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Abstract: This paper reports the results of a field-based structural investigation of a well-exposed
paleo-accretionary prism, which experienced complex deformation in a low-grade metamorphic
setting. Field analyses focused on the description of structural fabrics, with the main emphasis upon
parameters like the orientation, style and kinematics of foliations, folds and shear zones. We address
the research to the south-westernmost part of the Alpine chain, the Ligurian Alps, where, despite their
origin as turbidite sequences deposited into the closing Alpine Tethys Ocean, the Helminthoid Flysch
Nappes are presently distributed in the outer part of the chain, above the foreland. The new dataset
highlights different deformation patterns related to the different spatial distribution of the flysch
units. This regional-scale partitioning of strain is hence associated with progressive deformation
within a two-stage geodynamic evolution. Correlations among the different orogenic domains allow
the proposal of a kinematic model that describes the motion of the Helminthoid Flysch from the inner
to the outer part of the orogen, encompassing the shift from subduction- to collision-related Alpine
geodynamic phases.

Keywords: orogenic wedge; subduction flysch; oceanic closure and continent collision; deformation
phases; progressive deformation

1. Introduction

The evolution of a collisional orogen entails multiple and overlapping deformation stages
that reflect the physical variations during the three-dimensional spatiotemporal evolution of the
incorporated rock units. Such variations derive from the effect of variable tectonic stresses affecting
rocks which are heterogeneous in terms of their composition and inherited structure, and that deform
under variable temperature and lithostatic pressure conditions. The resulting complex pattern is
classically simplified and grouped into deformation and/or metamorphic phases characteristic of one
or more tectonic domains. Each deformation phase is generally accompanied by one generation of
foliation or schistosity representative of the deformational regime and the metamorphic conditions [1–3].
Changes in the orientation and/or strength of the tectonic forces, as well as in the temperature and
pressure conditions, generate penetrative structures that display different orientations and shapes.
In field-based studies, the determination of multiple overlapping fabrics represents the key factor to
unravel the deformational history of an orogenic domain [1]. However, even within a single tectonic
domain the deformation patterns may be strongly heterogeneous in response to local lithological
variations or inherited geometry. Hence, the regional-scale correlation of structural fabrics among
different outcrops may be difficult. Moreover, similar deformation patterns may result from different
mechanisms that involve one or multiple deformation phases.
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Local or regional structures may be the result of distinct deformation phases, progressive
deformation, or a combination of the two [4]. Such complexities are often underestimated, whilst the
number of the locally observed foliations are typically uncritically appraised, and expanded to large
tectonic domains. Consequently, robust regional interpretations may become challenging. Therefore,
to reduce uncertainties, field analyses should precisely indicate how and where each structural fabric
occurs. Subsequently, a critical evaluation (i.e., a comparison with the other outcrops) should be
performed, with the main emphasis being put upon the determination of the temporal and spatial
variations of the deformation and the generating mechanisms [1,2,4].

In this paper, we present a field-based, structural analysis of the uppermost portion of the
paleo-accretionary wedge preserved in the Ligurian Alps. The Ligurian Alps are the southernmost
portion of the Alpine chain. They preserve a complete stratigraphic record of the European and oceanic
(Alpine Tethys) paleogeographic domains (Figure 1; [5–12]). In particular, the turbiditic covers of
the ophiolite sequences, namely the Helminthoid Flysch units, are well exposed in the outermost
part (SW) of the chain, thrust directly onto the foreland (Figure 2)—despite the fact that they were
detached from their innermost position (NE) in close vicinity to the subduction trench. Although the
absence of high-grade metamorphism is clear evidence of thin-skinned thrusting, the kinematic of
the translation and emplacement of the Helmintoid Flysch nappes is still poorly understood [8,10].
They show heterogeneous structural fabrics and both longitudinal and traversal geometric variations,
and therewith prevent a trivial kinematic interpretation. The data presented in this study allow the
linkage of the fabric and geometric heterogeneities to regional variations which can be integrated into
an evolutionary path that incorporates their variations in space and time.
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External (Provençal–Dauphinois, Helvetic and External Massifs) domains. The yellow box shows the 

location of the Helminthoid Flysch nappes (HF) above the Penninic Basal Contact (PBT). DB: Dent 

Blanche nappe (Austroalpine domain); E-U: Embrunais-Ubaye nappes; TH-M: Torino hill and 

Monferrato high; TPB: Tertiary Piedmont Basin. 

Figure 1. (a) Location of the study area. (b) Tectonic sketch of the Western and Ligurian Alps [12].
Tectonic units are grouped into Internal (Piedmont, Piedmont–Ligurian and Briançonnais) and External
(Provençal–Dauphinois, Helvetic and External Massifs) domains. The yellow box shows the location of
the Helminthoid Flysch nappes (HF) above the Penninic Basal Contact (PBT). DB: Dent Blanche nappe
(Austroalpine domain); E-U: Embrunais-Ubaye nappes; TH-M: Torino hill and Monferrato high; TPB:
Tertiary Piedmont Basin.
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Figure 2. Tectonic setting of the Ligurian Alps [6,8,12], showing the main paleogeographic domains
(Piedmont–Ligurian, Prepiedmont, Briançonnais and Dauphinois). The Helminthoid Flysch nappes
rest above the Briançonnais–Dauphinois boundary through the Penninic Basal Contact (PBC). PF:
Miocene-age Pietra di Finale deposits; Voltri indicates the Voltri Massif of the Piedmont–Ligurian
oceanic basement.

2. Geological Setting

The Helminthoid Flysch nappes represent the structurally topmost units of the Ligurian segment
of the Western Alps (Figure 1; [6,8,10]). The Alpine edifice is formed by imbricated tectonic units,
which are interpreted to be derived from the four main different paleogeographic domains: (1) the
Dauphinois, i.e., the proximal European margin; (2) and (3) the Briançonnais and Prepiedmont, the
outer and inner parts of the distal margin, respectively; and (4) the Piedmont–Ligurian, representing
the neo-Tethyan oceanic basin (Figure 2; [5–7,9,12]). The ensemble of the allochthonous domains 2, 3
and 4 is termed the Penninic domain.

The convergence between the Adriatic and European plates since the Late Cretaceous encompassed
the closure of the interposed Piedmont–Ligurian Ocean and the subduction–collision process during
Eocene–Oligocene times [5–7]. The oceanic basement, together with most of the Briançonnais terrane,
experienced HP metamorphic conditions during subduction [13–16], whereas the Pre-Piedmont units
and the oceanic sedimentary covers (i.e., the Helminthoid Flysch nappes) were obducted, recording
only epi- to anchi-metamorphism [12,17–20]. The present-day structure of the Ligurian Alps comprises
a tectonic pile that mainly preserves a geometric order that reflects the paleogeographic provenance of
the unit. The terranes derived from the oceanic basement–Piedmont –Ligurian presently occupy a
structurally higher and more inward (E or NE) position, whereas the Prepiedmont, Briançonnais and
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Dauphinois domains are progressively situated at a lower and more outwards (W or SW) position
(Figure 2).

The Dauphinois domain represents the autochthonous foreland onto which the other Penninic units
thrust along the so-called Penninic Basal Contact, here represented by the basal thrust of the Helminthoid
Flysch nappes [8,20–23]. However, striking to the structural position of the Piedmont–Ligurian
basement, the detached Helminthoid Flysch units are presently located in the outermost part of the
chain where they directly rest upon the Dauphinois domain, a structural position that highlights an
independent travel path during wedge translation.

Due to the subduction–collision processes, each tectonic unit experienced variable deformation and
metamorphism, which are traditionally classified into three major ductile phases (D1–3) that developed
in Eocene–Early Oligocene times [6,8]. Each phase is associated with a foliation (S1–3) and correlated
with an orogeny-scale geodynamic stage. A first phase (D1) is characterized by foreland-vergent (SW in
present-day coordinates) isoclinal or sub-isoclinal folding, nappe formation and thrusting [8,10,21–24].
A second phase (D2) is interpreted to have produced hinterland-vergent (NE) folding and back
thrusting [6,8,10,21,25]. It developed under decreasing metamorphic conditions during exhumation [25].
Instead, open chevron and kink folds are generally associated with a third ductile phase (D3), possibly
generating asymmetric dome-and-basin interference patterns [8,10,21,25]. Brittle deformation became
dominant since the upper Early Oligocene, when transtensional/transpressional fault systems, which
are associated with the rifting of the Liguro–Provençal basin and the Corsica–Sardinia drifting, induced
the ~50◦ Neogene rotation of the Ligurian and internal SW Alps [26–31]. The final emplacement of
the Helminthoid Flysch nappes is constrained between 34 and 28 Ma by means of zircon (U-Th)/He
absolute dating of the basal thrust [20].

The Helminthoid Flysch complex includes five tectonic elements. These are, from top to bottom:
the Sanremo, Moglio–Testico, Borghetto, Colla Domenica–Leverone and Albenga units (Figure 3).
The first four units consist of: 1) Lower–Upper Cretaceous “basal complexes” made up of thin-bedded
and very fine-grained turbidites. They often display chaotic texture defined by enveloping ophiolitic
blocks as part of a sedimentary mélange. The basal complexes are overlain by 2) Upper Cretaceous–Early
Eocene sand-rich- or calcareous turbidite systems [32–41]. Observable thickness of the units ranges
between 500 and 2000 m. The basal complexes are interpreted as representing abyssal plain sediments.
They are juxtaposed by thick-bedded siliciclastic or calcareous turbidites interpreted to be deposited
in a trench environment [36,37]. Detrital zircon U-Pb data [38,39] indicate a similar source for both
formations, compatible with the magmatic and metamorphic pulses recorded in the Variscan basements
of the paleo-European margin [42–46]. By contrast, the Albenga unit is made up of calcareous turbidites
that directly superimpose Late Jurassic radiolarites. They have been interpreted to represent a part of
the detached cover of the underlying Prepiedmont Arnasco–Castelbianco unit, which is the innermost
nappe that features a complete Triassic–Eocene succession. The Arnasco–Castelbianco unit marks the
transition between the oceanic domain (Piedmont–Ligurian) and the European distal margin [9,19,47].

With regard to the metamorphic grade, each flyschoid unit shows upwards-decreasing conditions,
even in the epizone to anchizone conditions [19]. Specifically, several paleothermal indicator analyses
performed on the Sanremo unit indicate a peak temperature of up to 200 ◦C, while hotter conditions
were attained in the cataclasites of the basal thrust [20].
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Figure 3. Simplified geological map of the Helminthoid Flysch nappes, from [32,37,40,41]. Location of
cross-sections are shown.

3. Methods

The study is based on structural investigations of three key geological cross-sections along SW–NE
transects (see Figure 3), which represent the inferred main tectonic transport direction. These sections
have been selected, since they represent the main geometrical and deformation features of the studied
units. We performed field analyses on the regional topographic maps of the Liguria and Piedmont
Regions, at a 1:10,000 scale. The structural data and observations have been transferred on a Geographic
Information System (GIS)-based storage (QGis). Sections and figures were built or modified using
Adobe Illustrator. Stereonet plots were computed using Stereonet3D [48].

4. Results

The structure of the Helminthoid Flysch nappes is described along three geological cross-sections
running perpendicular to the main thrust and fold axes mapped in the field:

4.1. Cross-Section A-A’

Section A-A’ crosses the northern sector occupied by the Helminthoid Flysch complex (Figures 3
and 4), which is here exclusively represented by the uppermost tectonic element, the Sanremo
unit. It consists of mainly NE-dipping beds (Figure 4) of reddish or grayish pelites to fine-grained
arenites (San Bartolomeo Formation, which is part of the basal complex), which are overlain by
partly heteropic quartz–feldspatic arkoses (Bordighera Sandstones) and calcareous turbidites (Sanremo
Formation) [34,37,49]. They are intensively folded in south-west-verging. Recumbent. subisoclinal
folds with axes plunging toward the SE or NW (Figure 5a,b). These are associated with a discrete axial
plane cleavage (Figure 5b) and several generations of fractures filled by calcite veins. Deformation
in the pelitic basal complex shows disharmonic folding with axes plunging mainly toward the SE.
The Sanremo unit is separated from the underlying Dauphinois domain by the thick thrust zone of the
Penninic Basal Thrust [10,20], which is characterized by a wide damage zone (up to 1 km) developed
both in the hanging wall (Sanremo unit) and the footwall, here represented by the Late Eocene–Early
Oligocene siliciclastic turbidites of the Flysch Noir [40,41,50]. Minor fault zones subparallel to the
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main thrust displaying an en-echelon array of veins also occur. Moving towards NE, the Sanremo unit
shows a steep and overturned thrust contact with the Briançonnais Cretaceous calcschists (Figure 4).
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Figure 5. Deformation features from cross-section A-A’. Sub-isoclinal folding of the carbonate turbidites
(A) and pelite basal complex (B) in the Sanremo unit. Rocks from the Sanremo unit show a single
foliation (B,C), whereas the Briançonnais calcschists show two overlapping foliations with different
orientations (C,D).
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This contact shows a clear inversion of the geometric relationships between the Helminthoid
Flysch and the Briançonnias (Ormea unit; [8,51–53]), and marks an abrupt change of the structural fabric.
In fact, despite both the basal pelites and the sandstones of the Sanremo unit showing only one single
foliation, the Briançonnais rocks locally display two overlapping foliations (S1 and S2; Figure 5c,d). Two
distinct penetrative foliations are reported from all sectors of the Ligurian Briançonnais [6,8,10,24,51–53].
In the examined area, S2 appears as a crenulation of a previous foliation associated with the folding
of the stratigraphic layering (Figure 5d). In the Briançonnais sector, attitudes of both S1 and S2 dip
towards the SW or the NE, while the Sanremo unit displays a single (S1), less steep NE dipping
(Figure 4).

Overall, the mapped stratigraphic boundaries, the fabrics measurements, and the mesoscale folds
depict a main recumbent SW-verging fold, which has been reshaped by an upright fold that caused
an apparent double vergence of the structures, as well as the overturning of the thrust between the
Sanremo unit and the Briançonnais (Figure 4).

4.2. Cross-Section B-B’

Moving towards the SE, section B-B’ resumes the structure of the central part of the Helminthoid
Flysch nappes (Figures 3 and 6). The outer (SW) part of the section is similar to the previous one,
showing the thrust of the Sanremo unit above the Flysch Noir of the Dauphinois domain (see [24]
for a complete description). In addition, the deformation features are almost identical, with intense
kink to tight folding associated with one axial plane foliation in the calcareous and siliciclastic
turbidites of the Sanremo unit (Figure 7a). The pelites of the basal complex again display constant
SW-verging disharmonic folding (Figure 7b). Northeastward, the thrust between the Sanremo unit
and the Moglio–Testico unit is still overturned [35]. The turbidites of the Moglio–Testico unit consist
of a dominantly overturned, thin-bedded pelitic-arenaceous sequence, characterized by intense
SW-plunging folding, strongly crenulated and sheared, but maintaining the same SW-ward kinematic
(Figure 7c). However, a second, overprinting foliation is manifested by the SW dipping thin shear zone
with reversal movement (top-to-NE), locally cross-cutting the earlier SW-vergent folds (Figure 7c).
Moving towards NE, extensive basal complex outcrops, exhibiting chaotic features and characterized
by abundant ophiolitic olistostromes, occur. Because of the lack of an overlying turbiditic sequence, its
attribution to a unit is difficult, although they appear to resemble the deformational features of the
Moglio–Testico sediments. Finally, calcschists and limestones of the Briançonnais Ormea unit show
well-developed minor isoclinal folds associated with a normal limb of a mega SW-verging recumbent
fold (Figure 7d), which is locally sheared and/or refolded by steeply dipping reverse faults or upright
folds associated with a second foliation (S2). In the sector occupied by the Moglio–Testico and the
Briançonnais rocks, S1 and S2 have similar attitudes, either NE or SW dipping, whereas the Sanremo
unit still shows a single NE dipping foliation (Figure 6).

Overall, the general interpretation of the cross-section B-B’ shows: (i) a western sector characterized
by a single foliation and a single tectonic transport towards SW, and (ii) a more complex, apparently
double vergent (SW and NE), eastern sector, consisting of a main, south-dipping mega-fold that
involves the Briançonnais and the internal flysch nappes.
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Figure 7. Deformation features from cross-section A-A’. Chevron folding of the calcareous San Remo
Flysch turbidites (A) and disharmonic folding of the pelitic basal complex (B) of the Sanremo unit.
Thin-bedded, mainly overturned, arenaceous-pelitic turbidites of the Moglio–Testico unit which show:
(i) southwest dipping and verging isoclinal folding strongly crenulated and veined and (ii) high-angle,
top-to-NE or -SW shear zones (C). SW-verging sub-isoclinal recumbent folds in the Briançonnais
limestones (D).
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4.3. Cross-Section C-C’

Cross-section C-C’ runs close to the maximum map extension of the Helminthoid Flysch (Figure 3).
It intersects all of the Helminthoid Flysch units, including, from NE to SW: the Albenga, Colla
Domenica–Leverone, Borghetto, Moglio–Testico and Sanremo units (Figure 8). The frontal thrust
cannot be seen here, as it occurs offshore. The Sanremo unit displays recumbent chevron folds, which
dominantly affect the thick calcareous turbiditic strata (Figure 9a,b). These folds are always associated
with one foliation, highlighted by a slaty cleavage in the fine pelites or marls, turning into a spaced
disjunctive cleavage in the more competent limestones or calcareous sandstones (Figure 9c). The thrust
surface that separates the Sanremo from the Moglio–Testico unit is generally steep, and in parts
overturned, resulting in a local geometric inversion of the two nappes (Figure 9d; [54]). The more
internal nappes (Albenga, Colla Domenica–Leverone, Borghetto and Moglio–Testico units) share a
different deformation fabric. Here SW-verging and -plunging subisoclinal folds (Figure 9d) show
abundant parasitic folds, crenulation, calcite-filled veining and synthetic shear zones (Figure 9e).
These folds are often cut by high-angle reverse faults (with a mainly top-to-NE sense of shear), as those
described in the section B-B’ (Figure 9e–f). Overall, except for the Sanremo unit, all of the internal flysch
units, as well as the neighboring Prepiedmont Arnasco–Castelbianco unit, are structured as SW-verging
and south-plunging mega-folds (Figure 8; [55]). The latter presumably represents the original basement
of the Albenga flysch, which was detached during the Alpine phases. The Arnasco–Castelbianco
unit forms a km-scale, SW-dipping fold that shows a thin and delaminated normal limb, while the
overturned limb is widely exposed (Figure 8; [55]). The general structure of the cross-section C-C’ is
quite similar to the sections A-A’ and B-B’. S2 foliations are less developed, as also testified by minor
evidence of the refolding of the main, southwest-dipping structure (Figure 8).
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Figure 9. Deformation features from cross-section C-C’. Chevron folding of the carbonate turbidites
in the Sanremo unit (A–C). The overturned geometry of the contact between the Borghetto and
Moglio–Testico boundary (D). Foreland-dipping folds strongly crenulated and veined and associated
synthetic shear zones (E). Top-to-NE brittle shear zones in the Moglio–Testico turbidites (F).

5. Discussion

5.1. Helminthoid Flysch Deformation Pattern

The structural dataset of the examined area allows researchers to evaluate the robustness of the
correlations among subareas, facilitating considerations about the different fabric orientation, style
and kinematics.

Bedding attitudes (S0) in the Sanremo unit display mostly uniform, NE-dipping folds characterized
by steeper overturned limbs associated with a single foliation (S1) throughout the studied area.
This foliation is defined by an axial plane cleavage that varies from a slaty cleavage in the pelites
towards a disjunctive cleavage in the more competent layers. Related fold styles are chevron to
subisoclinal, with a decreasing apical angle towards the northern sectors (Section A-A’). The pelitic
composition of the basal complex triggered disharmonic folding and enhanced shearing under the
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same kinematic. Generally, folds show a constant asymmetry that suggests a tectonic transport towards
SW, associated with a unique, progressive deformation (D1).

This is in agreement with the kinematic data from the genetically associated, underlying
Penninic Basal Contact, where the Penninic wedge was translated from the hinterland towards
the foreland [6,8,10,20,36]. This relatively simple fabric suddenly develops into more complex features,
just across the bounding contact between of the Sanremo unit and the more internal flysch units
or Briançonnais rocks. The internal Helminthoid Flysch nappes (Moglio–Testico, Borghetto, Colla
Domenica–Leverone and Albenga) still show mainly SW-verging folds, but with markedly different
fabric, characterized by abundant parasitic folds, folded veins, synthetic shear zones, crenulation
cleavage and down-dip attitude (Figure 7b,c and Figure 8e,f). The recognition of some of these
characteristics (i.e., a crenulation cleavage, folded veins and rare NE-ward fold asymmetry) have been
commonly used as evidence of a second deformation phase (D2) superimposed onto the first one.

Nonetheless, most of the structures showing the deviating kinematic are strictly local, without
any significant areal distribution. They are not associated with a foliation crosscutting an earlier
one. These structures cannot be related to different kinematics, variation in the stress-field, nor
to any change in metamorphic conditions. In fact, the stress orientation is generally an unknown
parameter where strain is high; the fold orientation is largely controlled by the orientation of preexisting
fabric and strain. Furthermore, local deviations of any sense of shear are more easily produced by
wrench-components, rotation or pre-folding irregularities; finally a secondary cleavage commonly
develops during progressive shearing in heterogeneous lithologies [4]. We must also stress that most of
these structures show a regionally distributed top-to-SW sense of shear associated with coherent large
folds. Therefore, there is no reason to invoke a different deformation phase to justify the presence of
such complexities. Rather, the fold patterns depict noncylindrical geometries and the observed oblique
fabrics suggest that noncoaxial progressive deformation [4] accumulated for some long time under a
constant kinematic towards SW. We interpret the observed complex features as mainly being derived
from the lithological and rheological heterogeneities related to the close alternation of competent and
weak layers. Local variations of mechanical properties generate different responses to the imposed
stress, and thus develop structures with different shapes and orientations.

On the contrary, the steeply dipping shear zones with both a top-to-NE and top-to-SW sense of
shear that cross-cut the main folds (Figures 7c and 8f) are related to upright folds or high-angle shear
zones that reshape the km-scale recumbent SW-verging nappes (Figures 4, 6 and 8). As the related
fabric often displays different orientation, foliation and style, it has been grouped into a second foliation
S2. This deformation fabric is furthermore associated with the steepening or overturning of the thrust
surface between the Sanremo unit and the other Penninic units (Figures 4, 6 and 8). However, it should
be noted that, in the field, S1- and S2-related fold asymmetry or overlapping foliations are difficult
to discriminate, although in literature the SW- or NE-ward asymmetry has been widely used as the
main criterion to discern between the two foliations, and consequently, between different deformation
phases (D1 and D2). S2 fabric is bordered in the internal Flysch nappes and Briançonnais, whereas the
Sanremo unit lacks any evidence of a different foliation. We further emphasize that, even in the internal
part of the chain, clear S1–S2 occurrences are rare or ambiguous. Based on these considerations, we
suggest that the S2 fabric was the result of the progressive evolution of the S1, which acquired different
shapes in different domains of the orogen. Therefore, from a structural point of view, we cannot
extrapolate a well-defined fabric characterizing a second deformation phase (D2) chronologically
separated from the first one. No evidence of a third, ductile deformation phase has been found, neither
as foliation nor as fold/fault structures.

In summary, the Sanremo unit experienced a different deformation history with respect to the
other Helminthoid Flysch units, although they should share most of the translation path from the
oceanic basin towards the Alpine wedge. In the following, we propose a kinematic model describing
the emplacement of the Helminthoid Flysch in the Ligurian orogeny. The recognized deformation
stages are then critically evaluated in relation to the geodynamic stages.



Geosciences 2020, 10, 26 12 of 17

5.2. Kinematic Model

After their deposition in the Alpine Tethys oceanic environment [33–37], and as a consequence
of the northward Adria movement, the Helminthoid Flysch, started to be incorporated into the
accretionary prism in the uppermost Cretaceous–Paleocene (Figure 10a) ([7,9,36]. The Sanremo unit
was the first to be accreted, as it occupied the innermost (southern) position. Micropaleontological
data indicate an Early Eocene age for the turbidites of the Colla Domenica–Leverone and Albenga
units [49,52]. As they were located at the transition between the oceanic realm and the European distal
margin [9,19], this age constrains the involvement of all the Helminthoid Flysch nappes in the orogenic
wedge since the Middle Eocene (Figure 10b). In these times, the oceanic basement and the internal
portion of the Briançonnais experienced subduction-related deformation and metamorphism [6,13–16].

In the Late Eocene, high-pressure rocks were exhumed in the inner sector of the orogen (South), as
constrained by thermochronometric dating and the Early Oligocene age of the post-collisional sediment
of the Tertiary Piedmont Basin [18,56,57]. At this time, the Helminthoid Flysch nappes represented the
orogenic lid, resting above the rest of the Penninic units. Contemporaneously, in the outer part of the
growing orogenic chain, the Alpine Foreland Basin succession was deposited between the outermost
Briançonnias and the Dauphinois domains [31,32,58,59]. The top of its siliciclastic turbidite sequence,
the Flysch Noir, is characterized by the abundant olistostromes sourced from the Cretaceous carbonate
turbidites of the Helminthoid Flysch [24,32,60]. The Late Priabonian–Early Oligocene age of this layer
provides constraints for the arrival of the Sanremo unit, the emplacement of which marked the end of
the deposition. Zircon (U-Th)/He dating between 34 and 28 Ma of the thrust activity [20] confirms
that the Helminthoid Flysch bypassed—from south to north—the rest of the tectonic pile during
the Late Eocene. This would suggest that, by this time, the flysch units accomplished the reversal
of their original paleogeographic setting. In particular, the innermost Sanremo unit was translated
towards the outermost position. In order to fit such a timing and geometry, four out-of-sequence
thrusting steps (progressively younger from north to south) must be introduced (Figure 10c,d). This
kinematic produced the foreland-dipping nappes that characterize the internal Flysch units, as well as
the Arnasco–Castelbianco Prepiedmont unit [55]. The preserved small fragments of the normal limb of
this last unit could derive from an enhanced shearing of the flysch units translating above it. Overall,
the km-scale, SW-verging and -plunging recumbent folds of the Helminthoid Flysch associated with
the S1 formed during this subduction-related geodynamic setting (D1 [6,8,10,53]).

In the Early Oligocene times, the subduction dynamic turns towards collision between Adria
and Europe. Furthermore, the motion vector of the Adriatic microplate (with respect to Europe)
changed from northward to northwest-ward [61,62]. In the Western Alps that comprise the Ligurian
segment, the indentation of the Ivrea body generates backfolding and backthrusting in the inner
zone of the orogeny (e.g., [5–8,62,63]). In the area examined in this work, however, the associate D2
deformation features are weak and restricted to the internal flysch units, whereas the Sanremo nappe
seems to have escaped this deformation. As the Sanremo unit was already emplaced in the outer
sector of the chain, the frontal flexure of the European plate continued to migrate northwestward in
Early-Late Oligocene times as recorded by the migrating Alpine Foreland Basin (Figure 10e). The inner
orogeny instead experienced a thickening of the orogenic wedge and the development of substantial
topographic relief which represented the source area of the retro-foreland Tertiary Piedmont Basin.
This collision-related geodynamic setting (D2 [6,8,10,53]) justifies the compartmentalization of the
deformation. The reshaping of the SW-plunging structure by S2-related upright folds and sub-vertical
shear zones developed above the deep collision between the Ivrea body and the European basement
(internal zones), whereas the foreland records only the outward propagation of the deformation.

Since the Late Oligocene, the transtensional regime was generated ahead of the apical closure of the
Liguro–Provençal rifting, connecting the opposite movements of the Alpine and Apennines arcs. Since
the Early Miocene, the oceanic spreading of the Liguro–Provençal and Tyrrhenian basins produced the
counterclockwise rotation of the Ligurian segment and the Corsica–Sardinia drifting [28,29].
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6. Conclusions

Field-based structural investigations of the Helminthoid Flysch nappes of the Ligurian Alps
reveal important strain partitioning at the orogeny scale. Heterogeneous fabrics characterize units
that share the same paleogeographic provenance and similar lithostratigraphy derived from the
common pre-collisional flysch-type sedimentation in the Alpine Tethys oceanic environment. However,
correlations among different cross-sections expose contrasting deformation patterns between the
topmost and outermost nappe (the Sanremo unit) and the rest of the flysch units (Moglio–Testico,
Borghetto, Colla Domenica–Leverone and Albenga). The traditional description of the Alpine
deformation through three phases is critically evaluated and reinterpreted based on field evidences
and regional correlations. Spatial and temporal variations of the deformation features allow the
introduction of a kinematic model that justifies the present-day position of the Helminthoid Flysch
nappe in the outermost part of the chain.
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