13.2862 | 950 | 7 April 2003–today |
T1299 | 42.6342 | 13.2822 | 940 | 29 August 2016–today |
MZ08 | 42.6330 | 13.2870 | 897 | 20 September–17 November 2016 |
MZ10 | 42.6250 | 13.3000 | 979 | 20 September–17 November 2016 |
MZ12 | 42.6280 | 13.2920 | 958 | 20 September–17 November 2016 |
MZ28 | 42.6214 | 13.3080 | 992 | 14 October–17 November 2016 |
MZ29 | 42.6304 | 13.2930 | 881 | 27 October–17 November 2016 |
MZ30 | 42.6264 | 13.2906 | 951 | 27 October–17 November 2016 |
MZ31 | 42.6250 | 13.2900 | 878 | 27 October–17 November 2016 |
CS01 | 42.6304 | 13.2873 | 929 | 28 June 2017–28 June 2017 |
CS02 | 42.6297 | 13.2871 | 935 | 28 June 2017–28 June 2017 |
CS03 | 42.6294 | 13.2869 | 933 | 28 June 2017–28 June 2017 |
CS04 | 42.6294 | 13.2873 | 940 | 28 June 2017–28 June 2017 |
CS13 | 42.6270 | 13.2958 | 946 | 29 June 2017–29 June 2016 |
CS14 | 42.6288 | 13.2892 | 949 | 29 June 2017–29 June 2017 |
CS16 | 42.6299 | 13.2892 | 930 | 29 June 2017–29 June 2017 |
CS17 | 42.6282 | 13.2893 | 948 | 29 June 2017–29 June 2017 |
CS20 | 42.6293 | 13.2906 | 940 | 29 June 2017–29 June 2017 |
CS23 | 42.6290 | 13.2910 | 951 | 29 June 2017–29 June 2017 |
CS24 | 42.6285 | 13.2911 | 953 | 29 June 2017–29 June 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todrani, A.; Cultrera, G. Near-Source Simulation of Strong Ground Motion in Amatrice Downtown Including Site Effects. Geosciences 2021, 11, 186. https://doi.org/10.3390/geosciences11050186
Todrani A, Cultrera G. Near-Source Simulation of Strong Ground Motion in Amatrice Downtown Including Site Effects. Geosciences. 2021; 11(5):186. https://doi.org/10.3390/geosciences11050186
Chicago/Turabian StyleTodrani, Alessandro, and Giovanna Cultrera. 2021. "Near-Source Simulation of Strong Ground Motion in Amatrice Downtown Including Site Effects" Geosciences 11, no. 5: 186. https://doi.org/10.3390/geosciences11050186
APA StyleTodrani, A., & Cultrera, G. (2021). Near-Source Simulation of Strong Ground Motion in Amatrice Downtown Including Site Effects. Geosciences, 11(5), 186. https://doi.org/10.3390/geosciences11050186