The Alps-Apennines Interference Zone: A Perspective from the Maritime and Western Ligurian Alps
Abstract
:1. Introduction
2. Geological Setting of the Southern Termination of the Western Alps
Tectono-Stratigraphic Evolution of the Southern Termination of the Western Alps
3. The SW Alps Transfer
4. The Penninic Front at the Southern Termination of Western Alps
5. Structure of the Southern Termination of the Western Alps: Increasing Deformation, Metamorphism and Relations with the Adjoining Alps-Apennines Syn-Orogenic Basins
5.1. Rock Deformation and Metamorphism across the IBF in Southern Cottian Alps
5.2. Field Constraints to the Age of Tectonic Events and Kinematic Interpretation
5.2.1. Tectonic Phases
- -
- D1: this phase is associated with an early phase of décollement tectonics responsible for the piling up of the Briançonnais duplexes by mostly bedding-parallel thrusts, mainly vergent to the SW (present geographic coordinates), as shown by [76] in the Briançon area, [21] in the Ubaye-Maira transect and by [23,25,83] in the Maritime and Western Ligurian Alps. The D1 phase is assumed to be roughly consistent with a regional E-W shortening direction [84].
- -
- D2/D3: these two cogenetic tectonic phases generated double-vergent fold systems (with predominant top to NE and subordinate top to SW vergence sense of shearing, D2) evolving to a transpressi shearing onal regime (D3), with high-medium angle reverse and strike-slip faults (Figure 8a) and related minor folds, roughly consistent with E-W regional shortening directions (D2), shifting to NE-SW directions (D3) [9,23,90]. Diffuse fault block rotations on vertical axis and reactivation of faults occurred during the D2, as in the case of the sinistral Preit fault (Figure 2). This major strike-slip fault displaces the boundary of the Internal/External Briançonnais units (i.e., the Internal Briançonnais Front, IBF), attesting that the D2 phase mostly postdates the metamorphic evolution of the units involved in the southern termination of Western Alps.
- -
- D4: faulting events related to the final uplifting stages of the Argentera Massif, inducing reactivation of D3 reverse and strike-slip fault systems and a minor rearrangement of the D1/D2 structural setting. During this stage, the compression direction is assumed to have rotated from NE–SW and then to N–S, inducing the reactivation of SW-verging reverse faults into dextral transpressive faults [15,17,34,68,90].
- -
- D5: the late stage of the tectonic evolution of the southern termination of the Western Alps was achieved in a general extensional-transtensional regime [67,68] as it represents a transitional zone between the regions affected by extension, located in the inner part of chain, and those affected by strike-slip and contractional tectonics, located in the outer parts of the alpine belt. A general frictional reactivation of the previously existing NW-SE to E-W fault systems occurred at this stage [90].
5.2.2. Age of Tectonic Phases and Metamorphism
- -
- D1 phase. The HP metamorphic transformations recorded by the Internal Briançonnais units were acquired before the D1 phase, as evidenced by the relations between the HP minerals and the tectonic foliations (D0 in this paper, D1 [21]). The metamorphism occurred in a time span between the age of the phengite in the Triassic quartzites (37 Ma [92]) of the adjoining, more internal, Pelvo d’Elva unit, and that of the very low grade S1 foliation (see below). In the external sectors, the D1 phase described in this paper, here intended as the older deformation phase that gave origin to a penetrative foliation, occurred later and at a temperature lower than 300 °C [21,26]. Its age should be younger than 33–34 Ma, i.e., the age of the upper part of Grès d’Annot successions [93] involved in the external Briançonnais tectonic units [20,23,47]. Furthermore, the metamorphic HP-LT transformation along the Penninic Front fault rocks in the Pelvoux area, during its later reactivation, has been dated at 34–30 Ma [77,84], thus ascribing it to the D1 phase.
- -
- D2/D3 phase: since the metamorphic HP-LT transformation along the Penninic Front fault rocks in the Pelvoux area, during its syn-D1 reactivation, has been dated at 34–30 Ma [77,84], the D2 phase, which is consistent mainly with very low-grade metamorphism and pressure-dissolution processes of carbonate rocks [25,26], should be younger than 30 Ma. Zircon fission track data ([9] with reference therein) indicate that the western Ligurian Briançonnais basement was at about 265–215 °C between 32 and 29 Ma, suggesting that the onset of the very low-grade to anchizonal D2 phase should have occurred after that time span, i.e., at least since the late Rupelian. U-Pb radiometric age on recrystallized carbonate matrix (24.7 ± 6,9 Ma) and calcite veins (26 ± 11 Ma) in Lower Cretaceous deposits of the Entracque Unit [95], which could be referred to as the last event of diffuse recrystallization and pressure dissolution (ascribable to the D2/D3 phase), thus occurred around 25 Ma, confirming what suggested above.
- -
- D4 phase: N-S regional shortening continued to be active from the early Miocene until the Tortonian-Messinian from the Ligurian Alps to the Apennines (Padane) thrust front, and is recorded in the southern termination of the Western Alps mainly as dextral transpression along the NW-SE fault systems subparallel to the main Briançonnais and Dauphinois tectonic fronts and the boundary faults of the Argentera Massif [68,98].
- -
- D5 phase: the late extensional and transtensional regime occurred during the late Miocene-Pliocene [67,68], which was coeval to the strike slip and contractional tectonic regime of the outer sectors of the SW Alpsto the south of the Argentera Massif and in the northern margin of the present Ligurian basin [64,90].
5.3. Subsurface Stratigraphic Constraints to the Uplifting Stages
6. Discussion: The Late Eocene to Miocene Evolution of the Internal SW Alps in the Frame of the Adria Indenter Kinematics and First Stages of the Apennines Orogenesis
- (a)
- The first point concerns the dynamic context in which the exhumation of the alpine units occurred. As reviewed in the above sections, it can be suggested that the exhumation of the tectonic units derived from the Briançonnais, Dauphinois-Provençal and Alpine Foreland basin domains occurred in a transpressional regime. It was stated by [21] that whereas the exhumation of the adjoining Alpine units, such as the Dora-Maira UHP-HP eclogite rocks and the Monviso meta-ophiolites, mostly occurred through extrusion in the subduction channel and then late extensional tectonics, “the Briançonnais nappes were exhumed mostly through transpressional deformation at the bottom of a collapsing and eroded orogenic wedge”. This interpretation is consistent with the ideas sustained in this paper, and is supported by: (i) the overall structural setting of the Briançonnais-Dauphinois-Provençal transect in the SW Alps, corresponding to a mega-macroscale fan-like geometry evoking a flower structure; (ii) the transpressional characters of the structural associations developed in the D1–D3 phases, consisting of several juxtaposed tectonic domains dominated, in turn, by steep reverse and strike-slip faults, low-angle thrust surfaces and folded domains with alternating low-angle axial surface folds and vertical axes folds; (iii) the progressive and gradual decrease of the metamorphic grade from the internal Briançonnais to the external Dauphinois-Provençal units, indicating that no major vertical offset, and no related metamorphic gap, occurred across the tectonic unit boundaries; (iv) the tectono-sedimentary setting of the adjoining syn-orogenic basins placed in the internal side of the Western Alps, in southern Piemonte, that recorded the kinematics and uplifting stages of the Alps tectonic belt.
- (b)
- The second discussion point refers to the effective relations of the transpressive tectonics, discussed at point (a), with the inferred presence of the regional transfer zone, here named SWAT (see Section 3), that should have contributed to the west-ward indentation of Adria and its counterclockwise rotation with respect to Europe [34]. This transfer kinematics, coeval with the continuing shortening due to the Adria-Europe indentation, seems to be effectively recorded by the structural setting of the southern termination of Western Alps, namely by the Gardetta-Viozene Zone (GVZ), consisting of an assemblage of transpressive deformation units [20,23], which can be followed quite continuously from the NW in the Cottian Alps to the Tanaro valley in the western Ligurian Alps (Figure 3).
- (c)
- As the SWAT activity was recorded by the tectonic evolution of the basement and covers (Mesozoic succession and Eocene-Oligocene Foreland Basin succession) at the southern termination of Western Alps, a third crucial point, concerning the sedimentary recordings of this tectonics in the syn-orogenic basins is to be discussed. The data reported in the above sections indicate that the exhumation/uplifting of the southern Cottian-Maritime-western Ligurian system occurred during the formation of the Alps-Apennines syn-orogenic basin known as TPB (Tertiary Piemonte Basin [9,19,74,107] with references therein). The TPB succession (Figure 1) was deposited starting from the early Oligocene on the exhuming metamorphic complexes of the Western Alps, as well as on the top of the overthrusting Ligurian units involved in the northwestern Apennines. The TPB successions recorded the Alps-Apennines tectonics through some regional scale unconformities related to main Geologic Events (Figure 11) that divided the succession into a number of unconformity-bounded stratigraphic units (Synthems [108]) continuous at the regional scale [19]. The analysis of a seismic line (Figure 9) available for the TPB sectors adjoining the Western Ligurian Alps [65], evidenced that the uplifting of the basement occurred during the depositions of the Oligocene-early Miocene succession, as evidence by late Chattian and Burdigalian reflectors that onlap distinct tectonic units, sealing the progressively younger activity of the faults branching from the main steep fault systems, interpreted by the authors as roughly E-W strike-slip faults deep-seated in the alpine basement. We suggest that this fault system could be consistent (as close to it and showing similar geometric and kinematic features) with the inferred eastward prolongation of the GVZ system (Figure 2), whose evidence in this sector of the western Ligurian Alps (i.e., the Limone-Viozene Zone [25,28]) has been confirmed by surface data. The activity of the GVZ/SWAT system thus occurred first during the early Oligocene sedimentation stages, when the basement of the TPB underwent a stretching, consistent with the sinistral transcurrent tectonics of the D1/D2 phase, which controlled the deposition of the lower Oligocene continental and coarse-grained marine sediment (Molare Fm. [99]), and induced an intense vertical mobility leading to a main regional denudation episode [109] and the onset of differentially subsiding sub-basins, bounded by high angle transtensional faults ([6,10] with references therein) and flanked by fastly uplifting areas. This stage was concomitant with the rifting phase of the Balearic basin [110] that in the internal part of the Ligurian Alps was less pronounced and rapidly decreased toward the North, maybe due to the hindering effect of the southern prolongation of the Ivrea high-density body [9]. The gradual decrease of the rifting was probably partitioned by the transpressive faults of the GVZ/SWAT system, as suggested by [10], during the D1/D2 phase.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelati, R.; Gnaccolini, M. Evoluzione tettonico-sedimentaria della zona limite tra Alpi ed Appennini tra l’inizio dell’Oligocene ed il Miocene medio. Mem. Soc. Geol. Ital. 1982, 2, 183–191. [Google Scholar]
- Mutti, E.; Papani, L.; di Biase, D.; Davoli, G.; Mora, S.; Segadelli, S.; Tinterri, R. Il Bacino Terziario Epimesoalpino e le sue implicazioni sui rapporti tra Alpi ed Appennino. Mem. Sci. Geol. 1995, 48, 233–291. [Google Scholar]
- Piana, F.; Polino, R. Tertiary structural relationships between Alps and Apennines: The critical Torino Hill and Monferrato area. Northwestern Italy. Terra Nova 1995, 7, 138–143. [Google Scholar] [CrossRef]
- Biella, G.C.; Polino, R.; de Franco, R.; Rossi, P.M.; Clari, P.; Corsi, A.; Gelati, R. The crustal structure of the western Po plain: Reconstruction from integrated geological and seismic data. Terra Nova 1997, 9, 28–31. [Google Scholar] [CrossRef]
- Piana, F. Structural setting of western Monferrato (Alps-Apennines junction zone, NW Italy). Tectonics 2000, 19, 943–960. [Google Scholar] [CrossRef]
- Mutti, E.; di Biase, D.; Fava, L.; Mavilla, N.; Sgavetti, M.; Tinterri, R. The Tertiary Piemonte Basin. In Revisiting Turbidites of the Marnoso-Arenacea Formation and their Basin-Margin Equivalents: Problems with Classic Models; Mutti, E., Ricci Lucchi, F., Roveri, M., Eds.; Excursion Notes-Part II. Excursion Guidebook of “Turbidite Workshop”; Dipartimento di Scienze della Terra, Università di Parma, ENI Spa: Parma, Italy, 2002; p. 25. [Google Scholar]
- Rossi, M.; Mosca, P.; Polino, R.; Rogledi, S.; Biffi, U. New outcrop and subsurface data in the Tertiary Piedmont Basin (NW Italy): Unconformity-bounded stratigraphic units and their relationships with basin modification phases. Riv. Ital. Paleontol. Stratigr. 2009, 115, 305–335. [Google Scholar]
- Ghielmi, M.; Minervini, M.; Nini, C.; Rogledi, S.; Rossi, M. Late Miocene-Middle Pleistocene sequences in the Po Plain—Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine Petrol. Geol. 2013, 42, 50–81. [Google Scholar] [CrossRef]
- Maino, M.; Decarlis, A.; Felletti, F.; Seno, S. Tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo-Miocene central Mediterranean geodynamics. Tectonics 2013, 32, 593–619. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Massari, F.; Chiambretti, I.; d’Atri, A.; Fornaciari, E. Birth and tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy). J. Medit. Earth Sci. 2019, 11, 5–112. [Google Scholar] [CrossRef]
- Doglioni, C.; Mongelli, F.; Pialli, G.P. Boudinage of the Alpine belt in the Apenninic back-arc. Mem. Soc. Geol. It. 1998, 52, 457–468. [Google Scholar]
- Doglioni, C.; Gueguen, E.; Harabaglia, P.; Mongelli, F.C. On the origin of west-directed subduction zones and applications to the western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1999, 156, 541–561. [Google Scholar] [CrossRef]
- Brunet, C.; Monié, P.; Jolivet, L.; Cadet, J.P. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 2000, 321, 127–155. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C. Europe—Mediterranean tectonics. In Encyclopedia of Geology; Selley, R., Cocks, R., Plimer, J., Eds.; Elsevier: Oxford, UK, 2004; pp. 135–146. [Google Scholar]
- Ford, M.; Duchene, S.; Gasquet, D.; Vanderhaeghe, O. Two-phase orogenic convergence in the external and internal SW Alps. J. Geol. Soc. 2006, 163, 815–826. [Google Scholar] [CrossRef]
- Lardeaux, J.M.; Schwartz, S.; Tricart, P.; Paul, A.; Guillot, S.; Béthoux, N.; Masson, F. A crustal-scale cross-section of the south-western Alps combining geophysical and geological imagery. Terra Nova 2006, 18, 412–422. [Google Scholar] [CrossRef]
- Schreiber, D.; Lardeaux, J.-M.; Martelet, G.; Courrioux, G.; Guillen, A. 3-D modelling of Alpine Mohos in Southwestern Alps. Geoph. J. Intern. 2010, 180, 961–975. [Google Scholar] [CrossRef]
- Daniel, J.M.; Jolivet, L.; Goffe, B.; Poinssot, C. Crustal-scale strain partitioning: Footwall deformation below the Alpine Oligo-Miocene detachment of Corsica. J. Struct. Geol. 1996, 18, 41–59. [Google Scholar] [CrossRef]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; d’Atri, A.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef]
- Gidon, M. Les chaînons briançonnais et subbriançonnais de la rive gauche de la Stura entre Bersezio et le Val de l’Arma (province de Cuneo Italie). Géol. Alpine 1972, 48, 87–120. [Google Scholar]
- Michard, A.; Avigad, D.; Goffé, B.; Chopin, C. The high-pressure metamorphic front of the south Western Alps (Ubaye-Maira transect, France, Italy). Schweiz. Min. Petr. Mitt. 2004, 84, 215–235. [Google Scholar]
- Malaroda, R.; Carraro, F.; Dal Piaz, G.; Franceschetti, B.; Sturani, C.; Zanella, E. Note illustrative della Carta Geologica del Massiccio dell’Argentera alla scala 1: 50.000. Mem. Soc. Geol. Ital. 1970, 9, 557–663. [Google Scholar]
- D’Atri, A.; Piana, F.; Barale, L.; Bertok, C.; Martire, L. Geological setting of the southern termination of Western Alps. Int. J. Earth Sci. 2016, 105, 1831–1858. [Google Scholar] [CrossRef]
- Mohn, G.; Manatschal, G.; Beltrando, M.; Masini, E.; Kusznir, N. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics 2012, 31, TC1012. [Google Scholar] [CrossRef]
- Piana, F.; Musso, A.; Bertok, C.; d’Atri, A.; Martire, L.; Perotti, E.; Varrone, D.; Martinotti, G. New data on post-Eocene tectonic evolution of the External Ligurian Brianconnais (Western Ligurian Alps). Boll. Soc. Geol. Ital. 2009, 128, 353–366. [Google Scholar]
- Piana, F.; Battaglia, S.; Bertok, C.; d’Atri, A.; Ellero, A.; Leoni, L.; Martire, L.; Perotti, E. Illite (KI) and chlorite (AI) “crystallinity” indices as a constraint for the evolution of the External Briançonnais Front in Western Ligurian Alps (NW Italy). Ital. J. Geosci. 2014, 133, 445–454. [Google Scholar] [CrossRef]
- Barale, L.; Bertok, C.; d’Atri, A.; Martire, L.; Piana, F.; Domini, G. Geology of the Entracque–Colle di Tenda area (Maritime Alps, NW Italy). J. Maps 2016, 12, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Bertok, C.; Musso, A.; D’Atri, A.; Martire, L.; Piana, F. Geology of the Colle di Tenda—Monte Marguareis area (Ligurian Alps, NW Italy). J. Maps 2018, 14, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Maino, M.; Seno, S. Progressive Deformation Patterns from an Accretionary Prism (Helminthoid Flysch, Ligurian Alps, Italy). Geosciences 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Sagri, M. Le Arenarie di Bordighera: Una conoide sottomarina nel bacino di sedimentazione del Flysch a Elmintoidi di San Remo (Cretaceo superiore, Liguria Occidentale). Boll. Soc. Geol. Ital. 1980, 98, 205–226. [Google Scholar]
- Sagri, M. Litologia, stratimetria e sedimentologia delle torbiditi di piana di bacino del flysch di San Remo (Cretaceo superiore, Liguria occidentale). Mem. Soc. Geol. Ital. 1984, 28, 577–586. [Google Scholar]
- Vanossi, M. Les unités géologiques des Alpes Maritimes entre l’Ellero et la Mèr Ligure: Un aperçu schématique. Mem. Ist. Geol. Mineral. Univ. Padova 1980, 3, 101–142. [Google Scholar]
- Kerckhove, C. La “zone du flysch” dans les nappes de l’Embrunais-Ubaye (Alpes occidentales). Géol. Alpine 1969, 45, 5–204. [Google Scholar]
- Dumont, T.; Schwartz, S.; Guillot, S.; Simon-Labric, T.; Tricart, P.; Jourdan, S. Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. J. Geodyn. 2012, 56, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Lanteaume, M. Contribution à l’étude Géologique des Alpes Maritimes Franco-Italiennes; Carte Géologique de France, Imprimerie Nationale: Paris, France, 1968; pp. 1–405. [Google Scholar]
- Di Giulio, A. The evolution of the Western Ligurian Flysch Units and the role of mud diapirism in ancient accretionary prisms (Maritime Alps, Northwestern Italy). Int. J. Earth Sci. 1992, 81, 655–668. [Google Scholar] [CrossRef]
- Seno, S.; Dallagiovanna, G.; Vanossi, M. A kinematic evolutionary model for the Penninic sector of the central Ligurian Alps. Int. J. Earth Sci. 2005, 94, 114–129. [Google Scholar] [CrossRef]
- Lavier, L.; Manatschal, G. A mechanism to thin the continental lithosphere at magma-poor margins. Nature 2006, 440, 324–328. [Google Scholar] [CrossRef]
- Decarlis, A.; Manatschal, G.; Haupert, I.; Masini, E. The tectono-stratigraphic evolution of distal, hyper-extended magma-poor conjugate rifted margins: Examples from the Alpine Tethys and Newfoundland-Iberia. Mar. Petr. Geol. 2015, 68, 54–72. [Google Scholar] [CrossRef]
- Decarlis, A.; Lualdi, A. Late Triassic-early Jurassic paleokarst from the Ligurian Alps and its geological significance (Siderolitico Auct., Ligurian Briançonnais domain). Swiss J. Geosci. 2008, 101, 579–593. [Google Scholar] [CrossRef]
- Lemoine, M.; Bas, T.; Arnaud-Vanneau, A.; Arnaud, H.; Dumont, T.; Gidon, M.; Bourbon, M.; de Graciansky, P.-C.; Rudkiewicz, J.L.; Megard-Galli, J.; et al. The continental margin of the Mesozoic Tethys in the Western Alps. Mar. Petrol. Geol. 1986, 3, 179–199. [Google Scholar] [CrossRef]
- Claudel, M.E.; Dumont, T. A record of multistage continental break-up on the Briançonnais marginal plateau (Western Alps): Early and middle−late Jurassic rifting. Eclogae Geol. Hel. 1999, 92, 45–61. [Google Scholar]
- Debelmas, J.; Kerckhove, C. II: Les Alpes franco-italiennes. In: France: Introduction à la géologie du Sud-Est. Géol. Alpine 1980, 56, 282. [Google Scholar]
- Mohn, G.; Manatschal, G.; Müntener, O.; Beltrando, M.; Masini, E. Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. Int. J. Earth Sci. 2010, 99, 75–101. [Google Scholar] [CrossRef]
- Faure-Mauret, A. Études Géologiques sur le Massif de l’Argentera-Mercantour et ses Enveloppes Sédimentaires; Mémoires. Carte Géologique: Paris, France, 1955; p. 336. [Google Scholar]
- Barale, L.; Bertok, C.; d’Atri, A.; Martire, L.; Piana, F. Stratigraphy, sedimentology and syndepositional tectonics of the Jurassic–Cretaceous succession at the transition between Provençal and Dauphinois domains (Maritime Alps, NW Italy). Riv. Ital. Paleont. Strat. 2017, 123, 355–378. [Google Scholar]
- Malaroda, R. Carta Geologica del Massiccio dell’Argentera alla scala 1: 50.000. Mem. Soc. Geol. Ital. 1970, 9, 557–663. [Google Scholar]
- Bersezio, R.; Barbieri, P.; Mozzi, R. Redeposited limestones in the Upper Cretaceous succession of the Helvetic Argentera Massif at the Italy–France border. Eclogae Geol. Helv. 2002, 95, 15–30. [Google Scholar]
- Sinclair, H.D. Tectono–stratigraphic model for underfilled peripheral foreland basins: An Alpine perspective. GSA Bull. 1997, 109, 324–346. [Google Scholar] [CrossRef]
- Apps, G.; Peel, F.; Elliott, T. The structural setting and palaeogeographical evolution of the Grès d’Annot Basin. Geol. Soc. London Spec. Publ. 2004, 221, 65–96. [Google Scholar] [CrossRef]
- Molli, G.; Crispini, L.; Malusà, M.G.; Mosca, P.; Piana, F.; Federico, L. Geology of the Western Alps-Northern Apennine junction area: A regional review. J. Virt. Expl. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Bertok, C.; Martire, L.; Perotti, E.; d’Atri, A.; Piana, F. Kilometre-scale palaeoescarpments as evidence for Cretaceous synsedimentary tectonics in the External Briançonnais Domain (Ligurian Alps, Italy). Sedim. Geol. 2012, 251, 58–75. [Google Scholar] [CrossRef]
- Handy, M.R.; Schmid, S.M.; Bousquet, R.; Kissling, E.; Bernoulli, D. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci. Rev. 2010, 102, 121–158. [Google Scholar] [CrossRef]
- Dumont, T.; Simon-Labric, T.; Authemayou, C.; Heymes, T. Lateral termination of the north-directed Alpine orogeny and onset of westward escape in the Western Alpine arc: Structural and sedimentary evidence from the external zone. Tectonics 2011, 30, TC5006. [Google Scholar] [CrossRef] [Green Version]
- Vignaroli, G.; Rossetti, F.; Rubatto, D.; Theye, T.; Lisker, F.; Phillips, D. Pressure-temperature- deformation-time (P-T-d-t) exhumation history of the Voltri Massif HP complex, Ligurian Alps, Italy. Tectonics 2010, 29, TC6009. [Google Scholar] [CrossRef] [Green Version]
- Laubscher, H. The arc of the Western Alps today. Eclogae Geol. Helv. 1991, 84, 631–659. [Google Scholar]
- Tavani, S.; Bertok, C.; Granado, P.; Piana, F.; Salas, R.; Vigna, B.; Muñoz, J.A. The Iberia-Eurasia plate boundary east of the Pyrenees. Earth Sci. Rev. 2018, 187, 314–337. [Google Scholar] [CrossRef]
- Vignaroli, G.; Faccenna, C.; Jolivet, L.; Piromallo, C.; Rossetti, F. Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics 2008, 450, 34–50. [Google Scholar] [CrossRef]
- Bertok, C.; Martire, L.; Perotti, E.; d’Atri, A.; Piana, F. Middle-Late Jurassic syndepositional tectonics recorded in the Ligurian Briançonnais succession (Marguareis–Mongioie area, Ligurian Alps, NW Italy). Swiss J. Geosci. 2011, 104, 237–255. [Google Scholar] [CrossRef]
- Perotti, E.; Bertok, C.; d’Atri, A.; Martire, L.; Piana, F.; Catanzariti, R. A tectonically-induced Eocene sedimentary mélange in the West Ligurian Alps, Italy. Tectonophysics 2012, 568, 200–214. [Google Scholar] [CrossRef]
- Barale, L.; Bertok, C.; d’Atri, A.; Domini, G.; Martire, L.; Piana, F. Hydrothermal dolomitization of the carbonate Jurassic succession in the Provençal and Subbriançonnais Domains (Maritime Alps, North-Western Italy). Compt. Rend. Geosci. 2013, 345, 47–53. [Google Scholar] [CrossRef]
- Barale, L.; Bertok, C.; Salih Talabani, N.; d’Atri, A.; Martire, L.; Piana, F.; Préat, A. Very hot, very shallow hydrothermal dolomitization: An example from the Maritime Alps (north-west Italy-south-east France). Sedimentology 2016, 63, 2037–2065. [Google Scholar] [CrossRef]
- Bertok, C.; Barale, L.; d’Atri, A.; Martire, L.; Piana, F.; Rossetti, P.; Gerdes, A. Unusual marbles in a non-metamorphic succession of the SW Alps (Valdieri, Italy) due to early Oligocene hydrothermal flow. Int. J. Earth Sci. 2019, 108, 693–712. [Google Scholar] [CrossRef]
- Larroque, C.; Delouis, B.; Godel, B.; Nocquet, J.-M. Active deformation at the southwestern Alps–Ligurian basin junction (France–Italy boundary): Evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 2009, 467, 22–34. [Google Scholar] [CrossRef]
- Mosca, P.; Polino, R.; Rogledi, S.; Rossi, M. New data for the kinematic interpretation of the Alps–Apennines junction (Northwestern Italy). Int. J. Earth Sci. 2009, 99, 833–849. [Google Scholar] [CrossRef]
- Goffe, B.; Schwartz, S.; Lardeaux, J.-M.; Bousquet, R. Explanatory notes to the map: Metamorphic structure of the Alps western and Ligurian Alps. Mitt. Österr. Miner. Ges. 2004, 149, 125–144. [Google Scholar]
- Bigot-Cormier, F.; Sosson, M.; Poupeau, G.; Stéphan, J.-F.; Labrin, E. The denudation history of the Argentera Alpine External Crystalline Massif (Western Alps, France-Italy): An overview from the analysis of fission tracks in apatites and zircons. Geodin. Acta 2006, 19, 455–473. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Jolivet, M.; Brichau, S. Exhumation controlled by transcurrent tectonics: The Argentera–Mercantour massif (SW Alps). Terra Nova 2011, 23, 116–126. [Google Scholar] [CrossRef]
- Beltrando, M.; Compagnoni, R.; Lombardo, B. (Ultra-) High-pressure metamorphism and orogenesis: An Alpine perspective. Gond. Res. 2010, 18, 147–166. [Google Scholar] [CrossRef]
- Herwegh, M.; Berger, A.; Baumberger, R.; Wehrens, P.; Kissling, E. Large-Scale Crustal-Block-Extrusion during Late Alpine Collision. Sci. Rep. 2017, 7, 413. [Google Scholar] [CrossRef] [Green Version]
- Dal Piaz, G.V.; Bistacchi, A.; Massironi, M. Geological outline of the Alps. Episodes 2003, 26, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Ford, M.; Lickorish, W.; Kusznir, N. Tertiary foreland sedimentation in the Southern Subalpine Chains, SE France: A geodynamic appraisal. Basin Res. 1999, 11, 315–336. [Google Scholar] [CrossRef]
- Tricart, P. From extension to transpression during the final exhumation of the Pelvoux and Argentera massifs, Western Alps. Eclogae Geol. Helv. 2004, 97, 429–439. [Google Scholar] [CrossRef]
- Piana, F.; Barale, L.; Compagnoni, R.; d’Atri, A.; Fioraso, G.; Irace, A.; Mosca, P.; Tallone, S.; Morelli, M. Geological map of Piemonte region at 1:250,000 scale. Explanatory Notes. Acc. Sc. Torino Mem. Sc. Fis. 2017, 41, 1–143. [Google Scholar]
- Debelmas, J.; Lemoine, M. Carte Géologique de France au 1/50 000, Feuille Guillestre. Notice Explicative; Bureau. Recherchés. Géologique. Miniéres: Orléans, France, 1965; p. 20.
- Tricart, P. Les rétrocharriages dans les Alpes franco-italiennes. Évolution des structures sur la transversale Embrunais-Queyras (Hautes-Alpes). Sci. Géol. Bull. Strasbourg 1975, 28, 239–259. [Google Scholar] [CrossRef]
- Tricart, P. From passive margin to continental collision: A tectonic scenario for the Western Alps. Am. J. Sci. 1984, 284, 97–120. [Google Scholar] [CrossRef]
- Caby, R. Low-angle extrusion of high-pressure rocks and the balance between outward and inward displacements of Middle Penninic units in the Western Alps. Eclogae Geol. Helv. 1996, 89, 229–267. [Google Scholar]
- Bucher, S.; Schmid, S.M.; Bousquet, R.; Fügenschuh, B. Late-stage deformation in a collisional orogen (Western Alps): Nappe refolding, back-thrusting or normal faulting? Terra Nova 2003, 15, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Vanossi, M.; Cortesogno, L.; Galbiati, B.; Messiga, B.; Piccardo, G.; Vanucci, R. Geologia delle Alpi Liguri: Dati, problemi, ipotesi. Mem. Soc. Geol. Ital. 1984, 28, 5–75. [Google Scholar]
- Giglia, G.; Capponi, G.; Crispini, L.; Piazza, M. Dynamics and seismotectonics of the West-Alpine arc. Tectonophysics 1996, 267, 143–146. [Google Scholar] [CrossRef]
- Petti, F.M.; Furrer, H.; Collo, E.; Martinetto, E.; Bernardi, M.; Delfino, M.; Romano, M.; Piazza, M. Archosauriform footprints in the Lower Triassic of Western Alps and their role in understanding the effects of the Permian-Triassic hyperthermal. PeerJ 2020, 8, e10522. [Google Scholar] [CrossRef]
- Carminati, E.; Gosso, G. Structural map of a Ligurian Briançon- nais cover nappe (Conca delle Carsene, Monte Marguareis, Ligurian Alps, Italy) and explanatory notes. Mem. Sci. Geol. 2000, 52, 93–99. [Google Scholar]
- Simon-Labric, T.; Rolland, Y.; Dumont, T.; Heymes, T.; Authemayou, C.; Corsini, M.; Fornari, M. 40Ar/39Ar dating of Penninic Front tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma). Terra Nova 2009, 21, 127–136. [Google Scholar] [CrossRef]
- Baldacci, L.; Franchi, S. Studio geologico della galleria del Colle di Tenda: (linea Cuneo–Ventimiglia). Boll. R. Com. Geol. Ital. 1900, 31, 33–87. [Google Scholar]
- Cavinato, G.P.; Di Luzio, E.; Moscatelli, M.; Vallone, R.; Averardi, M.; Valente, A.; Papale, S. The new Col di Tenda tunnel between Italy and France: Integrated geological investigations and geophysical prospections for preliminary studies on the Italian side. Engen. Geol. 2006, 88, 90–109. [Google Scholar] [CrossRef]
- Brizio, F.D.; Deregibus, C.; Eusebio, A.; Gallo, M.; Gosso, G.; Rattalino, E.; Rossi, F.; Tosetto, S.; Oxilia, M. Guida all’escursione: I rapporti tra la zona Brianzonese Ligure e il Flysch a Elmintoidi, Massiccio del Marguareis (Limone Piemonte-Certosa di Pesio, Cuneo, 14/15 Settembre 1983). Mem. Soc. Geol. Ital. 1983, 26, 579–595. [Google Scholar]
- Lefèvre, R. La cicatrice de Preit: Une discontinuité structurale majeure au sein de la zone briançonnaise entre Acceglio et l’Argentera (Alpes Cottiennes méridionales). C. R. Acad. Sci. Paris 1983, 296, 1551–1554. [Google Scholar]
- Malaroda, R. Il Flysch di Demonte-Aisone e il sondaggio di Aisone. Acc. Sc. Torino Atti Sc. Fis. 2000, 24, 1–37. [Google Scholar]
- Beucher, R.; Sue, C.; Tricart, P. Orogen-parallel brittle extension as a major tectonic imprint in the Neogene evolution of the south-western Alpine arc. Int. J. Earth Sci. 2017, 106, 2973–2990. [Google Scholar] [CrossRef]
- Lefèvre, R.; Michard, A. Les nappes briançonnaises internes et ultra-briançonnaises de la bande d’Acceglio (Alpes franco-italiennes); une étude structurale et pétrographique dans le faciès des schistes bleus à jadéite. Sci. Géol. Bull. 1976, 29, 183–222. [Google Scholar] [CrossRef]
- Monié, P. Preservation of Hercynian 40Ar/39Ar ages through high-presssure low-temperature Alpine metamorphism in the Western Alps. Eur. J. Mineral. 1990, 2, 343–361. [Google Scholar] [CrossRef]
- Du Fornel, E.; Joseph, P.; Desaubliaux, G.; Eschard, R.; Guillocheau, F.; Lerat, O.; Muller, C.; Ravenne, C.; Sztràkos, K. The southern Grès d’Annot outcrops (French Alps): An attempt at regional correlation. Geol. Soc. Lond. Spec. Publ. 2004, 221, 137–160. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Barale, L.; Bertok, C.; d’Atri, A.; Martire, L.; Piana, F.; Bernasconi, S.M.; Birgel, D.; Czuppon, G.; Gerdes, A. U/Pb dating and geochemical constraints to hydrothermal dolomitization in the Provençal Domain (Maritime Alps): Implications for Early Cretaceous tectonics. Ofioliti 2021. accepted for publication. [Google Scholar]
- Baietto, A.; Cadoppi, P.; Martinotti, G.; Perello, P.; Perrochet, P.; Vuataz, F.D. Assessment of thermal circulations in strike-slip fault systems: The Terme di Valdieri case (Italian Western Alps). Geol. Soc. Lond. Spec. Publ. 2008, 299, 317–339. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Schneider, J.; Corsini, M.; Oliot, E.; Goncalves, P.; Verati, C.; Lardeaux, J.-M.; Marquer, D. Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos 2011, 125, 521–536. [Google Scholar] [CrossRef]
- Bauve, V.; Plateaux, R.; Rolland, Y.; Sanchez, G.; Bethoux, N.; Delouis, B.; Darnault, R. Long-lasting transcurrent tectonics in SW Alps evidenced by Neogene to present-day stress fields. Tectonophysics 2014, 621, 85–100. [Google Scholar] [CrossRef]
- Lorenz, C. Evolution stratigraphique et structurale des Alpes Ligures depuis l’Eocène supérieur. Boll. Soc. Geol. Ital. 1984, 28, 211–228. [Google Scholar]
- Casnedi, R.; Mosna, S. Segnalazione di una serie miocenica inferiore nel Monregalese (Bacino Terziario Piemontese). Acc. Naz. Lincei Cl. Sc. Fis. Mat. Nat. 1970, 48, 146–155. [Google Scholar]
- Dewey, J.F.; Holdsworth, R.E.; Strachan, R.A. Transpression and transtension zones. Geol. Soc. Lond. Spec. Publ. 1998, 135, 1–14. [Google Scholar] [CrossRef]
- Jones, R.; Tunner, P.V.G. Strain partitioning in transpression zones. J. Struct. Geol. 1995, 17, 793–802. [Google Scholar] [CrossRef]
- Jones, R.; Holdsworth, R.; Clegg, P.; McCaffrey, K.; Tavarnelli, E. Inclined transpression. J. Struct. Geol. 2004, 26, 1531–1548. [Google Scholar] [CrossRef]
- Minoja, M. Bene Comune e Comportamenti Responsabili. Storie di Imprese e di Istituzioni; EGEA: Milano, Italy, 2015; p. 410. ISBN 9788823814035. [Google Scholar]
- Woodcock, N.H.; Rickards, B. Transpressive duplex and flower structure: Dent Fault System, NW England. J. Struct. Geol. 2003, 25, 1981–1992. [Google Scholar] [CrossRef]
- Cunningham, W.D.; Mann, P. Tectonics of strike-slip restraining and releasing bends. Geol. Soc. Lond. Spec. Publ. 2007, 290, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gelati, R.; Gnaccolini, M. Synsedimentary tectonic and sedimentation in the Tertiary Piedmont Basin, northwestern Italy. Riv. Ital. Paleont. Strat. 1998, 104, 193–214. [Google Scholar]
- Chang, K.H. Unconformity bounded stratigraphic units. Geol. Soc. Am. Bull. 1975, 86, 1544–1552. [Google Scholar] [CrossRef]
- Bertotti, G.; Mosca, P.; Juez, J.; Polino, R.; Dunai, T. Oligocene to Present kilometres scale subsidence and exhumation of the Ligurian Alps and the Tertiary Piedmont Basin (NW Italy) revealed by apatite (U-Th)/He thermochronology: Correlation with regional tectonics. Terra Nova 2006, 18, 18–25. [Google Scholar] [CrossRef]
- Réhault, J.P.; Boillot, G.; Mauffret, A. The western Mediterranean basin geological evolution. Mar. Geol. 1984, 55, 447. [Google Scholar]
- Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa-Eurasia collision. Tectonics 2000, 19, 1095–1106. [Google Scholar] [CrossRef]
- Edel, J.B.; Dubois, D.; Marchant, R.; Hernandez, J.; Cosca, M. La rotation miocène inférieur du bloc corso-sarde; nouvelles contraintes paléomagnétiques sur la fin du mouvement. Bull. Soc. Géol. France 2001, 172, 275–283. [Google Scholar] [CrossRef]
- Schmid, S.M.; Kissling, E. The arc of the Western Alps in the light of geophysical data on deep crustal structure. Tectonics 2000, 19, 62–85. [Google Scholar] [CrossRef]
- Falletti, P.; Gelati, R.; Rogledi, S. Oligo-Miocene evolution of Monferrato and Langhe, related to deep structures. In Atti del Convegno “Rapporti Alpi-Appennino” e Guide alle Escursioni; Peveragno (CN) 31 Maggio–1 Giugno 1994; Polino, R., Sacchi, R., Eds.; Accademia Nazionale delleScienze: Verona, Italy, 1995; Volume 14, pp. 1–19. [Google Scholar]
- Festa, A.; Piana, F.; Dela Pierre, F.; Malusà, M.G.; Mosca, P.; Polino, R. Oligocene-Neogene kinematic constraints in the retroforeland basin of the northwestern Alps. Rend. Soc. Geol. Ital. 2005, 1, 107–108. [Google Scholar]
- Piana, F.; Tallone, S.; Cavagna, S.; Conti, A. Thrusting and faulting in metamorphic and sedimentary units of Ligurian Alps: An example of integrated field work and geochemical analyses. Int. J. Earth Sci. 2006, 95, 413–430. [Google Scholar] [CrossRef]
- Maffione, M.; Speranza, F.; Faccenna, C.; Cascella, A.; Vignaroli, G.; Sagnotti, L. A synchronous Alpine and Corsica-Sardinia rotation. J. Geophys. Res. 2008, 113, 10–25. [Google Scholar] [CrossRef]
- Carrapa, B.; Bertotti, G.; Krijgsman, W. Subsidence, stress regime and rotation (s) of a tectonically active sedimentary basin within the western Alpine Orogen: The Tertiary Piedmont Basin (Alpine domain, NW Italy). Geol. Soc. Lond. Spec. Publ. 2003, 208, 205–227. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, R. La structure et le style tectonique de la bande d’Acceglio en Val Maira (Alpes cottiennes italiennes). Géol. Alpine 1968, 44, 27–36. [Google Scholar]
- Schwartz, S.; Lardeaux, J.M.; Tricart, P. La zone d’Acceglio (Alpes Cottiennes): Un nouvel exemple de croûte continentale éclogitisée dans les Alpes occidentales. C. R. Acad. Sci. 2000, 330, 859–866. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piana, F.; Barale, L.; Bertok, C.; d’Atri, A.; Irace, A.; Mosca, P. The Alps-Apennines Interference Zone: A Perspective from the Maritime and Western Ligurian Alps. Geosciences 2021, 11, 185. https://doi.org/10.3390/geosciences11050185
Piana F, Barale L, Bertok C, d’Atri A, Irace A, Mosca P. The Alps-Apennines Interference Zone: A Perspective from the Maritime and Western Ligurian Alps. Geosciences. 2021; 11(5):185. https://doi.org/10.3390/geosciences11050185
Chicago/Turabian StylePiana, Fabrizio, Luca Barale, Carlo Bertok, Anna d’Atri, Andrea Irace, and Pietro Mosca. 2021. "The Alps-Apennines Interference Zone: A Perspective from the Maritime and Western Ligurian Alps" Geosciences 11, no. 5: 185. https://doi.org/10.3390/geosciences11050185
APA StylePiana, F., Barale, L., Bertok, C., d’Atri, A., Irace, A., & Mosca, P. (2021). The Alps-Apennines Interference Zone: A Perspective from the Maritime and Western Ligurian Alps. Geosciences, 11(5), 185. https://doi.org/10.3390/geosciences11050185