Characterization of Organic Matter of the Laptev Sea Eroded Coastal Sediments: A Case Study from the Cape Muostakh, Bykovsky Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Grain Size and Mineralogical Analysis
2.4. Rock-Eval Analysis
2.5. Stable Isotope Analysis (δ13C)
2.6. Biomarker Analysis: Solvent Extractable Lipids
2.7. Biomarker Analysis: Non-Extractable Organic Components (NEOC)
3. Results and Discussion
3.1. Characterization of the Profile on a Bulk Level
3.1.1. Grain Size and Mineral Composition
3.1.2. Sedimentary Organic Matter Characterization
3.2. Composition and Sources of the Extractable Organic Matter
3.3. Non-Extractable Organic Components (NEOC) of the Sediments
3.4. Analysis of the Results by the Principal Component Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Semiletov, I.; Pipko, I.; Gustafsson, Ö.; Anderson, L.G.; Sergienko, V.G.; Pugach, S.; Dudarev, O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Tesi, T.; Semiletov, I.; Hugelius, G.; Dudarev, O.; Kuhry, P.; Gustafsson, O. Composition and fate of terrigenous organic matter along the Arctic land−ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes. Geochim. Cosmochim. Acta 2014, 133, 235–256. [Google Scholar] [CrossRef]
- Tesi, T.; Semiletov, I.; Dudarev, O.; Andersson, A.; Gustafsson, Ö. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East-Siberian shelf seas. J. Geophys. Res. Biogeosci. 2016, 121, 731–752. [Google Scholar] [CrossRef]
- Bröder, L.; Tesi, T.; Salvado, J.A.; Semiletov, I.P.; Dudarev, O.V.; Gustafsson, Ö. Fate of terrigenous organic matter across the Laptev sea from the mouth of the Lena River to the deep sea of the Arctic interior. Biogeosciences 2016, 13, 5003–5019. [Google Scholar] [CrossRef] [Green Version]
- Bröder, L.; Tesi, T.; Andersson, A.; Semiletov, I.; Gustafsson, Ö. Bounding the role of cross-shelf transport and degradation in land-ocean carbon transfer. Nat. Commun. 2018, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Sánchez-García, L.; van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012, 489, 137–140. [Google Scholar] [CrossRef]
- Grigoriev, M.N.; Vasiliev, A.A.; Rachold, V. Siberian Arctic Coasts: Sediment and Organic Carbon Fluxes in Connection with Permafrost Degradation, 2004 Fall Meeting; American Geophysical Union: St. Francisco, CA, USA, 2004; Volume 85. [Google Scholar]
- Semiletov, I.P. Destruction of the coastal permafrost ground as an important factor in biogeochemistry of the Arctic Shelf waters. Trans. (Dokl.) Russ. Acad. Sci. 1999, 368, 679–682. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fritz, M.; Vonk, J.; Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 2017, 7, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Günther, F.; Overduin, P.; Baranskaya, A.; Opel, T.; Grigoriev, M. Observing Muostakh Island disappear: Erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf. Cryosphere 2013, 7, 4101–4176. [Google Scholar]
- Günther, F.; Overduin, P.; Sandakov, A.V.; Grosse, G.; Grigoriev, M.N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 2013, 10, 4297–4318. [Google Scholar] [CrossRef] [Green Version]
- Are, F.E. Thermo-Abrasion of Sea Coasts; Nauka: Moscow, Russia, 1980; 159p. (In Russian) [Google Scholar]
- Karlsson, E.S.; Charkin, A.; Dudarev, O.; Semiletov, I.; Vonk, J.E.; Sanchez-Garcia, L.; Andersson, A. Carbon isotopes and lipid biomarker investigation of sources, transport, and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev sea. Biogeosciences 2011, 8, 1865–1879. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.; Schirrmeister, L.; Mangelsdorf, K.; Eichhorn, L.; Wetterich, S.; Herzschuh, U. Organic matter quality of deep permafrost carbon—A study from Arctic Siberia. Biogeosciences 2015, 12, 2227–2245. [Google Scholar]
- Kusch, S.; Winterfeld, M.; Mollenhauer, G.; Höfle, S.T.; Schirrmeister, L.; Schwamborn, G.; Rethemeyer, J. Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Org. Geochem. 2019, 136, 103888. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, V.; Abakumov, E.V. Humic acids isolated from selected soils from the Russian Arctic and Antarctic: Characterization by two-dimensional 1H- 13C HETCOR and 13C CP/Mas NMR Spectroscopy. Geosciences 2020, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Zherebker, A.; Podgorski, D.C.; Kholodov, V.; Orlov, A.A.; Yaroslavtseva, N.V.; Kharybin, O. The molecular composition of humic substances isolated from yedoma permafrost and alas cores in the eastern Siberian Arctic as measured by ultrahigh resolution mass spectrometry. J. Geophys. Res. Biogeosci. 2019, 124, 2432–2445. [Google Scholar] [CrossRef]
- Heslop, J.K.; Winkel, M.; Walter Anthony, K.M.; Spencer, R.G.M.; Podgorski, D.C.; Zito, P.; Kholodov, A.; Zhang, M.; Liebner, S. Increasing organic carbon biolability with depth in Yedoma permafrost: Ramifications for future climate change. J. Geophys. Res. Biogeosci. 2019, 124, 2021–2038. [Google Scholar] [CrossRef]
- Yershov, E. (Ed.) Geocryology of the USSR; Nedra: Moscow, Russia, 1989; pp. 1–5. [Google Scholar]
- Grigoriev, M.N.; Kunitsky, V.V.; Chzhan, R.V.; Shepelev, V.V. On the variation in geocryological, landscape and hydrological conditions in the Arctic zone of East Siberia in connection with climate warming. Geogr. Nat. Resour. 2009, N2, 5–12. [Google Scholar] [CrossRef]
- Schirrmeister, L.; Schwamborn, G.; Overduin, P.P.; Strauss, J.; Fuchs, M.C.; Grigoriev, M. Yedoma Ice Complex of the Buor Khaya Peninsula. Biogeosciences 2017, 14, 1261–1263. [Google Scholar] [CrossRef] [Green Version]
- Bish, D.L.; Post, J.E. Quantitative mineralogical analysis using the Rietveld fullpattern fitting method. Am. Mineral. 1993, 78, 932–940. [Google Scholar]
- Taylor, J.C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffract 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Hillier, S. Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). Int. Assoc. Sedimentol. Spec. Publ. 2003, 34, 213–251. [Google Scholar]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 Applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Behar, F.; Beaumont, V.; Penteado, H.L.B. Rock-Eval 6 Technology: Performance and Developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Stapel, J.G.; Schwamborn, G.; Schirrmeister, L.; Horsfield, B.; Mangelsdorf, K. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences 2018, 15, 1969–1985. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Semiletov, I.; Gustafsson, Ö.; Ingri, J.; Andersson, P.; Dudarev, O.; White, D. Characterization of Siberian Arctic coastal sediments: Implication for terrestrial organic carbon export. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Guo, L.; White, D.M.; Xu, C.; Santschi, P.H. Chemical and isotopic composition of high-molecular -weight dissolved organic matter from the Mississippi River plume. Mar. Chem. 2009, 114, 63–71. [Google Scholar] [CrossRef]
- White, D.; Beyer, L. Pyrolysis-gas chromatography/mass spectrometry and pyrolysis-gas chromatography/flame ionization detection analysis of three Antarctic soils. J. Anal. Appl. Pyrolysis 1999, 50, 63–76. [Google Scholar] [CrossRef]
- Sparkes, R.B.; Selver, A.D.; Gustafsson, Ö.; Semiletov, I.P.; Haghipour, N.; Wacker, L.; Eglinton, T.I.; Talbot, H.M.; van Dongen, B.E. Macromolecular composition of terrestrial and marine organic matter in sediments across the East Siberian Arctic Shelf. Cryosphere 2016, 10, 2485–2500. [Google Scholar] [CrossRef] [Green Version]
- Chuvilin, E.M.; Bukhanov, B.A.; Tumskoy, V.E.; Shakhova, N.E.; Dudarev, O.V.; Semiletov, I.P. Thermal conductivity of bottom sediments in the region of Buor-Khaya Bay (Shelf of the Laptev Sea). Earth Cryosphere 2013, 17, 32–40. [Google Scholar]
- Pizhankova, E.I. Thermodenudation in the coastal zone of the Lyakhovsky Island (interpretation of aerospace images). Earth Cryosphere 2011, 15, 61–70. [Google Scholar]
- Tumskoy, V.E. Peculiarities of cryolithogenesis in Northern Yakutia (middle Neopleistocene to Holocene). Earth Cryosphere 2012, 16, 12–21. [Google Scholar]
- Grigoriev, M.N.; Kunitsky, V.V. Ice complex of the Arctic coasts of Yakutia as a sediment source on the continental shelf. In Hydrometeorological and Biogeochemical Research in the Arctic Region; Vladivostok Dalnauka Press, Arctic Regional Centre: Vladivostok, Russia, 2000; Volume 2, pp. 109–116. [Google Scholar]
- Melenevskii, V.N.; Leonova, G.A.; Konyshev, A.S. The organic matter of the recent sediments of Lake Beloye, West Siberia (from data of pyrolytic studies). Russ. Geol. Geophys. 2011, 52, 583–592. [Google Scholar] [CrossRef]
- Melenevskii, V.N.; Saraev, S.V.; Kostyreva, E.A.; Kashirtsev, V.A. Diagenetic transformation of organic matter of the Holocene Black Sea sediments according to pyrolysis data. Russ. Geol. Geophys. 2017, 58, 225–239. [Google Scholar] [CrossRef]
- Slagoda, E.A. Cryolithogenic Deposits of the Laptev Sea Coastal Plain: Lithology and Micromorphology; Publishing and Printing Centre «Express»: Tyumen, Russia, 2004; 119p. (In Russian) [Google Scholar]
- Galimov, E.M.; Kodina, L.A. Study of Organic Matter and Gases in Sedimentary Strata of the World Ocean; Nauka Press: Moscow, Russia, 1982; 228p. (In Russian) [Google Scholar]
- Goncharov, I.V. Oil Geochemistry in West Siberia; Nauka Press: Moscow, Russia, 1987; 125p. (In Russian) [Google Scholar]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide, 2nd ed.; Part I, Biomarkers and Isotopes in the Environmental and Human History and Part II Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Dudarev, O.V.; Charkin, A.N.; Shakhova, N.E.; Mazurov, A.K.; Semiletov, I.P. Modern Litomorphogenesis on the Eastern Arctic Shelf of Russia; Tomsk Polytechnic University Press: Tomsk, Russia, 2016; 192p. [Google Scholar]
- Petrova, V.I.; Batova, G.I.; Kursheva, A.V.; Litvinenko, I.V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 2010, 51, 88–97. [Google Scholar] [CrossRef]
- Van Dongen, B.E.; Semiletov, I.P.; Weijers, J.W.H.; Gustafsson, Ö. Contrasting lipid biomarker composition of terrestrial organic matter exported from across the Eurasian Arctic by the five great Russian Arctic rivers. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Grinko, A.A.; Goncharov, I.V.; Shakhova, N.E.; Gustafsson, Ö.; Oblasov, N.V.; Romankevich, E.A.; Zarubin, A.G.; Kashapov, R.S.; Chernykh, D.V.; Gershelis, E.V.; et al. Sediment organic matter in areas of intense methane release in the Laptev Sea: Characteristics of Molecular Composition. Russ. Geol. Geophys. 2020, 61, 456–477. [Google Scholar]
- Vetrov, A.A.; Romankevich, E.A. The Organic Carbon Cycle in the Russian Arctic Seas; Springer: Berlin, Germany, 2004; 331p. [Google Scholar]
- Damste, J.S.S.; Rijpstra, W.I.S.; Coolen, M.J.L.; Schouten, S.; Volkman, J.K. Rapid sulfurization of highly isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica. Org. Geochem. 2007, 38, 128–139. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Damste, J.S.S.; Kohnen, M.E.L.; de Leeuw, J.W. Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochim. Cosmochim. Acta 1995, 59, 521–533. [Google Scholar] [CrossRef]
- Fubara, E.P.; Ekpo, B.O.; Ekpa, O.D.; Marynowski, H.L. Predominances and source implications of even n-alkenes in surface sediments from coastal areas of Niger Delta, Nigeria. Int. J. Basic Appl. Sci. 2012, 12, 68–79. [Google Scholar]
- Grimalt, J.O.; Albaigés, J. Characterization of the depositional environments of the Ebro Delta (western Mediterranean) by the study of sedimentary lipid markers. Mar. Geol. 1990, 95, 207–224. [Google Scholar] [CrossRef]
- Volkman, J.K.; Barrett, S.M.; Blackburn, S.I.; Mansour, M.P.; Sikes, E.L.; Gelin, F. Microalgal biomarkers: A review of recent research developments. Org. Geochem. 1998, 29, 1163–1179. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Y.; Liu, Z.; Chen, X.; Yu, J.; Di, X.; Jin, M. Long-chain n-alkenes in recent sediment of Lake Lugu (SW China) and their ecological implications. Limnologica 2015, 52, 30–40. [Google Scholar]
- Jongejans, L.L.; Mangelsdorf, K.; Schirrmeister, L.; Grigoriev, M.N.; Maksimov, G.M.; Biskaborn, B.K.; Grosse, G.; Strauss, J. N-alkane characteristics of thawed permafrost deposits below a thermokarst lake on Bykovsky peninsula, Northeastern Siberia. Front. Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Sanchez-Garcia, L.; Vonk, J.E.; Charkin, A.N.; Kosmach, D.; Dudarev, O.V.; Semiletov, I.P.; Gustafsson, Ö. Characterization of three regimes of collapsing Arctic Ice Complex Deposits on the SE Laptev Sea Coast using biomarkers and dual carbon isotopes. Permafr. Periglac. Process. 2014, 25, 172–183. [Google Scholar] [CrossRef]
- Gelpi, E.; Oró, J.; Shcneider, H.J.; Bennett, E.O. Olefins of high molecular weight in two microscopic algae. Science 1986, 161, 700–702. [Google Scholar] [CrossRef]
- Antipenko, V.R. Thermal Transformations of High-Sulfur Natural Asphaltite: Geochemical and Technological Aspects; Nauka Press: Novosibirsk, Russia, 2013; 184p. (In Russian) [Google Scholar]
- Ellis, L.; Langworthy, T.A.; Winans, R.E. Occurrence of phenylalkanes in some Australian crude oils and sediments. Org. Geochem. 1996, 24, 57–69. [Google Scholar] [CrossRef]
- Ellis, L.; Winans, R.E.; Langworthy, T.A. Biological sources for phenylalkane hydrocarbons. In Proceedings of the 212th ASC National Meeting, Orlando, FL, USA, 25–30 August 1996. [Google Scholar]
- Eganhouse, R.P. Long-chain alkylbenzenes: Their analytical chemistry, environmental occurrence and fate. Int. J. Enviromental Anal. Chem. 1986, 26, 241–263. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Schaffner, C.; Giger, W. Polycyclic aromatic hydrocarbons in Recent lake sediment—I. Compounds having anthropogenic origins. Geochim. Cosmochim. Acta 1980, 44, 403–413. [Google Scholar] [CrossRef]
- Bendoraitis, J.G. Hydrocarbon of Biogenic Origin in Petroleum-Aromatic Triterpenes and Bicyclic Sesquiterpenes; Tissot, B., Biener, F., Eds.; Editions Technip; Advances in Organic Geochemistry: Paris, France, 1974; pp. 209–224. [Google Scholar]
- Wakeham, S.G.; Schaffner, C.; Giger, W. Polycyclic aromatic hydrocarbons in Recent lake sediment—II. Compounds derived from biogenic precursors during early diagenesis. Geochim. Cosmochim. Acta 1980, 44, 415–429. [Google Scholar]
- Marinovski, L.; Pieta, M.; Janeczek, J. Composition and source of polycyclic aromatic compounds in deposited dust from selected sites around the Upper Silesia, Poland. Geol. Q. 2004, 48, 169–180. [Google Scholar]
- Petrova, V.I.; Batova, G.I.; Kursheva, A.V.; Litvinenko, I.V.; Savinov, V.M.; Savinova, T.N. Geochemistry of polycyclic aromatic hydrocarbons in the bottom sediments of the eastern Arctic shelf. Oceanology 2008, 48, 196–203. [Google Scholar] [CrossRef]
- Fukushima, K.; Ishiwatari, R. Acid and alcohol compositions of wax esters in sediments from different environments. Chem. Geol. 1984, 47, 41–56. [Google Scholar] [CrossRef]
- Prahl, F.G.; Pinto, L.A. A geochemical study of long-chain n-aldegydes in Washington coastal sediments. Geochim. Cosmochim. Acta 1987, 51, 1573–1582. [Google Scholar] [CrossRef]
- Guang-Guo, Y.; Pu, F. Origin of ketones in sediments of Qinghai Lake. Sci. China Chem. 1993, 36, 237–241. [Google Scholar]
- Volkman, J.K.; Gillan, F.T.; Johns, R.B.; Eglinton, G. Sources of neutral lipids in a temperate intertidal sediment. Geochim. Cosmochim. Acta 1981, 45, 1817–1828. [Google Scholar] [CrossRef]
- Cranwell, P.A.; Egliton, G.; Robinson, N. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org. Geochem. 1987, 11, 513–527. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Mead, R.; Peralba, M.C.; Jaffe, R. Origin and transport of n-alkane-2-ones in a subtropical estuary: Potential biomarkers for seagrass-derived organic matter. Org. Geochem. 2001, 32, 21–32. [Google Scholar] [CrossRef]
- Wenchuan, Q.; Dickman, M.; Sumin, W.; Ruijin, W.; Pingzhong, Z.; Jianfa, C. Evidence for an aquatic plant origin of ketones found in Taihu Lake sediments. Hydrobiologia 1999, 397, 149–154. [Google Scholar] [CrossRef]
- Rieley, G.; Collier, R.J.; Jones, D.M.; Eglinton, G. The biogeochemistry of Ellesmere Lake, U.K.-I: Source correlation of leaf wax inputs to the sedimentary lipid record. Org. Geochem. 1991, 17, 901–912. [Google Scholar] [CrossRef]
- Vonk, J.E.; Sánchez-García, L.; Semiletov, I.; Dudarev, O.; Eglinton, T.; Andersson, A.; Gustafsson, Ö. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 2010, 7, 3153–3166. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Guo, L.; Dou, F.; Ping, C.-L. Potential DOC production from size-fractionated Arctic tundra soils. Cold Reg. Sci. Technol. 2009, 55, 141–150. [Google Scholar] [CrossRef]
- Sparkes, R.B.; Dogrul Selver, A.; Bischoff, J.; Talbot, H.M.; Gustafsson, Ö.; Semiletov, I.P.; Dudarev, O.V.; van Dongen, B.E. GDGT distributions on the East Siberian Arctic Shelf: Implications for organic carbon export, burial and degradation. Biogeosciences 2015, 12, 3753–3768. [Google Scholar] [CrossRef] [Green Version]
Rock-Eval Parameters | δ13C, ‰ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Cliff Level, m | TOC,% wt. | S1 2 | S2 2 | S3 3 | HI 4 | OI 5 | MinC,% wt. | Tmax, °C | IDM 1 | |
21.5 | 21.5 | 34.15 | 36.13 | 104.94 | 70.34 | 307 | 211 | 1.61 | 322 | 0.52 | −28.1 |
20 | 20 | 5.35 | 5.20 | 15.74 | 6.78 | 294 | 127 | 0.22 | 426 | 0.46 | −28.0 |
15 | 15 | 2.02 | 0.20 | 2.21 | 3.26 | 115 | 163 | 0.18 | 421 | 0.27 | −24.4 |
11 | 11 | 1.72 | 0.13 | 1.39 | 2.62 | 81 | 152 | 0.15 | 408 | 0.26 | −24.4 |
5 | 5 | 0.96 | 0.04 | 0.14 | 0.99 | 18 | 103 | 0.11 | 433 | 0.25 | −23.9 |
VP1 | 1.0 | 2.75 | 0.57 | 5.14 | 4.30 | 187 | 156 | 0.17 | 427 | 0.27 | −26.1 |
KV1 | 1.0 | 2.96 | 0.42 | 4.25 | 4.90 | 144 | 164 | 0.26 | 420 | 0.27 | −27.1 |
Parameter | m/z | Sample | ||||||
---|---|---|---|---|---|---|---|---|
KV1 | VP1 | 5 | 11 | 15 | 20 | 21.5 | ||
AliphaticFraction (Non-Polar Fraction) | ||||||||
A/B 2 | 57 | 0.22 | 0.34 | 0.44 | 0.31 | 0.18 | 0.28 | 0.19 |
C/D 3 | 57 | 0.08 | 0.07 | 0.03 | 0.15 | 0.06 | 0.07 | 0.16 |
E/O 4 | 57 | 0.16 | 0.24 | 0.32 | 0.21 | 0.14 | 0.18 | 0.16 |
Pr/Ph 5 | 57 | 1.31 | 1.02 | 0.38 | 1.01 | 1.20 | 0.78 | 1.30 |
Ki 6 | 57 | 0.36 | 0.30 | 0.52 | 0.47 | 0.34 | 0.27 | 0.50 |
OEP 7 | 57 | 6.72 | 6.51 | 3.60 | 6.62 | 7.95 | 7.05 | 9.22 |
Pr/C17 | 57 | 0.35 | 0.39 | 0.82 | 0.58 | 0.39 | 0.37 | 0.62 |
Ph/C18 | 57 | 0.36 | 0.24 | 0.46 | 0.39 | 0.30 | 0.22 | 0.40 |
Σ(C17-C19)/Σ(C27-C31) | 57 | 0.026 | 0.030 | 0.051 | 0.056 | 0.020 | 0.031 | 0.057 |
Eene/Oene 8 | 97 | 0.79 | 0.63 | n.d. | 1.05 | 1.72 | 0.67 | 0.75 |
CPI 9 | 57 | 7.18 | 6.66 | 3.94 | 7.55 | 9.19 | 7.17 | 6.94 |
100∙Ene/Ane 10 | TIC | 7.42 | 5.37 | n.d. | 1.41 | 1.09 | 12.20 | 10.70 |
n-alkanes, µg/g sediment | 57 | 54.19 | 53.21 | 16.28 | 17.99 | 20.10 | 161.76 | 1181.92 |
HMWA 11, µg/g sediment | 57 | 47.28 | 46.37 | 14.41 | 15.89 | 17.29 | 143.60 | 972.96 |
n-alkenes µg/g sediment | 97 | 4.02 | 2.86 | n.d. 1 | 0.25 | 0.22 | 19.73 | 126.41 |
Terpenoids, µg/g Sediment | ||||||||
Tm-ene 12 | 191 | 0.097 | 0.080 | n.d. | n.d. | n.d. | 0.420 | 2.96 |
Tm | 191 | 0.022 | 0.054 | 0.0090 | 0.011 | 0.0064 | 0.191 | 0.822 |
Tβ | 149, 191 | 0.098 | 0.470 | 0.013 | 0.022 | 0.017 | 2.55 | 12.56 |
Olean-12-ene | 218 | 1.00 | 0.800 | n.d. | 0.017 | 0.0076 | 5.26 | 7.09 |
Olean-18-ene | 218 | 0.030 | 0.028 | n.d. | n.d. | n.d. | 1.71 | n.d. |
Olean-13(18)-ene | 218 | 0.120 | 0.077 | n.d. | n.d. | n.d. | 1.10 | 1.05 |
Taraxerene (D-friedolean-14-ene) | 271, 204 | 0.073 | 1.08 | n.d. | n.d. | n.d. | 16.26 | 40.77 |
H29 | 191 | 0.060 | 0.050 | 0.016 | 0.015 | 0.012 | 1.09 | 1.05 |
Hop-17(21)-ene | 367 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
βαH29 | 191, 177 | 0.190 | 0.190 | 0.0090 | 0.012 | 0.0085 | 0.733 | 4.91 |
Oleanane | 191 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.092 | 0.637 |
H30 | 191 | 0.130 | 0.043 | 0.025 | 0.025 | 0.017 | 0.417 | 1.88 |
Neohop-13(18)-ene | 191, 218 | 0.065 | 0.021 | n.d. | 0.0069 | n.d. | 0.169 | n.d. |
α-tocopherol (vitamin E) | 165, 430 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.00 |
ββH29 | 191, 177 | 0.334 | 0.422 | n.d. | 0.0005 | 0.0005 | 2.815 | 14.62 |
C30 hopene (Uh1) | 191, 189 | n.d. | 0.060 | n.d. | n.d. | n.d. | 4.62 | 18.02 |
C30 hopene (Uh2) | 191, 189 | n.d. | n.d. | n.d. | n.d. | n.d. | 7.86 | 13.51 |
C30 hopene (Uh3) | 191, 189 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.562 | n.d. |
D:A-friedolean-6-ene | 218 | 0.730 | 1.21 | n.d. | 0.0049 | 0.0047 | 4.24 | 5.79 |
αβH31S | 191 | 0.055 | 0.018 | 0.0084 | 0.0098 | 0.0075 | 0.180 | 0.453 |
αβH31R | 191 | 0.110 | 0.028 | 0.012 | 0.018 | 0.012 | 0.345 | 0.733 |
Index S/(S+R) H31 | 191 | 0.333 | 0.391 | 0.412 | 0.352 | 0.385 | 0.343 | 0.382 |
ββH30 | 191 | 0.172 | 0.132 | n.d. | 0.013 | 0.011 | 0.965 | 5.52 |
Diploptene | 189, 191 | 0.052 | 0.100 | n.d. | 0.022 | 0.043 | 1.28 | 5.32 |
Hop-21(22)-ene | 189, 191 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
ββH31 | 191 | 0.190 | 0.130 | 0.0071 | 0.011 | 0.0089 | 0.539 | 2.76 |
C31 homohop-30-ene | 191, 203 | 0.075 | 0.080 | n.d. | n.d. | n.d. | 0.488 | 2.57 |
Diplopterol | 191, 149 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unidentified hopane (UH) | 191 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.328 | n.d. |
ββH32 | 191, 219 | 0.028 | 0.0091 | n.d. | n.d. | n.d. | 0.131 | 0.835 |
Aromatic Fraction, µg/g Sediment | ||||||||
ΣAlkylbenzenes | 91 | 0.100 | 0.180 | n.d. | 0.067 | 0.049 | 0.380 | 3.50 |
ΣAlkylbiphenyls | 165, 195, 196 | 0.0207 | 0.0249 | n.d. | 0.0456 | 0.0190 | 0.341 | 2.47 |
Eudalene | 169, 184 | 0.0013 | 0.0021 | n.d. | 0.0019 | 0.0008 | 0.0130 | 0.175 |
Cadalene | 198, 183 | 0.0021 | 0.0081 | n.d. | 0.0050 | 0.0020 | 0.053 | 0.126 |
Nor-cadalene | 169,184 | 0.0003 | 0.0005 | n.d. | 0.0015 | 0.0004 | 0.0090 | 0.273 |
Retene | 219, 234 | 0.0135 | 0.0327 | n.d. | 0.0148 | 0.0076 | 0.021 | 0.186 |
Phenanthrene+C1+C2+ C3+C4 13 | 178, 192+ 206+ 220+ 234 | 0.163 | 0.120 | n.d. | 0.200 | 0.198 | 0.363 | 4.10 |
Perylene | 252 | 0.0080 | 0.0040 | n.d. | 0.0091 | 0.0090 | 0.0005 | n.d. |
Pyrene+ fluoranthene +C1+C2 | 202+ 216+ 230 | 0.0540 | 0.0402 | n.d. | 0.0567 | 0.0476 | 0.0500 | 1.19 |
Benzpyrene | 252 | 0.0110 | n.d. | n.d. | 0.0070 | 0.0168 | 0.0005 | n.d. |
Phenylnaphthalene | 204 | 0.012 | 0.0056 | n.d. | 0.0234 | 0.0086 | 0.0030 | 0.0380 |
ββ’-binaphthyl | 126,254 | 0.0030 | n.d. | n.d. | 0.0350 | 0.0042 | n.d. | n.d. |
Phenylphenanthrene | 254 | 0.0030 | n.d. | n.d. | 0.0024 | 0.0019 | n.d. | n.d. |
Triphenylene +C1 | 228+ 242 | 0.0490 | 0.0090 | n.d. | 0.0454 | 0.0360 | 0.0190 | 0.192 |
Benzonaphtothiophene + C1 | 234+248 | 0.0050 | n.d. | n.d. | 0.0131 | 0.0152 | n.d. | n.d. |
Dibenzothiophene +C1+C2 | 184+198+212 | 0.0130 | n.d. | n.d. | 0.0421 | 0.0144 | 0.0120 | 0.101 |
MPI 14 | 178, 192 | 1.13 | 1.14 | − | 1.21 | 1.51 | 0.60 | 0.69 |
Index 15MDBT 4/1 | 198 | 6.42 | – | – | 7.11 | 7.67 | – | – |
Polar Fraction, µg/g Sediment | ||||||||
ΣFA 16 | 60, 73 | 20.18 | 19.98 | 1.40 | 1.45 | 3.87 | 100.30 | 837.87 |
HMWFA 17 | 60 | 1.77 | 14.25 | 0.055 | 0.372 | 0.933 | 41.82 | 205.28 |
ΣMuFA 18 | 73, 99 | n.d. | n.d. | n.d. | n.d. | n.d. | 3.51 | 234.60 |
ΣAlc | 83, 111 | 105.14 | 13.97 | 1.86 | 1.93 | 6.91 | 60.78 | 445.75 |
ΣAld | 82 | 3.63 | 1.53 | n.d. | 0.27 | 0.073 | 3.61 | 28.40 |
ΣMk 19 | 58, 59 | 15.13 | 18.33 | 0.48 | 0.56 | 3.63 | 85.76 | 434.86 |
Ik 20 | 58 | 1.00 | 0.108 | 0.061 | 0.054 | 0.22 | 2.94 | 31.22 |
ΣFA/Alkanes | − | 0.372 | 0.375 | 0.086 | 0.081 | 0.193 | 0.620 | 0.709 |
HMWFA/HMWA | − | 0.037 | 0.119 | 0.004 | 0.023 | 0.054 | 0.291 | 0.211 |
Component Group | Content,% Rel. in the Sample | ||||||
---|---|---|---|---|---|---|---|
KV1 | VP1 | 5 | 11 | 15 | 20 | 21.5 | |
Phenols | 25.08 | 20.61 | 2.42 | 23.31 | 21.37 | 20.88 | 25.52 |
Pyridines | 4.53 | 1.63 | 1.02 | 2.59 | 4.77 | 1.71 | 1.91 |
Pyrroles+Indoles | 3.62 | 2.51 | n.d. | 5.22 | 7.58 | 2.05 | 1.92 |
Furfurals | 4.64 | 2.26 | n.d. | 3.38 | 1.99 | 4.46 | 7.05 |
Aromatic HC (polyaromatics, toluene, indene) | 24.78 | 19.62 | 56.79 | 28.42 | 26.87 | 16.17 | 17.84 |
Cyclopentenones | n.d. 2 | 1.52 | n.d. | 1.48 | 1.51 | 1.09 | n.d. |
Alkylbenzenes + Alkenylbenzenes | 9.04 | 6.65 | 8.11 | 7.58 | 9.02 | 8.31 | 8.71 |
Alkanes + alkenes | 12.71 | 29.40 | 15.18 | 14.03 | 13.88 | 25.78 | 21.11 |
Fatty acids | 0.19 | 2.74 | 3.05 | 2.24 | 1.38 | 8.46 | 4.80 |
Alcohols | 2.91 | 0.91 | n.d. | 0.85 | 1.03 | 1.49 | 1.90 |
Nitriles | 4.04 | 2.46 | 4.71 | 3.18 | 3.27 | 0.11 | 1.02 |
Other O-containing compounds (furane, benzofurane, aldehydes, ethers, ketones) | 6.75 | 8.48 | 6.75 | 6.07 | 5.06 | 5.62 | 7.97 |
Cycloalkanes (+Indane), cycloalkenes | 1.71 | 1.21 | n.d. | 1.65 | 2.27 | 3.47 | 0.09 |
Polycyclic HC (triterpenoids) | n.d. | n.d. | n.d. | n.d. | n.d. | 0.40 | 0.16 |
S-containing compounds (benzothiophene, dibenzothiophene) | n.d. | n.d. | 1.97 | n.d. | n.d. | n.d. | n.d. |
Phenol/(Phenol+Pyr) 1 | 0.85 | 0.93 | 0.70 | 0.90 | 0.82 | 0.92 | 0.93 |
Sample | OCC 1 | NCC 2 | ACC 3 | HI | OI |
---|---|---|---|---|---|
21.5 | 48.24 | 4.85 | 28.07 | 307 | 211 |
20 | 42.00 | 3.87 | 37.96 | 294 | 127 |
15 | 32.34 | 15.62 | 25.17 | 115 | 163 |
11 | 37.33 | 10.99 | 23.26 | 81 | 152 |
5 | 12.22 | 5.73 | 23.29 | 18 | 103 |
VP1 | 36.52 | 6.60 | 37.26 | 187 | 156 |
KV1 | 39.57 | 12.19 | 23.46 | 144 | 164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinko, A.A.; Goncharov, I.V.; Oblasov, N.V.; Gershelis, E.V.; Shaldybin, M.V.; Shakhova, N.E.; Zarubin, A.G.; Ruban, A.S.; Dudarev, O.V.; Veklich, M.A.; et al. Characterization of Organic Matter of the Laptev Sea Eroded Coastal Sediments: A Case Study from the Cape Muostakh, Bykovsky Peninsula. Geosciences 2021, 11, 83. https://doi.org/10.3390/geosciences11020083
Grinko AA, Goncharov IV, Oblasov NV, Gershelis EV, Shaldybin MV, Shakhova NE, Zarubin AG, Ruban AS, Dudarev OV, Veklich MA, et al. Characterization of Organic Matter of the Laptev Sea Eroded Coastal Sediments: A Case Study from the Cape Muostakh, Bykovsky Peninsula. Geosciences. 2021; 11(2):83. https://doi.org/10.3390/geosciences11020083
Chicago/Turabian StyleGrinko, Andrey A., Ivan V. Goncharov, Nikolay V. Oblasov, Elena V. Gershelis, Michail V. Shaldybin, Natalia E. Shakhova, Alexey G. Zarubin, Alexey S. Ruban, Oleg V. Dudarev, Maxim A. Veklich, and et al. 2021. "Characterization of Organic Matter of the Laptev Sea Eroded Coastal Sediments: A Case Study from the Cape Muostakh, Bykovsky Peninsula" Geosciences 11, no. 2: 83. https://doi.org/10.3390/geosciences11020083
APA StyleGrinko, A. A., Goncharov, I. V., Oblasov, N. V., Gershelis, E. V., Shaldybin, M. V., Shakhova, N. E., Zarubin, A. G., Ruban, A. S., Dudarev, O. V., Veklich, M. A., Mazurov, A. K., & Semiletov, I. P. (2021). Characterization of Organic Matter of the Laptev Sea Eroded Coastal Sediments: A Case Study from the Cape Muostakh, Bykovsky Peninsula. Geosciences, 11(2), 83. https://doi.org/10.3390/geosciences11020083