
geosciences

Article

New Catastrophic Gas Blowout and Giant Crater on the
Yamal Peninsula in 2020: Results of the Expedition and
Data Processing

Vasily Bogoyavlensky 1,* , Igor Bogoyavlensky 1 , Roman Nikonov 1 , Tatiana Kargina 1 , Evgeny Chuvilin 2 ,
Boris Bukhanov 2 and Andrey Umnikov 3

����������
�������

Citation: Bogoyavlensky, V.;

Bogoyavlensky, I.; Nikonov, R.;

Kargina, T.; Chuvilin, E.; Bukhanov,

B.; Umnikov, A. New Catastrophic

Gas Blowout and Giant Crater on the

Yamal Peninsula in 2020: Results of

the Expedition and Data Processing.

Geosciences 2021, 11, 71. https://

doi.org/10.3390/geosciences11020071

Academic Editors: Jesus

Martinez-Frias and Michela

Giustiniani

Received: 22 December 2020

Accepted: 29 January 2021

Published: 8 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Oil and Gas Research Institute of the Russian Academy of Sciences (OGRI RAS), 3, Gubkina St.,
119333 Moscow, Russia; igorbogoyavlenskiy@gmail.com (I.B.); nikonovroman@gmail.com (R.N.);
tatyana.nik92@gmail.com (T.K.)

2 Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, 3 Nobel Street,
121205 Moscow, Russia; e.chuvilin@skoltech.ru (E.C.); b.bukhanov@skoltech.ru (B.B.)

3 Non-profit partnership “Russian Center of Arctic Development”, 20, Respubliki st., 629007 Salekhard, Russia;
Andrej_umnikov@mail.ru

* Correspondence: vib@pgc.su; Tel.: +7-499-1350683

Abstract: This article describes the results of an Arctic expedition studying the new giant gas blowout
crater in the north of Western Siberia, in the central part of the Yamal Peninsula in 2020. It was
named C17 in the geoinformation system “Arctic and the World Ocean” created by the Oil and
Gas Research Institute of the Russian Academy of Sciences (OGRI RAS). On the basis of remote
sensing, it can be seen that the formation of the crater C17 was preceded by a long-term growth
of the perennial heaving mound (PHM) on the surface of the third marine terrace. Based on the
interpretation of satellite images, it was substantiated that the crater C17 was formed in the period
15 May–9 June 2020. For the first time, as a result of aerial photography from inside the crater with a
UAV, a 3D model of the crater and a giant cavity in the ground ice, formed during its thawing from
below, was built. The accumulation of gas, the pressure rise and the development of gas-dynamic
processes in the cavity led to the growth of the PHM, and the explosion and formation of the crater.

Keywords: Arctic; Yamal Peninsula; permafrost; perennial heave mounds (PHMs); pingo;
underground cavity; gas blowout; gas explosion; crater; remote sensing (RS); unmanned aerial
vehicle (UAV); digital elevation model (DEM); ArcticDEM

1. Introduction

In recent years, increasing attention has been paid to the issues of greenhouse gas
emissions (mainly carbon dioxide and methane) and continuing global warming, most
strongly affecting the Arctic [1–3]. Warming in the Arctic is causing the degradation of
permafrost, which intensifies gas emissions into the atmosphere facilitating the process of
climate change. Intensive gas emissions from permafrost were observed in the Russian
Arctic in the north of Western Siberia especially on the Yamal and Gydan Peninsulas, in the
north of the Krasnoyarsk region, in the Yakutia and the Chukotka Peninsula. Gas emissions
were studied as part of the process of well drilling [4–16], through gas chemical analyses of
the air [17–19], during the monitoring of the active layer and water objects (lakes, rivers,
seas), field expeditions and with the use of remote sensing (RS) data [5–8,13–16,20–68].

The first data on powerful gas outflows from the bottom of thermokarst lakes in the
north of Western Siberia were obtained in the late 1960s–early 1970s [53–55]. Despite the
fact that these studies were mainly local in nature, it was noted that the distinctive features
of these lakes were the transparency of the water to depths of 3–4 m and its greenish blue
color in summer [53–55].

Geosciences 2021, 11, 71. https://doi.org/10.3390/geosciences11020071 https://www.mdpi.com/journal/geosciences

https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0001-7105-5787
https://orcid.org/0000-0002-3316-068X
https://orcid.org/0000-0003-4800-0790
https://orcid.org/0000-0002-2536-4092
https://orcid.org/0000-0003-1173-546X
https://orcid.org/0000-0002-7058-7244
https://doi.org/10.3390/geosciences11020071
https://doi.org/10.3390/geosciences11020071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/geosciences11020071
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/2076-3263/11/2/71?type=check_update&version=2


Geosciences 2021, 11, 71 2 of 21

During the period 2014–2020, in the north of Western Siberia, specialists from the
Oil and Gas Research Institute of Russian Academy of Sciences (OGRI RAS) [6,8,21–38]
carried out comprehensive studies of the onshore and offshore degassing processes (lakes,
rivers), including the distribution of thermokarst lakes, at the bottom of which direct signs
of degassing were revealed in the form of numerous crater-like objects—pockmarks [69]. A
wide complex of geological–geophysical methods and equipment was used in field surveys,
including aerial photography from unmanned aerial vehicles (UAVs) [8,29–38]. As a result
of 13 field expeditions and on the basis of the interpretation of ultra-high resolution RS
data of the Earth from space, the authors from the OGRI RAS for the first time revealed
1860 zones of active degassing with the formation of craters of gas emissions at the bottom
of 1667 thermokarst lakes, four rivers and two bays on the Yamal Peninsula [31–36]. In
addition, a regional connection was established between the identified degassing zones and
the areas of increased methane concentration in the atmosphere, recorded by the TROPO-
spheric Monitoring Instrument (TROPOMI) spectrometer on European Space Agency (ESA)
Sentinel-5p satellite [34]. All received data were loaded into the created and constantly
developed OGRI RAS geoinformation system “Arctic and World Ocean” [6–8,25–37].

The first information about the emergence of new geological formations in the Earth’s
cryosphere in the north of Western Siberia—giant craters of gas blowouts—appeared in
2014 [6,21–25,50,57,58,63]. The first such crater-like object was discovered in the central
part of the Yamal Peninsula in the summer of 2014 by helicopter pilots, 30 km to the south
of the unique Bovanenkovo oil and gas condensate field, the development of which began
in 2012 by PJSC Gazprom [6]. The inner and outer dimensions of the crater exceeded 26
and 40 m, respectively, and the depth was about 50 m. This crater was widely known
as the Yamal Crater, and the authors assigned it the C1 index in the Arctic and World
Ocean geoinformation system [6–8,25–37]. Soon, in the north of Western Siberia, several
more similar craters were discovered, to which the authors assigned the indices C2, C3,
C4, etc. [6–8,22–37].

Studies carried out by the authors during the period 2014–2020 have shown a great po-
tential hazard of the Earth degassing in the regions where the cryolithosphere is
spread [6–8,21–37]. The C1 crater was formed at only 3.5 km from the Bovanenkovo–
Ukhta main high-pressure gas pipeline, and the C9 crater was formed near the railway.
The range of the frozen soil and ground ice fragments spread in various cases reached
300–900 m, which is much greater compared to man-made gas emissions that often occur
during emergency gushing through the annular space of wells [6,8,70,71]. In each of the
three known cases of gas emissions (C3, C11 and C12), as attested by indigenous people,
self ignition and gas explosion occurred [8]. This further increases the danger of powerful
gas blowouts for the infrastructure of oil and gas fields and human lives.

In the course of studies based on the interpretation of RS data, it was proven that before
the blowouts and explosions of gas at the sites of the craters, there were positive relief forms
that looked very similar to the perennial heave mounds (PHMs) widely known in various
regions of the Arctic [6,8,21–38,40,42,43,47–52,57,58,60,63,68]. In total, according to RS data,
7185 PHMs were found on Yamal alone [8,31,34]. Classical PHMs, called bulgunnyakhs
in Russia, and pingos in other Arctic countries (USA, Canada, Norway, Denmark), have
a cryogenic genesis and are usually formed in the low-lying parts in dried lakes basins
—khasyreis or in river valleys [31,72–75]. However, the geomorphological features of the
PHMs locations, in the places of which the craters were formed, turned out to be mostly
different (mainly uplands). This required research into possible models of the PHMs’
formation, as well as their destruction during the explosion. Various models have been
proposed and substantiated in the papers of the OGRI RAS authors [6,8,21–27,29–38,68]
and other scientists [40,42,43,47,49–52,57,58,76].

In 2014, a model of the gas blowout formation from gas-saturated cavities in mas-
sive ground ice appearing in the process of its local thawing from below was formulated
and published in the first articles about the crater [6,21,22]. Moreover, according to
this model [21]: “the gas deposit was formed not in a traditional sand reservoir, but
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in a cavity at the place of gradual thawing of ground ice (massive, vein, bulgunnyakh-
hydrolaccolith-pingo core, etc.) with replacement of ice/water space with gas. The
existence of the permafrost has led to the accumulation of huge volumes of gas in the
upper part of the section, including thermokarst cavities. The pressure of the accumu-
lated gas in a number of places turned out to be sufficient to destroy the permafrost
overburden, while the ejection of the destroyed part of the soil occurred due to the
action of pneumatic or gas-explosive mechanisms with the formation of parapet”. The
gas release was facilitated by the “heating of the lower part of the permafrost zone by
deep fluids, which, in addition to the effect of global warming, weakened the strength
properties of the permafrost” which could arise through the local fault zones [21]. Note
that the Bovanenkovo area and the craters C1, C2, C9, C10, C15 and C17 are located in
the anomaly zone of increased heat flow [21].

The PHM model with a gas-saturated thermokarst cavity in the ice mass found
additional strong confirmation in many subsequent studies by scientists from the OGRI
RAS, including the mathematical modeling of such objects in 2015 [24]. The model
is confirmed by the specific features of the craters C1, C2, C3, C4, C5, C10, C11, C12,
etc., as well as by the discovered overhanging remnants of the roof vaults of the PHMs
and grottoes inside the craters C1, C3, C5, C11 and C12, which can form and will only
survive in the presence of underground cavities before the explosion [8,29,33,36]. Several
years later, this model began to be recognized by some other scientists working on this
topic [52,64].

In addition, a gas-dynamic model of the heaving mounds formation due to a local
increase in reservoir pressure in weakly consolidated sediments on land and the bottom
of various water bodies, including the Ocean, was formulated and substantiated [8]. In
addition, it has been substantiated that even the formation of gas-saturated cavities in
the sedimentary stratum is possible when it is ruptured by a ultra-high pressure gas flow
(higher than lithostatic) [8]. This model explains the formation of craters (pockmarks) at
the bottom of thermokarst lakes and other water bodies, including the Ocean [69].

In the summer of 2020, a new gas blowout crater was discovered in the central part
of the Yamal Peninsula, which received the C17 index in the “Arctic and World Ocean”
database. In August 2020, an expedition to survey this object was carried out. In addition
to the staff of the OGRI RAS, the expedition was attended by specialists from the Skolkovo
Institute of Science and Technology, who also have experience in the research of similar
objects [12,16,40–43,76]. The purpose of this article was to report the preliminary results of
research on the C17 crater of gas blowout.

2. Description of the Region of Study

The crater was found by the head of the Russian Center of Arctic Development Andrey
Umnikov during a helicopter flight in the central part of the Yamal Peninsula (Figure 1).
It is located close to a group of the previously found C1, C2, C9, C10 craters situated
to the south of the Bovanenkovo oil and gas condensate field, unique in terms of gas
reserves (4.9 trillion m3), discovered in 1971 on the northern continuation of the Nurmin
megaswell [5,6,77–79]. The gas deposits of the field are located in a wide stratigraphic
range at depths ranging from 520–700 m (Cenomanian) to 3250–3450 m (Paleozoic). The
development of the Bovanenkovo oil and gas condensate field began in 2012 and reached
96.3 billion m3 of gas in 2019. The permafrost thickness in the crater C17 area reaches 250 m,
and the average temperature of the permafrost at the depth of Zero Annual Amplitude is
about −5 ◦C [5,79].

On the basis of the C17 crater photographs, only the dome of the PHM exploded,
while its vast peripheral part was preserved. This is also confirmed by all subsequent
materials. Large fragments of ejected soil were observed on the terrain surface around
the crater.
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Figure 1. The first photo of the C17 crater from the helicopter taken by Andrey Umnikov on 16 July 2020.

According to the permafrost-parametric drilling data to a depth of 350–550 m, carried
out during the period 1991–1997 by the permafrost engineering company “KRIOS” [80],
crater C17 is located in the area of continuous permafrost distribution within the third
marine terrace with specific tundra moss and shrub vegetation. This terrace consists of
Upper Pleistocene fairly homogeneous clay deposits (mIII2-3) up to 30 m thick [79,81]. Clay
deposits are characterized by a fairly high gravitational moisture content of 40–80% and
more for highly icy layers. The content of organic material in clay deposits is 7–9%. These
deposits are saline clay. Their total salinity mainly varies from 0.7 to 1.8%. The minimum
salinity values (up to 0.2–0.3) are confined to the ground ice layers. The high salinity of the
clay soil of the third marine terrace determines a significant content of unfrozen water up to
15–20 wt.%. The freezing point of investigated clay depends on soil salinity and can reach
−2.5 ◦C. In the lower part of these deposits, formation ice is widely represented. As a rule,
it is not saline. They are mainly underlain by sandy and sandy loam marine sediments of
the Upper Pleistocene (mIII1). From a depth of about 70 m, sandy and sandy-loam deposits
of the Yamal Series (mI-II1-2) occur, and at a depth of about 200 m, they come into contact
with clayey deposits of the Paleogene (mP1-2).

The study area is characterized by a high gas saturation in the upper part of the
permafrost. In the works by the LLC “KRIOS”, it was proven that “... in some areas
the frozen strata has a two- and, possibly, three-layer structure” separated by permeable
salt water layers—cryopegs [80]. In some areas, the frozen stratum is heterogeneous, has
a different lithological composition and salinity and therefore, it can contain extended
horizons of cooled sediments with cryopegs [79,80]. This pattern is also found in other
land and water areas of the Russian Arctic. This creates additional possibilities for the
sub-horizontal migration of fluids (water and gas), some of which come out to the ground
surface and into the atmosphere through numerous taliks that exist below thermokarst
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lakes and large rivers. During the drilling of many wells, gas was released from the
upper permafrost horizons (in the intervals of 20–130 m) with a flow rate of hundreds
and even thousands of cubic meters per day, and in some cases, the flow rates reached
10,000–14,000 m3/day [6,10,15,42,77,79,82]. The longest gas emission was observed from
the 72–80 m interval with a reservoir pressure of 8 atm in the well No. 64 in the southern
part of the Bovanenkovo field—the flare was burning for 550 days [6,16,77,79]. For the
first 30 days, the gas flow rate varied from 3000 m3/day to a stable 500 m3/day. In total,
about 300,000 m3 of gas burned out in this flare. Reservoir pressures in permafrost gas
reservoirs were usually below hydrostatic; only at five sites they exceeded it by 3–14% [79].
The composition of the gas was mostly methane (74.8–99.8%) [10,11,16].

3. Materials and Methods
3.1. Remote Sensing (RS) and Digital Elevation Model (DEM)

RS data from various satellites in space (Table 1) and the results of aerial photography
from helicopters and UAVs were used in this study. Obtaining high-quality RS data from
space for the Arctic is hampered by a small number of satellite observations and severe
weather conditions with frequent clouds. Therefore, we used satellite images of different
resolutions (Table 1).

The use of ArcticDEM (version 7) digital elevation models (DEMs), different time
strips from 2011 to 2017 [83,84] has been of great benefit. ArcticDEM is the National
Geospatial Intelligence Agency and the National Science Foundation (NGA-NSF) initiative
to create and distribute a high-resolution digital elevation model of the Arctic surface using
optical stereo images processed with photogrammetry software [84]. It covers nearly all the
area above 60◦ north latitude. The latest version 7 of ArcticDEM, available since September
2018, has a spatial resolution of up to 2 m and mainly includes DEMs built on satellite
images from WorldView 1, WorldView 2 and WorldView 3 from DigitalGlobe at resolutions
up to 0.5 m [83,84]. While all data are automatically generated from high-quality sources,
sometimes errors can occur on small steep-walled objects such as crater C1, and also in
arranging the DEM data according to the sea level [29,35,36].

Table 1. Brief characteristics of the used remote sensing (RS) data from space.

Satellite Resolution, m Source Country

Landsat-8 15 USGS USA

Sentinel-2 10 ESA EU

PlanetScope-Dove/Flock 3 Planet USA

WorldView-1, 2, 3 0.3–0.5 Terraserver USA-Canada

WorldView-1, 2, 3 2 NGA-NCF
(ArcticDEM) USA

Resurs-P No.1 0.5–0.6 SC “Roskosmos” Russia

3.2. Remote Sensing Using the Helicopter and Unmanned Aerial Vehicle (UAV)

The MI-8 helicopter was used for the regional search and local inspection of degassing
objects. Photos and coordinates of the detected objects have been added to the OGRI RAS
geoinformation system “Arctic and World Ocean”.

The DJI Mavic Pro (DJI, Shenzhen, China) unmanned aerial vehicle (UAV) was
equipped with a 12.3 MP Ultra HD camera “Mavic Pro” with a stabilizer. Satellites used
for navigation were GPS (USA) and GLONASS (Russia). UAVs are widely used in the
Arctic for solving various tasks, including monitoring geodynamic processes on the Earth’s
surface [29,35,36,38,71,85,86]. The main challenges of using UAVs in the high latitudes of
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the Arctic are frequent strong winds, as well as an insufficient number of GPS satellites in
the polar regions.

Processing UAV data in Pix4Dmapper, Agisoft Metashape and ArcGIS software [87–89]
provides possibilities to create DEMs and 3D spatial data. Pix4Dmapper and Agisoft
Metashape implement high-tech algorithms of objects detection and their spatial location
determination, as a result of the photogrammetric processing of a series of aerial pho-
tographs taken during UAV flights. Based on these data, using ArcGIS software, it is
possible to create 3D DEMs and conduct the monitoring of their changes in time [35,38,90].
All mentioned methods were used in our study.

3.3. Thermometric and Other Measurements on the Bottom and Around the Crater

The coordinates of ground objects, including the crater boundary, were measured
using a Garmin-64ST GPS, and the geometrical dimensions of the crater were determined
using a Leica-Rangemaster CRF 2000-B laser rangefinder.

The temperature at the bottom of the crater was measured with the KIT-1 temperature
measurement sensor manufactured by LLC RUSGEOTEKH [91], consisting of a multi-
channel thermometric cable assembly with 19 digital temperature sensors and a reader
operating in automatic mode. The instrumental error of the KIT-1 temperature meter
according to the technical characteristics of the device in the range of field measurements
does not exceed 0.1 ◦C.

3.4. Geochemical and Physical Properties of Ejected (Exposed) Sediment Samples

The main physical parameters of collected soil samples ejected by the gas explosion
during crater formation were determined according to standard methods used in soil
science, approved in accordance with Russian state standards (or “GOST” in Russian).
Moisture, soil density, soil particle density, as well as the upper and lower limits of soil
plasticity were determined in accordance with GOST 5180-2015 [92]. The particle size
distribution of soils was determined by the sieve method and the hydrometer method
according to GOST 12536-2014 [93]. The determination of the content of water-soluble
salts was carried out by the method of water extracts [94]. The total organic content was
determined by calcining to constant weight in accordance with GOST 23740-2016 [95].

4. Results of the Research
4.1. Field Studies

Expedition studies of the C17 gas blowout crater were carried out by the authors
on 26 August 2020. Figure 2 shows a photograph from a helicopter, and Figure 3 shows
a panoramic image of crater C17 from the southern edge of the remained PHM base.
The remnants of the base of the mound that existed before the explosion, and pieces of
frozen soil ejected during the explosion, which thawed in the summer, can be seen around
the crater. Over the past 40 days after the day of the crater discovery (16 July), its size
slightly increased due to the melting of the walls and the collapse of the rock, which can
be seen when comparing Figures 1 and 2. According to direct measurements with the
Leica-Rangemaster CRF 2000-B, the depth of the crater in different parts of the bottom
varied from 29 to 33 m (minimum in the center of the crater). The average outer diameter
of the crater (near the ground surface) was about 25 m.

The upper part of the crater walls in the zone of underground cavity cover rupture
(the arch of the mound) have a rounded conical shape (Figures 2, 3 and 4A). The height
of the residual walls of the mound in some places exceeded 2 m. Due to the peculiarities
of the heating of the mound’s inner exposed part (the crater wall) by solar radiation, a
dark strip is noted, which corresponds to the boundary of the permafrost thawing on the
crater wall from the surface. The depth of this boundary, depending on the angle of the
incoming sun’s radiation of the heating zone, varies from 1.5–2 to 6 m, which is clearly
seen in Figures 3 and 4A.
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The upper part of the permafrost in the crater is composed of clayey rocks with a
characteristic reticulate cryogenic structure with a predominance of subvertical ice veins
(almost pure ice) (Figure 4A–D). Icy clayey rocks lie on a layer of massive ground ice
with different shades (Figure 4B,D). The crater walls are almost vertical in two opposite
directions. In two other directions, large void spaces in the form of grottoes are observed in
the ground ice (Figure 4B, Figure 5B,C), deeply going into two opposite sides with a NNW
and SSE orientation.

Several characteristic horizons were clearly visible while examining the crater walls.
The uppermost soil layer of seasonal thawing with a thickness of about 0.7–1.2 m is dis-
tinguished by a brownish color due to the presence of peat and iron (Figures 3 and 4A).
Below this layer lie gray clayey rocks that compose the upper part of the permafrost.
The clays are ice rich and have a characteristic reticulate cryogenic structure. Visible ice
content reaches 35–40% (Figure 4C). Numerous subvertical cracks filled with ice inter-
layers are especially well distinguished (Figure 4C). In the upper part of the permafrost,
the cryogenic structure is medium-netted with fine veins, and below it is medium-netted
with medium veins, from a depth of 4–6 m it turns into a medium-large netted with
characteristic thick vertical and steeply inclined veins. The contact of frozen clays with
massive ground ice is located at a depth from 9.1 to 11.5 m from the parapet. The
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uppermost part of the ground ice with a thickness of 2.4–2.5 m is broken and differs
from the smooth walls of the crater in its characteristic chipped appearance (Figure 4D).
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Figure 4. Features of the structure of the crater walls (photos by Vasily Bogoyavlensky (A,B), Roman Nikonov (C) and
Evgeny Chuvilin (D), 26 August 2020).

The ground ice layer extends to the very bottom of the crater, i.e., its thickness exceeds
20–23 m. The dirty ice is predominantly gray, and in places brownish and whitish (possibly
due to the presence of gas bubbles). It is layered due to inclusions and plastic deformations.
In the upper part, the layering emphasizes some dome-like structure of the ice body
associated with its formation and transformation during the occurrence of internal gas-
dynamic pressures. The ground ice has a melted surface (see Figure 4D), with characteristic
oval hollows (cavities) associated with the uneven melting of the ice, apparently during
the formation and development of a gas-saturated cavity.

According to visual analysis, at the bottom of the cavity, there is an elevation of wet
clay material (Figure 4B), which accumulated due to the fall of most of the exploded
mound cover and crumbling of thawing soil from the crater walls. There was little
bottom water in the crater. This water was identified only in two lower parts (lateral
depressions) associated with two grottoes which protect it from soil shedding of the
crater’s walls (Figure 5B,C).

During the field research, a KIT-1 thermometric cable assembly with 19 temperature
sensors and a reader was lowered to the bottom of crater C17 on a cable. The cable
assembly was placed on the surface of the wet clay soil for 1.5 h and the temperature
sensors measured the temperature at the soil–air boundary. When processing the results,
temperature changes that occurred during the first 30 min were excluded as interference
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arising from insufficient temperature stabilization. The remaining data were averaged for
each of the sensors. According to the measurements, the temperature at the clay surface of
the crater bottom varied from +0.56 ◦C to +2.26 ◦C, with the average temperature being
about +1.25 ◦C.
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Figure 5. Aerial photographs of the C17 crater from the height of 50 m above sea level (A), its northern (B) and southern
(C) grottoes from inside the crater (photo from unmanned aerial vehicle (UAV) taken by certified external pilot Igor
Bogoyavlensky, 26 August 2020).

Unique results were obtained using the DJI Mavic Pro UAV. The main part of aerial
photography of the C17 crater area for the DEM construction was carried out from the
heights of 60–250 m. However, from these heights the lower darkened part of the under-
ground cavity with a depth of about 30 m was not visible without special processing due to
the effect of a “black hole”. Figure 5A shows a fragment of a brightened aerial photograph
of C17 crater from a flight altitude of 50 m, on which the bottom of the crater with the
crumbling rock is visible.

Due to the impossibility of photographing the complex shape of the entire cavity
from a height of 50 m, in which two lateral extended underground void spaces were
observed, a survey was carried out with a drone flying into the crater at a level of
10–15 m below the ground surface. At the same time, there was a short-term loss of
communication between the drone and satellites and the remote control sharply deterio-
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rated. All this could lead to the loss of the apparatus. However, thanks to the previously
gained experience in UAV control, “underground aerial photography” inside the crater was
successfully performed. Fortunately, more than 80 unique photographs were taken inside
the crater using the UAV, providing an opportunity for its detailed examination and digital
photogrammetric processing.

Figure 5B,C show photographs of two side hollows (north and south grottoes) located
in diametrically opposite NNW and SSE directions at azimuths of 350◦ and 170◦, respec-
tively. The bottom of the underground cavity in the grottoes is deeper than it is in its center,
and therefore it is flooded with water. At the same time, above the water, there are spaces
extending in the directions indicated above (possibly narrow caves in the ice), the edges of
which can only be seen at a close approach.

Coordinates and photographs were taken of more than 50 pieces of ejected soil on
the surface around the crater. Note that impact craters in the soil cover (similar to those
found near craters C2 and C3) were not found. From this, it was concluded that the gas
blowout occurred during the time when the seasonal thawing layer of ground was still
frozen (November–June).

Lumps of soil larger than 0.5 m were detected at a distance of up to 60 m from the edge
of the crater. The largest ground masses were located near the crater. Individual pieces of
ejected soil material up to 10 cm in size were found at distances of up to 200–220 m. In
general, the ejected soil materials were presented by homogenous gray clay material. It
was often broken up by a network of cracks, partially swollen, which is apparently the
result of the melting of ice veins. Samples of the ejected soil were collected from various
distances from the crater (15, 30 and 150 m) during the survey of the territory for further
investigations in the laboratory.

4.2. Field Data Processing

The particle size distribution by the hydrometer method, the chemical composition of
pore water and a few physical characteristics were determined for the selected soil samples.
The average results of this study are presented in Table 2 and Figure 6.

Table 2. Selected characteristics of soil ejected during the crater formation.
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1 15 2.65 15.0 0.28 4.0

2 30 2.68 17.7 0.28 5.4

3 150 2.74 18.7 0.68 5.2

The studied samples are characterized by heavy clay and silty clay texture classes
(Figure 6), the content of clay particles (sizes less than 0.002 mm) reaches 60%, and in two
samples (2 and 3) there are almost no particles larger than 0.1 mm (less than 1%), whilst
in one (1) their content is only 6.7%. Depending on the distance from the crater, there is a
tendency to an increase in the fineness of the sampled soils, which is confirmed by the data
of the particle size distribution, as well as the results of determining the plasticity index. At
a large distance from the crater (about 150 m), the soils were more dispersed, more saline
(0.68%) with an increased content of organic material up to 5.2%. The chemical composition
of the water extracts of the sampled soil was dominated by chlorine (Cl−), sulfate (SO4−2)
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anions and Na++K+, Ca+2, and Mg+2 cations, which indicates the marine type of salinity.
The obtained results show good correlation with early investigations [79,81], which is
confirmed by the rather homogeneous particle size distribution of sediments of the third
marine terrace in the study area.
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4.3. Remote Sensing Data Processing

The PHM before the explosion (size 80 × 80 m) is shown in the WorldView-2 satellite
image from 21.08.2013 (Figure 7A) and ArcticDEM (Figure 7B). According to the analysis
of the available data of the ArcticDEM strips as of 2011 and 2017, there was a PHM before
the explosion, which existed at the site of the crater, the height of which increased from
3.4 m in 2011 to 4.2 m in 2017. At the same time, the average growth rate of the PHM over
6 years was 13.3 cm per year, which is significantly less than the growth of the mound on
the Seyakhinsky object (C11) [8,29,33,36]. For 6 years, the horizontal dimensions along
the lower closed contour of the mound of C17 object increased from 36 × 46 m in 2011 to
43 × 58 m in 2017. These sizes were determined by the approximation of the isolines by
ellipses by neglecting small undulations (up to 0.2–0.4 m), associated with local changes
in the altitudes of the relief, the distorting influence on DEM from shrub vegetation, and
possible errors in the calculations of the ArcticDEM. The main axes of the ellipses had
NNW orientation at azimuths of approximately 335◦ in 2011, 338◦ in 2013 and 343◦ in
2017. A comprehensive analysis of retrospective RS data and the available topographic
maps at a scale of 1:50,000 showed that the PHM existed for at least 20 years before
the explosion.
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Figure 7. WorldView-2 satellite image of the perennial heaving mound on the site of the C17 object (ESRI) (A) and ArcticDEM
on 21 July 2013 (B).

The date of the gas blowout and the formation of the C17 crater was determined by
the RS data based on the analysis of available satellite images of 2020, mainly of medium
resolution (Table 1). For the period from April to July, there is a very limited number
of available high-resolution satellite images. Based on the set of the medium-resolution
satellite images from Landsat-8 (15 m), Sentinel-2A and Sentinel-2B (10 m), as well as a
limited number of PlanetScope satellite images (3 m), the presence of a crater has been
unambiguously determined from 9 June (possibly from 4 June). Figure 8 shows a series
of Sentinel-2 satellite images of the studied object (size 440 × 440 m) at different times,
including those with snow cover (15 May and 22 October), after the incomplete melting
of snow cover (9 June) and in summer with green vegetation (6 July). As a result of the
analysis, it was established that the PHM definitely existed until 15 May (the beginning of
the snow cover melting). It can be said with less certainty that the PHM still existed on
28 May. Thus, the date of the gas blowout is clearly limited to the period from 15 May to
9 June (possibly from 28 May to 4 June).
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4.4. UAV Field Data Processing: Creating 3D Models Based on Aerial Photography Data

Figure 9A shows a fragment of an aerial photograph in the area of the C17 crater,
taken from an UAV at a height of 250 m. The digital photogrammetric processing of the
UAV data was performed using Pix4Dmapper and ArcGIS, which allow creating a DEM.
At the first stage of processing, 52 aerial photographs were used from a height of 60 m.
Figure 9B,C show the orthophotomap of the C17 crater area and the constructed DEM.
The terrain relief, including the remaining parts of the mound and the walls of the crater
in the upper part, is additionally displayed on the DEM (Figure 9C) in isolines with a step
of 1 m. Small objects are visible on the ground surface, corresponding to pieces of ejected
soil and vegetation (bush), which are also seen in Figure 9A,B. However, the internal
structure of the cavity is not displayed and the depth of the crater turned out to be two
times less (Figure 9C) due to the aforementioned “black hole” effect (see Figure 9A,B).
The automatic display of the pseudo-bottom of the crater in the ArcGIS software was
obtained based on interpolation along the contours of the inclined walls of the upper part
of the crater.
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Figure 9. Aerial image from the UAV (A), orthophotomap (B) and digital elevation model (DEM) in the area of the C17
crater (C) (photo by Igor Bogoyavlensky, 26 August 2020).

Note that at the first stage of processing, the constructed 3D model of the crater
(Figure 9C) correctly only displays the DEM with the upper part of the crater to depths
of about 14 m and does not display the structure of its lower part (depths from 11, 5–14
to 32 m). This result was predicted by the authors during the field survey. In this regard,
81 aerial photographs were taken at a depth of 15 m below the ground level to correctly
display the space of the cavity.

At the second stage, the comprehensive photogrammetric processing of 133 aerial
photographs was carried out, including 52 from a height of 60 m above the ground and
81 taken inside the crater, 10–15 m below the ground surface. Note that during the
processing, two aerial photographs had to be rejected because there were some mistakes in
the coordinates.

Figure 10 shows two screenshots of a complex 3D model, including a DEM of the
ground surface and underground space, depicted as a cloud of points with color coding
corresponding to the altitude relative to the sea level. The bottom of the underground
cavity is shown in Figure 10 in blue, while in Figure 10A one can see the elevation of the
bottom in the central part due to the fallen rock. The range of the bottom depths in the
crater (vertically) varies from 28 m in the center of the crater to the water level in the distant
parts of the grottoes at a depth of 32 m. Taking into account the water layer, it can be
assumed that the initial depth of the cavity bottom was about 34–35 m.
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Figure 10. Yamal gas blowout crater C17: 3D model of the ground surface and underground cavity in two orthogonal
directions (A,B) according to aerial photography from UAV (field data of 26 August 2020).

According to the constructed 3D model (Figure 10), the size of the crater on the surface
of the earth was 24 × 25 m, and the internal size of the elliptical crater vent was from 15 to
18 m (at a depth of 11.5–14 m). The dimensions of the lower part of the underground space
at its bottom are 13–15 m wide and 61–62 m long in the direction of the grottoes. The area
of the cavity bottom is about 700–720 m2. The approximate volume of the underground
space of the crater with the cavity is estimated at about 10,000 m3, including about 7500 m3

of the cavity in the ground ice.

5. Discussion

The explored new C17 gas blowout crater provided a rare opportunity to obtain
unique information. It is characterized by minimal water flooding and the uniquely good
preservation of a significant part of the arch and a cavity of complex shape formed in the
ground ice. The release of the gas at the C17 crater occurred through the central part of the
PHM, which formed on the surface of the third marine terrace in the central part of the
Yamal Peninsula. In this regard, this PHM cannot be classified as a classic frost heaving
mound (bulgunnyakh or pingo).

The crater was discovered on 16 July, no later than two months after its formation
(15 May–9 June 2020), approximately 1.5 months after the beginning of active snow melt in
spring. Note that according to the nearest weather station in Maresale, Yamal (69.714◦ N,
66.812◦ E, 25 m above sea level), in 2020, the lowest temperature in the study region reached
−32 ◦C (1 February), and a stable positive temperature was established starting from 3 June
(17 July was about +7 ◦C) [96]. According to the Sentinel-2 and Landsat-8 satellite images,
on 10 June, most of the depressions in the terrain were filled with snow, which still existed
on 6 July on the shady walls of the steepest slopes. Taking this into account, it can be
claimed that the initial appearance of the crater after the gas blowout and the destruction
of the mound arch was close to that shown in the photograph in Figure 1. This figure
shows that thawing affected only the uppermost, inner part of the mound remnants (about
1–1.5 m), when landslides of the soil layer falling into the crater began from it. However,
the share of the exploded part of the mound volume is clearly small—according to visual
assessment, no more than 15–20% (Figures 1–3). We believe that part of the ejected soil was
ground ice (in some places almost pure ice), which melted in the summer (June–July) 2020.
The largest part of the ejected rock, which flew vertically after the explosion, apparently
fell back into the crater. A large pile of fallen soil is visible at the bottom of the cavity
(Figures 4B and 5). This situation was observed in almost all previously surveyed craters
(e.g., C1, C3, C9, C11) [6,8,21–36].

During the survey on 26 August, the temperature at the bottom of the constantly
shaded underground cavity was only +1.25 ◦C, and on the surface of its ice walls, it
was around 0 ◦C. Therefore, we can assume that the ice walls in the lower half of the
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underground cavity (Figures 4, 5 and 9) were almost identical to the original ones at the
time of the explosion. The bottom of the crater was almost dry with two separate pools
of water in local depressions in two diametrically opposite channels—grottoes. It should
be noted that earlier small grottoes were found in the bottom parts of craters C1, C3 and
C12 [22,64]. However, nowhere were they so large and strongly extending into the lateral
spaces of the massive ice. Probably, they were in the crater C1, but its lower part had
already been intensively flooded by the time of the first observation.

On the remnant parts of the underground cavity dome and on the cavity walls,
numerous caverns are present (Figure 1, Figure 4B,D and Figure 5B,C), which are forming
due to the uneven melting of ice. Such caverns occur in the domes and walls of all ice
cavities (caves), which form as a result of upward melting of glacial ice and firn. They were
also revealed in the ice walls of all the craters, which were observed before their flooding
(C1, C3, C5, C4, C12). This indicates that gas-filled cavities existed before the explosions of
the PHMs.

The complex shape of the underground space and the "black hole" effect did not
allow to construct a 3D model of the C17 crater by traditional aerial photography. In this
regard, “underground aerial photography” was carried out, which posed great difficulties
associated with the high probability of losing the apparatus with all the photographs. It
is also worth noting that the aerial photography of such underground spaces has never
been performed before. As a result of the complex photogrammetric processing, a unified
digital 3D model was built, including the surface and the walls of the underground space
of a complex-shaped cavity with the remaining part of the arch (Figure 10).

The oblong shape of the underground cavity, the bottom of which can be approximated
by an ellipse with the main axes of 61.5 and 14 m (compression ratio 0.228), and specific
elements in the structure of the ice walls (Figure 4B) suggest that initially not one, but at
least two cavities were formed in the massive ice. As their size increased, these cavities
merged into a single underground space with an elliptical bottom. The major axis of the
ellipse has a NNW orientation at azimuth of 350◦. It differs just by 7◦ from the azimuth
of the major axis of the ellipse (343◦), approximating the shape of the PHM which existed
before the explosion (in 2017). This difference can be explained by the dipping of the area
relief in the western direction.

It is worth noting that on the Yamal Peninsula, the main tectonic elements (including
the Nurmin megaswell) and faults are oriented in the NW and NNW directions [6,8,77–79].
Based on this, it can be concluded that the shape of the underground cavity is intercon-
nected with fault tectonics. It should also be noted that the group of craters C1, C2, C9,
C10, C15 and C17 is located in the area of increased heat flow [6,8,21].

The only explanation for the PHM growth and explosion is the gas-dynamic mecha-
nism. The increase in gas pressure in the underground cavity led to the growth of a mound
in its arched part, which eventually led to the rupture of the top with the ejection of gas,
fragments of ice and frozen soil. The recorded spread of soil material during gas blowout
reached 200–220 m.

Taking into account the results of studies of other craters (C1, C3, C11, Lake Otkry-
tiye) [6,8,27,64], it is suggested that the gas emission can continue, leading to repeated
powerful gas blowouts like volcanic type of eruption [8,21,22,27–29,33,36].

6. Conclusions

For the first time on the Yamal Peninsula, a well-preserved crater of gas blowout,
minimally filled with water, was discovered in the upper horizons of the frozen strata. This
made it possible to carry out detailed field research using modern 3D survey methods. For
the first time aerial photography from inside the crater with a UAV, a practically unchanged
intrapermafrost cavity in the lower part of the crater, where the accumulation of gas under
the pressure and the development of gas-dynamic processes took place, was depicted in a
digital 3D model. Detailed data on the form of the crater walls and the intrapermafrost
cavity in its lower part, formed in the massive ice mass, were obtained.
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It was revealed that the occurrence of the crater was preceded by the long-term
existence of the PHM on the surface of the third marine terrace. The upper part of the
section (up to a depth of 11 m) consisted of clay soils with a high ice content and a reticulate
cryogenic structure dominated by subvertical ice veins. Below 9.1–11.5 m, the exposed
section to a depth of 32 m was represented by massive ground ice. The ice is layered with
traces of deformation and a melted surface with small isometric hollows (caverns). The soil
material ejected during the formation of the crater was characterized by a predominance of
clay particles, presence of organic matter of about 5% and a weak salinity of up to 0.7%.
The spread of soil material from the center of the crater reached 220 m.

According to the digital 3D model, the crater diameter was about 25 m, and the
dimensions of its elliptical vent were about 15 × 18 m. The underground space of the
cavity in the massive ice mass was about 13–15 m wide, and the length in the direction
of the grottoes was over 60 m. In general, the volume of the underground space is about
10,000 m3, including about 7500 m3 of the cavity in ice.

The specific shape of the underground cavity in the massive ice, the structure of which
is depicted by a digital 3D model, is of great importance for the factual confirmation of
the model of cavity formation. It proves the model of its formation in the massive ground
ice, the gas-dynamic mechanism of the PHM formation and powerful gas blowout with
the destruction of the arch part of the underground cavity and the PHM itself, for the
first time formulated and substantiated in [6,21,22,24]. The repeated gas blowouts are
highly probable.

Despite the source of the gas and how it formed the aforementioned cavities and
caused blowouts and crater formation remain unclear (it could be gas from gas hydrate
dissociation and natural gas deposits in permafrost, gas migrated from deeper horizons or
mixed gas), the data obtained can be used as among the elements in calculating the volumes
of gas emissions from previously unaccounted sources of powerful methane blowouts in
the Arctic under the “Global Carbon Project” [1,2].
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