New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing
Abstract
:1. Introduction
2. Description of the Region of Study
3. Materials and Methods
3.1. Remote Sensing (RS) and Digital Elevation Model (DEM)
3.2. Remote Sensing Using the Helicopter and Unmanned Aerial Vehicle (UAV)
3.3. Thermometric and Other Measurements on the Bottom and Around the Crater
3.4. Geochemical and Physical Properties of Ejected (Exposed) Sediment Samples
4. Results of the Research
4.1. Field Studies
4.2. Field Data Processing
4.3. Remote Sensing Data Processing
4.4. UAV Field Data Processing: Creating 3D Models Based on Aerial Photography Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef] [Green Version]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Dean, J.F. Old methane and modern climate change. Science 2020, 367, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Are, F.E. The problem of emission of deep gases into the atmosphere. Cryosphere Earth 1998, 4, 42–50. (In Russian) [Google Scholar]
- Badu, Y.B. Cryogenic Strata of Gas-Bearing Structures in Yamal. On the Influence of Gas Deposits on the Formation and Development of Cryogenic Strata; Moscow; Scientific World: Vancouver, BC, Canada, 2018; p. 232. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I. Arctic and the World Ocean: Current State, Perspectives and Challenges of Hydrocarbon Production; VEO Russia: Moscow, Russia, 2014; pp. 12–175. (In Russian) [Google Scholar]
- Bogoyavlensky, V.; Kishankov, A.; Yanchevskaya, A.; Bogoyavlensky, I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Areas. MDPI. Geosciences 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Bogoyavlensky, V.I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russ. Min. Ind. 2020, 97–118. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Bondarev, V.L.; Mirotvorsky, M.Y.; Gudzenko, V.T.; Oblekov, G.I.; Shaidullin, R.M. Gas-geochemical characteristics of the above-Cenomanian deposits of the Yamal Peninsula. Geol. Geophys. Dev. Oil Gas Fields 2008, 5, 22–34. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, U.M.; Kondakov, V.V. Gas component of frozen rock strata within the Bovanenkovo gas condensate field (Yamal Peninsula). Dokl. Ras 1999, 369, 522–524. (In Russian) [Google Scholar]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Isotopic Composition of Natural Gases in the North of the Western Siberia: Overview; IRTs OAO “Gazprom”: Moscow, Russia, 2000; p. 80. (In Russian) [Google Scholar]
- Kraev, G.; Schulze, E.-D.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 2017, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Kraev, G.; Rivkina, E.; Vishnivetskaya, T.; Belonosov, A.; van Huissteden, J.; Kholodov, A.; Smirnov, A.; Kudryavtsev, A.; Tshebaeva, K.; Zamolodchikov, D. Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic. Geosciences 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Yakushev, V.S.; Perlova, E.V.; Chuvilin, E.M.; Kondakov, V.V. Permafrost as a reservoir of gas and gas hydrate accumulations. Gas Ind. 2003, 3, 36–40. (In Russian) [Google Scholar]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Cryolithozone; VNIIGAZ: Moscow, Russia, 2009; p. 192. (In Russian) [Google Scholar]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar] [CrossRef]
- Glotov, V.E.; Glotova, L.P. Natural sources of atmospheric methane in the Circum-Pacific region of the permafrost (northeastern Russia). Bull. Samara Sci. Cent. Russ. Acad. Sci. 2015, 17, 26–32. (In Russian) [Google Scholar]
- Streletskaya, I.D.; Vasiliev, A.A.; Oblogov, G.E.; Streletskiy, D.A. Methane content in ground ice and sediments of the Kara Sea coast. Geosciences 2018, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Yakushev, V.S. Natural Gas Liberations around production wells at Russian Arctic gas fields. Geosciences 2020, 10, 184. [Google Scholar] [CrossRef]
- Badu, Y.B. Gas manifestations and the nature of cryolithogenesis of marine sediments of the Yamal Peninsula. Cryosphere Earth 2017, XXI, 42–54. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I. The threat of catastrophic gas blowouts form the Arctic permafrost. The Craters of Yamal and Taymyr. Drill. Oil 2014, 9, 13–18. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I. The threat of catastrophic gas blowouts form the Arctic permafrost. The Craters of Yamal and Taymyr. Pt. 2. Drill. Oil 2014, 10, 4–8. (In Russian) [Google Scholar]
- Bogoyavlensky, V. Gas Blowouts on the Yamal and Gydan Peninsulas. GeoExPro 2015, 12, 74–78. [Google Scholar]
- Bogoyavlensky, V.I.; Garagash, I.A. Substantiation of the process of formation of gas emission craters in the Arctic by mathematical modeling. Arct. Ecol. Econ. 2015, 3, 12–17. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Sizov, O.S.; Bogoyavlensky, I.V.; Nikonov, R.A. Remote detection of areas of surface gas manifestations and gas emissions in the Arctic: The Yamal Peninsula. Arct. Ecol. Econ. 2016, 3, 4–15. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V.; Nikonov, R.A. Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal Peninsula. Arct. Ecol. Econ. 2017, 3, 4–17. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arct. Ecology Econ. 2018, 29, 48–55. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V. Natural and man-made threats in the search, exploration and development of hydrocarbon deposits in the Arctic. Miner. Resour. 2018, 2, 60–70. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Sizov, O.S.; Mazharov, A.V.; Bogoyavlensky, I.V.; Nikonov, R.A.; Kishankov, A.V.; Kargina, T.N. Earth degassing in the Arctic: Remote and field studies of the Seyakha catastrophic gas emission on the Yamal Peninsula. Arct. Ecol. Econ. 2019, 33, 80–105. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V.; Kargina, T.N.; Nikonov, R.A.; Sizov, O.S. Earth degassing in the Artic: Remote and field studies of the thermokarst lakes gas eruption. Arct. Ecol. Econ. 2019, 34, 31–47. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Sizov, O.S.; Bogoyavlensky, I.V.; Nikonov, R.A.; Kargina, T.N. Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula. Arct. Ecol. Econ. 2019, 36, 52–68. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Bogoyavlensky, V.I.; Erokhin, G.N.; Nikonov, R.A.; Bogoyavlensky, I.V.; Bryksin, V.M. Study of catastrophic gas blowout zones in the Arctic based on passive microseismic monitoring (on the example of Lake Otkrytiye). Arct. Ecol. Econ. 2020, 37, 93–104. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Sizov, O.S.; Bogoyavlensky, I.V.; Nikonov, R.A.; Kishankov, A.V.; Kargina, T.N. Study of the Seyakha Gas Explosion on the Yamal Peninsula. Geomodel 2019, 2019, 5. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Sizov, O.S.; Nikonov, R.A.; Bogoyavlensky, I.V.; Kargina, T.N. Earth degassing in the Arctic: The genesis of natural and anthropogenic methane emissions. Arct. Ecol. Econ. 2020, 39, 6–22. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Bogoyavlensky, I.V.; Kargina, T.N.; Nikonov, R.A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arct. Ecol. Econ. 2020, 40, 90–105. (In Russian) [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kishankov, A. Complex of geophysical studies of the Seyakha catastrophic gas blowout crater on the Yamal Peninsula, Russian Arctic. MDPI. Geosciences 2020, 10, 215. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Yerokhin, G.N.; Nikonov, R.A.; Bogoyavlensky, I.V.; Bryksin, V.M. Passive seismic monitoring study of the Earth degassing in the Arctic. Eage Geomodel. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Bogoyavlensky, I.V. Perspectives of Implementing remote methods for Geoecological Tasks with creating 3D models. In Proceedings of the Third International Conference on Geology of the Caspian Sea and Adjacent Areas (Baku, 2019), Baku, Azerbaijan, 16–18 October 2019; pp. 1–5. Available online: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201952014 (accessed on 2 February 2020). [CrossRef]
- Bondur, V.G.; Kuznetsova, T.V. Detecting Gas Seeps in Arctic Water Areas Using Remote Sensing Data. Izv. Atmos. Ocean. Phys. 2015, 51, 1060–1072. (In Russian) [Google Scholar] [CrossRef]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Sci. Rep. 2018, 8, 13534. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. Polarforschung 2000, 68, 215–219. [Google Scholar]
- Chuvilin, E.; Ekimova, V.; Davletshina, D.; Sokolova, N.; Bukhanov, B. Evidence of gas emissions from permafrost in the Russian Arctic. Geosciences 2020, 10, 383. [Google Scholar] [CrossRef]
- Chuvilin, E.; Stanilovskaya, J.; Titovsky, A.; Sinitsky, A.; Sokolova, N.; Bukhanov, B.; Spasennykh, M.; Cheremisin, A.; Grebenkin, S.; Davletshina, D.; et al. A Gas-emission crater in the Erkuta River valley, Yamal Peninsula: Characteristics and potential formation model. Geosciences 2020, 10, 170. [Google Scholar] [CrossRef]
- Desyatkin, A.R.; Fedorov, P.P.; Nikolaev, A.N.; Borisov, B.Z.; Desyatkin, R.V. Emission of CH4 with an increase in thermokarst lake in Central Yakutia. Bull. Nefu 2016, 52, 5–14. (In Russian) [Google Scholar]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- Dean, J.F.; Meisel, O.H.; Rosco, M.M.; Marchesini, L.B.; Garnett, M.H.; Lenderink, H.; van Logtestijn, R.; Borges, A.V.; Bouillon, S.; Lambert, T.; et al. East Siberian Arctic inland waters emit mostly contemporary carbon. Nat. Commun. 2020, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Dvornikov, Y.A.; Leibman, M.O.; Khomutov, A.V.; Kizyakov, A.I.; Semenov, P.; Bussmann, I.; Babkin, E.M.; Heim, B.; Portnov, A.; Babkina, E.A.; et al. Gas-emission craters of the Yamal and Gydan peninsulas: Aproposed mechanism for lake genesis and development of permafrost landscapes. Permafr. Periglac. Process. 2019, 30, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Heslop, J.K.; Anthony, K.W.; Winkel, M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Liebner, S. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Khimenkov, A.N.; Sergeev, D.O.; Vlasov, A.N.; Volkov-Bogorodsky, D.B. Explosive processes in the area of permafrost distribution are a new type of permafrost hazard. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2019, 6, 30–41. [Google Scholar]
- Kizyakov, A.I.; Sonyushkin, A.V.; Leibman, M.O.; Zimin, M.V.; Khomutov, A.V. Geomorphological conditions for the formation of a gas outburst funnel and the dynamics of this form in Central Yamal. Cryosphere Earth 2015, 2, 15–25. (In Russian) [Google Scholar]
- Kizyakov, A.; Khomutov, A.; Zimin, M.; Khairullin, R.; Babkina, E.; Dvornikov, Y.; Leibman, M. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens. 2018, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Kizyakov, A.; Leibman, M.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Dhont, D.; Cauquil, E.; Pushkarev, V.; Stanilovskaya, Y. Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sens. 2020, 12, 2182. [Google Scholar] [CrossRef]
- Kruglikov, N.M.; Kuzin, I.L. Outcrops of deep gas at the Urengoyskoye field. Structural geomorphology and neotectonics of Western Siberia in connection with oil and gas potential. Proc. Zapsibnigni 1973, 3, 96–106. (In Russian) [Google Scholar]
- Kuzin, I.L. On the priority in the study of surface gas shows in Western Siberia. Geol. Geophys. 1990, 3, 142–144. (In Russian) [Google Scholar]
- Kuzin, I.L. On the nature of anomalous lakes-indicators of hydrocarbon accumulations in deep horizons of the sedimentary cover. In Problems of Assessment of New Zones of Oil and Gas Accumulation in the Main Productive Strata of Western Siberia; VNIGRI: St. Petersburg, Russia, 1992; pp. 129–137. (In Russian) [Google Scholar]
- Kuzin, I.L. The scale of natural gas emissions in Western Siberia. Izv. Rgo 1999, 131, 24–35. (In Russian) [Google Scholar]
- Leibman, M.O.; Kizyakov, A.I.; Plekhanov, A.V.; Streletskaya, I.D. New permafrost feature-Deep crater in Central Yamal, West Siberia, Russia, as a response to local climate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–80. [Google Scholar] [CrossRef]
- Olenchenko, V.V.; Sinitsky, A.I.; Antonov, E.Y.; Eltsov, I.N.; Kushnarenko, O.N.; Plotnikov, A.E.; Potapov, V.V.; Epov, M.I. Results of geophysical studies of the territory of the geological formation Yamal crater. Cryosphere Earth 2015, 4, 94–106. (In Russian) [Google Scholar]
- Rivkin, F.M. Gas content in the upper horizons of frozen rocks. In Geocryological Conditions of the Kharasaveyskoye and Kruzenshternovskoye Gas Condensate Fields (Yamal Peninsula); VNIIgeosystem: Moscow, Russia, 2003; pp. 133–146. (In Russian) [Google Scholar]
- Savichev, A.; Leibman, M.; Kadnikov, V.; Kallistova, A.; Pimenov, N.; Ravin, N.; Dvornikov, Y.; Khomutov, A. Microbiological study of Yamal lakes: A key to understanding the evolution of gas emission craters. Geosciences 2018, 8, 478. [Google Scholar] [CrossRef] [Green Version]
- Semenov, P.; Portnov, A.; Krylov, A.; Egorov, A.; Vanshtein, B. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea. Geochemistry 2019, 80, 125509. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Sizov, O.S. Remote analysis of consequences of surface gas shows in the north of Western Siberia. Geomatika 2015, 1, 53–68. (In Russian) [Google Scholar]
- Streletskaya, I.D.; Leibman, M.O.; Kizyakov, A.I.; Oblogov, G.E.; Vasiliev, A.A.; Khomutov, A.V.; Dvornikov, Y.A. Ground ice and its role in the formation of gas-emission crater in the Yamal peninsula. Mosc. Univ. Bull. Ser. 5 Geogr. 2017, 2, 91–99. (In Russian) [Google Scholar]
- Walter, K.M.; Zimov, S.; Chanton, J.P.; Verbyla, D.; Chapin, F.S., III. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef]
- Walter, K.M.; Smith, L.C.; Chapin, F.S., III. Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Phil. Trans. R. Soc. A 2007, 365, 1657–1676. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.; Walter Anthony, K.M.; Archer, D.; Sepulveda-Jauregui, A.; Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 2014, 11, 6791–6811. [Google Scholar] [CrossRef] [Green Version]
- Yakushev, V.S.; Semenov, A.P.; Bogoyavlensky, V.I.; Medvedev, V.I.; Bogoyavlensky, I.V. Experimental modeling of methane release from intrapermafrost relic gas hydrates when sediment temperature change. Cold Reg. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow. In The Impact on Geology, Biology, and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007; p. 475. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Perekalin, S.O.; Boichuk, V.M.; Bogoyavlensky, I.V.; Kargina, T.N. Kumzhinskoye Gas Condensate Field Disaster: Reasons, results and ways of eliminating the consequences. Arct. Ecol. Econ. 2017, 25, 32–46. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I. Innovative Technologies and Results of Studying Processes of Natural and Man-Made Degassing of the Earth in the Lithosphere-Cryosphere-Hydrosphere-Atmosphere System. In Proceedings of the Third International Conference on Geology of the Caspian Sea and Adjacent Areas, Baku, Azerbaijan, 16–18 October 2019; pp. 1–5. Available online: https://www.earthdoc.org/content/papers/10.3997/2214-4609.201952015 (accessed on 2 February 2020). [CrossRef]
- Mackay, J.R. Pingos of the Tuktoyaktuk Peninsula Area, Northwest Territories. Géogr. Phys. Quat. 1979, 33, 3–61. [Google Scholar] [CrossRef] [Green Version]
- Mackay, J.R. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: A long-term field study. Géographie Phys. Et Quat. 1998, 52, 271–323. [Google Scholar] [CrossRef] [Green Version]
- Mackay, J.R. Gas-domed mounds in permafrost, Kendall Island, N.W.T. Geogr. Bull. 1965, 7, 105–115. [Google Scholar]
- Yoshikawa, K. Notes on open-system Pingo Ice, Adventdalen, Spitsbergen. Permafr. Periglac. Process. 1993, 4, 327–334. [Google Scholar] [CrossRef]
- Chuvilin, E.; Sokolova, N.; Davletshina, D.; Bukhanov, B.; Stanilovskaya, J.; Badetz Ch Spasennykh, M. Conceptual models of gas accumulation in the shallow permafrost of Northern West Siberia and conditions for explosive gas emissions. Geosciences 2020, 10, 195. [Google Scholar] [CrossRef]
- Skorobogatov, V.A.; Stroganov, A.V.; Kopeev, V.D. Geological Structure and Oil and Gas Potential of Yamal; Nedra-Business Center: Moscow, Russia, 2003; p. 353. (In Russian) [Google Scholar]
- Bogoyavlensky, V.I.; Polyakova, I.D. Prospects for oil and gas content of great depths of the South Kara region. Arct. Ecol. Econ. 2012, 7, 92–103. (In Russian) [Google Scholar]
- Badu, Y.V.; Gafarova, N.A.; Podborny, E.E. (Eds.) Cryosphere of Oil and Gas Condensate Fields of the Yamal Peninsula. T. 2. Cryosphere of the Bovanenkovo Oil and Gas Condensate Field; OOO Gazprom Expo: Moscow, Russia, 2013; p. 424. (In Russian) [Google Scholar]
- Kondakov, V.V.; Yazinin, O.M.; Kusova, O.V.; Grachev, O.V.; Shidullin, R.M. Composition, structure and properties of rocks in deep horizons of permafrost in the southern part of the Bovanenkovo gas condensate field/Materials of Second conference of geocryologists of Russia. Mosc. State Univ. 2001, 3, 149–155. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Perlova, E.V.; Baranov, Y.B.; Kondakov, V.V.; Osokin, A.B.; Yakushev, V.S. The structure and Properties of Rocks in the Permafrost Zone of the Southern Part of the Bovanenkovo Gas Condensate Field; GEOS: Moscow, Russia, 2007; p. 137. (In Russian) [Google Scholar]
- Skorobogatov, V.A.; Yakushev, V.S.; Chuvilin, E.M. Sources of natural gas within permafrost North-West Siberia. In Proceedings of the Seventh International Conference on Permafrost, Yellowknife, NT, Canada, 23–27 June 1998; pp. 1001–1007. [Google Scholar]
- ArcticDEM. Available online: https://www.pgc.umn.edu/data/arcticdem/ (accessed on 15 September 2019).
- Porter, C.; Morin, P.; Howat, I.; Noh, M.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM. Harv. Dataverse 2018, 1. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.-J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Elsevier Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef] [Green Version]
- Pix4Dmapper. Getting Started Manual; Pix4: Prilly, Switzerland, 2018; p. 25. [Google Scholar]
- Agisoft. Discover Intelligent Photogrammetry with Metashape. Available online: https://www.agisoft.com/ (accessed on 2 February 2020).
- Agisoft Metashape User Manual Professional Edition; Version 1.6; Agisoft LLC: Saint Petersburg, Russia, 2020; p. 172. Available online: www.agisoft.com/pdf/metashape-pro_1_6_en.pdf (accessed on 2 February 2020).
- Bogoyavlensky, I.V. Results of changes monitoring in the Tula karst sinkhole based on remote sensing from an unmanned aerial vehicle. Eage Geomodel. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Complexes of Temperature Measurement KIT-1. Available online: https://all-pribors.ru/opisanie/72099-18-kit-1 (accessed on 2 February 2020). (In Russian).
- GOST 5180-2015. Soils. Laboratory Methods for Determination of Physical Characteristics; Standartinform: Moscow, Russia, 2019. (In Russian) [Google Scholar]
- GOST 12536-2014. Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Content; Standartinform: Moscow, Russia, 2019. (In Russian) [Google Scholar]
- Trofimova, V.T.; Queen, V.A. (Eds.) Workshop on Soil Science; MSU: Moscow, Russia, 1993; p. 390. (In Russian) [Google Scholar]
- GOST 23740-2016. Soils. Methods of Laboratory Determination of Organic Composition; Standartinform: Moscow, Russia, 2019. (In Russian) [Google Scholar]
- Weather in Maresale: Weather Forecast, Weather Archive. Everything You Want to Know about the Weather in Maresale. Available online: http://meteocenter.net/23032_fact.htm (accessed on 2 February 2020). (In Russian).
Satellite | Resolution, m | Source | Country |
---|---|---|---|
Landsat-8 | 15 | USGS | USA |
Sentinel-2 | 10 | ESA | EU |
PlanetScope-Dove/Flock | 3 | Planet | USA |
WorldView-1, 2, 3 | 0.3–0.5 | Terraserver | USA-Canada |
WorldView-1, 2, 3 | 2 | NGA-NCF (ArcticDEM) | USA |
Resurs-P No.1 | 0.5–0.6 | SC “Roskosmos” | Russia |
Sample Number | Distance to the Crater, m | Density of Soil Particles, g/cm3 | Plasticity Index, % | Salinity, % | Total Organic Content, % |
---|---|---|---|---|---|
1 | 15 | 2.65 | 15.0 | 0.28 | 4.0 |
2 | 30 | 2.68 | 17.7 | 0.28 | 5.4 |
3 | 150 | 2.74 | 18.7 | 0.68 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kargina, T.; Chuvilin, E.; Bukhanov, B.; Umnikov, A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences 2021, 11, 71. https://doi.org/10.3390/geosciences11020071
Bogoyavlensky V, Bogoyavlensky I, Nikonov R, Kargina T, Chuvilin E, Bukhanov B, Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences. 2021; 11(2):71. https://doi.org/10.3390/geosciences11020071
Chicago/Turabian StyleBogoyavlensky, Vasily, Igor Bogoyavlensky, Roman Nikonov, Tatiana Kargina, Evgeny Chuvilin, Boris Bukhanov, and Andrey Umnikov. 2021. "New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing" Geosciences 11, no. 2: 71. https://doi.org/10.3390/geosciences11020071