Tectonic Setting of the Kenya Rift in the Nakuru Area, Based on Geophysical Prospecting
Abstract
:1. Introduction
2. Geological Setting
3. The Kenya Rift in the Menengai—Longonot Area
- The western rift shoulder (Mau escarpment), bordered by the Mau Fault, a fault system (fault zone) later overprinted by younger faults and partially covered by younger deposits;
- The inner trough (Lake Nakuru, Lake Naivasha), bordered by the Mau Fault (to the west) and the Bahati and the Kinangop fault (to the east), this is the lowermost portion of the rift valley;
- The intra-rift plateau (Bahati-Kinangop plateau) bordered by the Bahati and the Kinangop fault (to the west) and the Sattima fault to the east;
- The eastern rift shoulder (Aberdare range), east of the Sattima fault.
4. Geology of the Nakuru Area
4.1. Stratigraphy
4.1.1. Bahati Trachytes and Tuffs (Pt)
4.1.2. Meroronyi Tuffs (Rt)
4.1.3. Mbaruk Basalts and Trachytes (Bb)
4.1.4. Sirrkon Trachyte Lava and Tuffs (St)
4.1.5. Menengai Volcanics (Mp, Ms, Ml, Mt)
- Formation of a shield volcano with low-angle slopes (pre-caldera stage);
- Collapse of the volcanic edifice and formation of the caldera (syn-caldera stage);
- Eruption of lavas onto the caldera floor (post-caldera stage).
Pre-Caldera Volcanics (Mp)
Syn-Caldera Volcanics (Ms)
Post-Caldera Volcanics (Ml, Mt)
4.1.6. Bahati Sediments (Bs)
4.1.7. Elmenteita Basalts (Eb)
4.1.8. Tuffs, Lacustrine and Fluvial Deposits (Ql)
4.1.9. Alluvium, Trona Impregnated Silt (Al)
4.2. Tectonics
5. Geophysics
5.1. Electrical Resistivity Tomography (ERT)
5.1.1. Theory and Basic Principles
5.1.2. Data Acquisition
5.1.3. Data Processing
5.2. Hybrid Source Audio Magnetotellurics (HSAMT)
5.2.1. Theory and Basic Principles
5.2.2. Data Acquisition
5.2.3. Data Processing
5.3. Horizontal to Vertical Spectral Ratio (HVSR)
5.3.1. Theory and Basic Principles
5.3.2. Data Acquisition
5.3.3. Data Processing
6. Results and Discussion
- Quaternary tuffs, lacustrine and fluvial deposits (Ql) show resistivity of about 50–200 Ωm, the most superficial portion of these deposits (first few meters of soil deposits) shows lower resistivity (30–50 Ωm);
- Menengai post-caldera tuff and fall deposits (Mt) show lowest resistivity (5–20 Ωm), syn-caldera ignimbrites and fall deposits (Ms) show slightly higher resistivity values (20–50 Ωm);
- Mbaruk basalts and trachytes, Meroronyi tuffs and Bahati trachytes and tuffs (Bt) are grouped together and show resistivity values of about 50–100 Ωm;
- The high values of resistivity observed in the western portion of section ERT2 (Figure 10a) is assumed to be related to occurrence of predominantly lava flows, probably of the Sirrkon trachyte lava and tuffs (St) (500–1000 Ωm).
Geological Process | Resistivity |
---|---|
Porosity | decrease |
Temperature | decrease |
Well sorted sandstones with voids | decrease |
Poorly sorted sandstones | increase |
Sandstones with matrix/cement | increase |
Magmatic texture (low porosity) | decrease |
Fracturing/faulting | decrease |
Water saturation in pores | decrease |
Water salinity | decrease |
Shale/clay content | decrease |
Clay alteration | decrease |
Weathering | decrease |
Induration | increase |
Carbonate precipitation | increase |
Silicification | increase |
7. Conclusions and Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorowicz, J. The East African rift system. J. Afr. Earth Sci. 2005, 43, 379–410. [Google Scholar] [CrossRef]
- Ebinger, C. Continental break-up: The East African perspective. Astron. Geophys. 2005, 46, 2.16–2.21. [Google Scholar] [CrossRef]
- Corti, G. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Sci. Rev. 2009, 96, 1–53. [Google Scholar] [CrossRef]
- Saria, E.; Calais, E.; Stamps, D.; Delvaux, D.; Hartnady, C. Present-day kinematics of the East African Rift. J. Geophys. Res. Solid Earth 2014, 119, 3584–3600. [Google Scholar] [CrossRef]
- Muirhead, J.; Kattenhorn, S.; Lee, H.; Mana, S.; Turrin, B.; Fischer, T.; Kianji, G.; Dindi, E.; Stamps, D. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift. Geosphere 2016, 12, 1670–1700. [Google Scholar] [CrossRef]
- Corti, G. Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift. Nat. Geosci. 2008, 1, 258–262. [Google Scholar] [CrossRef]
- Beutel, E.; van Wijk, J.; Ebinger, C.; Keir, D.; Agostini, A. Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts. Earth Planet. Sci. Lett. 2010, 293, 225–235. [Google Scholar] [CrossRef]
- Hui, H.; Peslier, A.H.; Rudnick, R.L.; Simonetti, A.; Neal, C.R. Plume-cratonic lithosphere interaction recorded by water and other trace elements in peridotite xenoliths from the Labait volcano, Tanzania. Geochem. Geophys. Geosyst. 2015, 16, 1687–1710. [Google Scholar] [CrossRef]
- Katumwehe, A.B.; Abdelsalam, M.G.; Atekwana, E.A. The role of pre-existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda. Tectonophysics 2015, 646, 117–129. [Google Scholar] [CrossRef]
- Mana, S.; Furman, T.; Turrin, B.D.; Feigenson, M.D.; Swisher, C.C., III. Magmatic activity across the East African North Tanzanian divergence zone. J. Geol. Soc. 2015, 172, 368–389. [Google Scholar] [CrossRef]
- Muirhead, J.; Kattenhorn, S. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa. J. Struct. Geol. 2018, 106, 1–18. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. ETOPO1 Global Relief Model—National Oceanic and Atmospheric Administration. 2019. Available online: https://ngdc.noaa.gov/mgg/global/relief/ETOPO1/image/ (accessed on 9 February 2021).
- Persits, F.; Ahlbrandt, T.; Tuttle, M.; Charpentier, R.; Brownfield, M.; Takahashi, K. Map Showing Geology, Oil and Gas Fields and Geologic Provinces of Africa; Open-File Report 97–470 A; U.S. Geological Survey: Sioux Falls, SD, USA, 2002.
- Geological Survey of Ethiopia. Geological Map of Ethiopia; Scale 1:2,000,000—Ministry of Mines; Geological Survey of Ethiopia: Addis Ababa, Ethiopia, 1996.
- Geological Survey of Tanzania. Geological and Mineral Information System. 2019. Available online: http://www.gmis-tanzania.com/ (accessed on 9 February 2021).
- Schlüter, T. Geological Atlas of Africa; Springer: Berlin/Heidelberg, Germany, 2006; p. 307. [Google Scholar]
- Rosendahl, B.R. Architecture of continental rifts with special reference to East Africa. Annu. Rev. Earth Planet. Sci. 1987, 15, 445–503. [Google Scholar] [CrossRef]
- Braile, L.W.; Keller, G.R.; Wendlandt, R.F.; Morgan, P.; Khan, M.A. The East African rift system. In Continental Rifts: Evolution, Structure, Tectonics; Olsen, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 25, pp. 213–231. [Google Scholar]
- Rooney, T.O. The Cenozoic magmatism of East-Africa: Part I—Flood basalts and pulsed magmatism. Lithos 2017, 286, 264–301. [Google Scholar] [CrossRef]
- Mohr, P.; Zanettin, B. The Ethiopian flood basalt province. In Continental Flood Basalts; Macdougall, D.J., Ed.; Kluwer Academic Publishers: Berlin/Heidelberg, Germany, 1988; pp. 63–110. [Google Scholar]
- Hofmann, C.; Courtillot, V.; Feraud, G.; Rochette, P.; Yirgu, G.; Ketefo, E.; Pik, R. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 1997, 389, 838–841. [Google Scholar] [CrossRef]
- Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 2005, 43, 83–143. [Google Scholar] [CrossRef]
- Hayward, N.; Ebinger, C. Variations in the along-axis segmentation of the Afar Rift system. Tectonics 1996, 15, 244–257. [Google Scholar] [CrossRef]
- Baker, B.H. Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation. In Sedimentation in the African Rifts; Frostick, L.E., Ed.; Geological Society of London: London, UK, 1986; Volume 25, pp. 45–57. [Google Scholar]
- Leat, P.T. Volcanological development of the Nakuru area of the Kenya rift valley. J. Afr. Earth Sci. 1991, 13, 483–498. [Google Scholar] [CrossRef]
- Roessner, S.; Strecker, M.R. Late Cenozoic tectonics and denudation in the Central Kenya Rift: Quantification of long-term denudation rates. Tectonophysics 1997, 278, 83–94. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.X. ICS International Chronostratigraphic Chart 2020/03. International Commission on Stratigraphy, IUGS. 2020. Available online: www.stratigraphy.org (accessed on 9 February 2021).
- Shackleton, R.M. Geology of the Nyeri Area; Technical Report; Ministry of Environment and Natural Resources, Mines and Geological Department: Nairobi, Kenya, 1945; Volume 12, p. 26.
- Thompson, A.O.; Dodson, R.G. Geology of the Naivasha Area: Explanation of Degree Sheet 43 S.W; Ministry of Commerce and Industry, Geological Survey of Kenya: Nairobi, Kenya, 1963; p. 88.
- Thompson, A.O. Geology of the Kijabe Area: Degree Sheet 43 S.E. Quarter; Ministry of Natural Resources, Geological Survey of Kenya: Nairobi, Kenya, 1964; Volume 67, p. 52.
- McCall, G.J.H. Geology of the Nakuru—Thomson’s Falls—Lake Hannington Area; Technical Report; Ministry of Environment and Natural Resources, Mines and Geological Department: Nairobi, Kenya, 1967; Volume 3, p. 122.
- Jennings, D.J. Geology of the Molo Area, Degree Sheet 42 NE Quarter; Report; Geological Survey of Kenya: Nairobi, Kenya, 1971; Volume 86, p. 39. [Google Scholar]
- Clarke, M.C.G.; Woodhall, D.G.; Allen, D.; Darling, G. Geological, Volcanological and Hydrogeological Controls on the Occurrence of Geothermal Activity in the Area Surrounding Lake Naivasha, Kenya; British Geological Survey, Kenia Ministry of Energy: Nairobi, Kenya, 1990; p. 138. [Google Scholar]
- Williams, L.A.J. Geology of the Mau Area; Technical Report; Ministry of Environment and Natural Resources, Mines and Geological Department: Nairobi, Kenya, 1991; Volume 96, p. 46.
- Baker, B.H.; Mitchell, J.G.; Williams, L.A.J. Stratigraphy, geochronology and volcano-tectonic evolution of the Kedong–Naivasha–Kinangop region, Gregory Rift Valley, Kenya. J. Geol. Soc. Lond. 1988, 145, 107–116. [Google Scholar] [CrossRef]
- Smith, M. Stratigraphic and structural constraints on mechanisms of active rifting in the Gregory Rift, Kenya. Tectonophysics 1994, 236, 3–22. [Google Scholar] [CrossRef]
- Simiyu, S.M.; Keller, G.R. An integrated geophysical analysis of the upper crust of the southern Kenya rift. Geophys. J. Int. 2001, 147, 543–561. [Google Scholar] [CrossRef]
- Guth, A.L. Spatial and Temporal Evolution of the Volcanics and Sediments of the Kenya Rift. Ph.D. Thesis, Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA, 2013. [Google Scholar]
- Crossley, R. The Cenozoic stratigraphy and structure of the western part of the Rift Valley in southern Kenya. J. Geol. Soc. 1979, 136, 393–405. [Google Scholar] [CrossRef]
- Baker, B.H.T.; Wohlenberg, J. Structure and evolution of the Kenya Rift Valley. Nature 1971, 229, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Bergner, A.G.; Strecker, M.R.; Trauth, M.H.; Deino, A.; Gasse, F.; Blisniuk, P.; Duehnforth, M. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa. Quat. Sci. Rev. 2009, 28, 2804–2816. [Google Scholar] [CrossRef]
- Strecker, M.R.; Blisniuk, P.M.; Eisbacher, G.H. Rotation of extension direction in the central Kenya Rift. Geology 1990, 18, 299–302. [Google Scholar] [CrossRef]
- Williams, L.A.J.; Chapman, G.R. Relationships between major structures, salic volcanism and sedimentation in the Kenya Rift from the equator northwards to Lake Turkana. In Sedimentation in the African Rifts; Frostick, L.E., Reault, R.W., Reid, I., Tiercelin, J.J., Eds.; The Geological Society: London, UK, 1986; Volume 25, pp. 59–74. [Google Scholar]
- Zielke, O.; Strecker, M.R. Recurrence of large earthquakes in magmatic continental rifts: Insights from a paleoseismic study along the Laikipia-Marmanet Fault, Subukia Valley, Kenya Rift. Bull. Seismol. Soc. Am. 2009, 99, 61–70. [Google Scholar] [CrossRef]
- Leat, P.T. Geological evolution of the trachytic caldera volcano Menengai, Kenya Rift Valley. J. Geol. Soc. Lond. 1984, 141, 1057–1069. [Google Scholar] [CrossRef]
- Leat, P.T. The Structural and Geochemical Evolution of Menengai Caldera Volcano, Kenya Rift Valley. Ph.D. Thesis, University of Lancaster, Lancaster, UK, 1983. [Google Scholar]
- Deino, A.L.; Trauth, M.H.; Bergner, A.G.; Potts, R. 40Ar/39Ar Age Calibration of the Lacustrine Sediments at Kariandusi, Central Kenya Rift. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2004. [Google Scholar]
- Macdonald, R.; Scaillet, B. The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas. Lithos 2006, 91, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.; Bagiński, B.; Leat, P.T.; White, J.C.; Dzierżanowski, P. Mineral stability in peralkaline silicic rocks: Information from trachytes of the Menengai volcano, Kenya. Lithos 2011, 125, 553–568. [Google Scholar] [CrossRef]
- Wamalwa, A.M.; Mickus, K.L.; Serpa, L.F. Geophysical characterization of the Menengai volcano, Central Kenya Rift from the analysis of magnetotelluric and gravity data. Geophysics 2013, 78, B187–B199. [Google Scholar] [CrossRef]
- Blegen, N.; Brown, F.H.; Jicha, B.R.; Binetti, K.M.; Faith, J.T.; Ferraro, J.V.; Gathogo, P.N.; Richardson, J.L.; Tryon, C.A. The Menengai Tuff: A 36 ka widespread tephra and its chronological relevance to Late Pleistocene human evolution in East Africa. Quat. Sci. Rev. 2016, 152, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Riedl, S.; Melnick, D.; Mibei, G.K.; Njue, L.; Strecker, M.R. Continental rifting at magmatic centres: Structural implications from the Late Quaternary Menengai Caldera, central Kenya Rift. J. Geol. Soc. 2020, 177, 153–169. [Google Scholar] [CrossRef]
- Richardson, J.L.; Richardson, A.E. History of an African rift lake and its climatic implications. Ecol. Monogr. 1972, 42, 499–534. [Google Scholar] [CrossRef]
- Macdonald, R.; Navarro, J.M.; Upton, B.G.J.; Davies, G.R. Strong compositional zonation in peralkaline magma: Menengai, Kenya Rift Valley. J. Volcanol. Geotherm. Res. 1994, 60, 301–325. [Google Scholar] [CrossRef]
- Williams, L.A.J. Character of Quaternary volcanism in the Gregory rift valley. In Geological Background to Fossil Man: Recent Research in the Gregory Rift Valley, East Africa; Bishop, W.W., Ed.; Geological Society of London: London, UK, 1978; Volume 6, pp. 55–69. [Google Scholar]
- Mboya, B.G.O. Lithostratigraphic Analysis and Palaeoenvironmental Interpretation of the Late Tertiary and Quaternary Sediments of the Nakuru, Elementaita and Navasha Basins. Ph.D. Thesis, Department of Geology, University of Nairobi, Nairobi, Kenya, 1993. [Google Scholar]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Ussher, G.; Harvey, C.; Johnstone, R.; Anderson, E. Understanding the resistivities observed in geothermal systems. In Proceedings of the World Geothermal Congress, Kyushu, Tohoku, Japan, 28 May–10 June 2000; pp. 1915–1920. [Google Scholar]
- Yang, X.; Lassen, R.N.; Jensen, K.H.; Looms, M.C. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography. Int. J. Greenh. Gas Control 2015, 42, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, J.; Cai, L.; Fan, Y.; Zheng, Z. Laboratory investigations on factors affecting soil electrical resistivity and the measurement. IEEE Trans. Ind. Appl. 2015, 51, 5358–5365. [Google Scholar] [CrossRef]
- Palacky, G.J. Clay mapping using electromagnetic methods. First Break 1987, 5, 295–306. [Google Scholar] [CrossRef]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys. 2004, p. 136. Available online: www.geoelectrical.com (accessed on 9 February 2021).
- Loke, M.H. Tutorial: RES2DINV ver. 3.59, Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method; Geotomo Software: Houston, TX, USA, 2010; p. 148. [Google Scholar]
- Rikitake, T. Electromagnetic induction within the earth and its relation to the electrical state of the Earth’s interior, part I (1). Bull. Earthq. Res. Inst. 1950, 28, 45–100. [Google Scholar]
- Tikhonov, A.N. On determining electrical characteristics of the deep layers of the Earth’s crust. Doklady 1950, 73, 295–297. [Google Scholar]
- Cagniard, L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Campbell, W.H. Introduction to Geomagnetic Fields; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Simpson, F.; Bahr, K. Practical Magnetotellurics; Cambridge University Press: Cambridge, UK, 2005; p. 254. [Google Scholar]
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw. Tech. Res. Institute, Q. Rep. 1989, 30, 25–33. [Google Scholar]
- Lermo, J.; Chávez-García, F.J. Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am. 1993, 83, 1574–1594. [Google Scholar]
- Bard, P.Y. Microtremor measurements: A tool for site effect estimation. In The Effect of Surface Geology on Seismic Motion; Irikura, K., Kudo, K., Okada, H., Sasatani, T., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 1251–1279. [Google Scholar]
- Mucciarelli, M.; Gallipoli, M.R. A critical review of 10 years of microtremor HVSR technique. Boll. Geofis. Teor. Appl. 2001, 42, 255–266. [Google Scholar]
- Nakamura, Y. Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000; Volume 24, pp. 25–30. [Google Scholar]
- Albarello, D.; Cesi, C.; Eulilli, V.; Guerrini, F.; Lunedei, E.; Paolucci, E.; Pileggi, D.; Puzzilli, L. The contribution of the ambient vibration prospecting in seismic microzoning: An example from the area damaged by the 6 April 2009 L’Aquila (Italy) earthquake. Boll. Geofis. Teor. Appl. 2011, 52, 513–538. [Google Scholar]
- Bignardi, S. The uncertainty of estimating the thickness of soft sediments with the HVSR method: A computational point of view on weak lateral variations. J. Appl. Geophys. 2017, 145, 28–38. [Google Scholar] [CrossRef]
- SESAME (Thermal–Hydraulics Simulations and Experiments for the Safety Assessment of Metal Cooled Reactors). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation; SESAME European Research Project—European Commission—Research General Directorate, Project No. EVG1-CT-2000-00026 SESAME; SESAME: Brussels, Belgium, 2004. [Google Scholar]
- Mwakirani, R. Exploration of geothermal resources using magnetotellurics case study, Menengay prospect in Kenya. In Proceedings of the Third East African Rift Geothermal Conference, Djibouti City, Djibouti, 22–25 November 2010; pp. 307–316. [Google Scholar]
- Nyakundi, E.R.; Githiri, J.G.; Ambusso, W.J. Geophysical Investigation of Geothermal Potential of the Gilgil Area, Nakuru County, Kenya Using Gravity. J. Geol. Geophys. 2017, 6, 1–10. [Google Scholar]
- Sosi, B. Hydraulic Characterization of the Kabatini Aquifer, Upper Lake Nakuru Basin, Kenya rift, Using Geophysical and Pumping Test Data. Int. J. Dev. Sustain. 2013, 2, 2093–2109. [Google Scholar]
- Sosi, B.; Cheboi, E.; Simiyu, C. Nonlinear Correlation analysis between Surface Resistivity and Hydraulic Characteristics of the Kabatini Well Field, Upper Lake Nakuru Basin, Kenya Rift. IOSR J. Appl. Geol. Geophys. 2013, 1, 35–45. [Google Scholar] [CrossRef]
- Flovenz, O.G.; Hersir, G.P.; Saemundsson, K.; Armannsson, H.; Fridriksson, P. Geothermal Energy Exploration Techniques. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 51–95. [Google Scholar]
- Noor, Y.; Suwai, J.; Kangogo, D. Correlating Resistivity with Temperature and Alteration Mineralogy in Menengai Geothermal Field: Case Study of Menengai Well MW-01. In Proceedings of the 4th African Rift Geothermal Conference, Nairobi, Kenya, 21–23 November 2012; pp. 1–6. [Google Scholar]
- Ward, S.H. Resistivity and induced polarization methods. In Geotechnical and Environmental Geophysics: Volume I, Review and Tutorial; Ward, S.H., Ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 1990; pp. 147–189. [Google Scholar]
- Bosworth, W.; Strecker, M.; Blisniuk, P. Integration of East African paleostress and present-day stress data: Implications for continental stress field dynamics. J. Geophys. Res. Solid Earth 1992, 97, 11851–11865. [Google Scholar] [CrossRef]
- Bosworth, W.; Strecker, M.R. Stress field changes in the Afro-Arabian rift system during the Miocene to Recent period. Tectonophysics 1997, 278, 47–62. [Google Scholar] [CrossRef]
Dipole Dipole | Schlumberger Reciprocal | Wenner–Schlumberger | Wenner | |
---|---|---|---|---|
RMS at 4 iteration | 37.9 | 13.5 | 4.1 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, P.; Pistis, M.; Bernardinetti, S.; Barbagli, A.; Zirulia, A.; Serri, L.; Colonna, T.; Guastaldi, E.; Ghiglieri, G. Tectonic Setting of the Kenya Rift in the Nakuru Area, Based on Geophysical Prospecting. Geosciences 2021, 11, 80. https://doi.org/10.3390/geosciences11020080
Conti P, Pistis M, Bernardinetti S, Barbagli A, Zirulia A, Serri L, Colonna T, Guastaldi E, Ghiglieri G. Tectonic Setting of the Kenya Rift in the Nakuru Area, Based on Geophysical Prospecting. Geosciences. 2021; 11(2):80. https://doi.org/10.3390/geosciences11020080
Chicago/Turabian StyleConti, Paolo, Marco Pistis, Stefano Bernardinetti, Alessio Barbagli, Andrea Zirulia, Lisa Serri, Tommaso Colonna, Enrico Guastaldi, and Giorgio Ghiglieri. 2021. "Tectonic Setting of the Kenya Rift in the Nakuru Area, Based on Geophysical Prospecting" Geosciences 11, no. 2: 80. https://doi.org/10.3390/geosciences11020080
APA StyleConti, P., Pistis, M., Bernardinetti, S., Barbagli, A., Zirulia, A., Serri, L., Colonna, T., Guastaldi, E., & Ghiglieri, G. (2021). Tectonic Setting of the Kenya Rift in the Nakuru Area, Based on Geophysical Prospecting. Geosciences, 11(2), 80. https://doi.org/10.3390/geosciences11020080