The Equilibrium Concept, or…(Mis)concept in Beaches
Abstract
:1. Introduction
- Steady: where the average system’s condition trajectory is unchanged through time.
- Stable: where a system has a tendency to return to the same equilibrium state once it experiences disturbance.
- Unstable: where a system returns to a new equilibrium, post any disturbance.
- Static: where reactive forces and moments must balance the externally applied forces and moments.
- Metastable: where additional energy must be introduced before an object can reach true stability.
- The number of items involved in the sediment budget is so high that is statistically impossible for the balance to close at zero.
- Input and output volumes for each item change continuously and even if equilibrium is reached, it lasts one moment.
- Almost all the processes are not feedback regulated, which is the only chance for natural systems to be stable.
2. Beach Sediment Budget
2.1. Riverine Input
2.1.1. Changes in Rainfall
2.1.2. Variations in Vegetation Cover
2.1.3. Hydraulic Works
2.1.4. River Bed Quarrying
2.2. Coastal Processes
2.2.1. Beach and Dune Mining
2.2.2. Relative Sea Level Change
2.2.3. Aeolian Transport
2.2.4. Wave Energy
2.2.5. Biogenic Production and Chemical Precipitation, e.g., Inside Posidonia Prairies, Mangroves
2.2.6. Hard Rock Coasts
2.2.7. Coastal Structures
3. Conclusions
Funding
Conflicts of Interest
References
- Kennedy, B.A. Dynamic equilibrium. In The Dictionary of Physical Geography; Goudie, A., Ed.; Oxford: Oxford, UK, 1985; pp. 142–143. [Google Scholar]
- Kennedy, B.A. Hutton to Hutton—views of sequence, progression and equilibrium in geomorphology. Geomorphology 1992, 5, 231–250. [Google Scholar] [CrossRef]
- Phillips, J.D. Nonlinear dynamical systems in geomorphology; resolution or revolution. Geomorphology 1992, 3, 219–229. [Google Scholar] [CrossRef]
- Thorn, C.E.; Welford, M.R. The equilibrium concept in geomorphology. Ann. Assoc. Amer. Geog. 1994, 84, 666–696. [Google Scholar] [CrossRef]
- Graf, W.I. Mining and channel responses. Assoc. Amer. Geog 1979, 69, 262–275. [Google Scholar] [CrossRef]
- Dean, R.G. Dynamic equilibrium. In Encyclopaedia of Coastal Science; Schwartz, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 399–400. [Google Scholar]
- Huggett, R.J. A history of the systems approach in geomorphology. Géomorphol.: Relief Process. Environ. 2007, 2, 145–158. [Google Scholar] [CrossRef]
- Gregory, K.J.; Lewin, J. The Basics of Geomorphology, the Key Concepts; Sage: Thousand Oaks, CL, USA, 2014; p. 248. [Google Scholar]
- Renwick, W.H. Equilibrium, Disequilibrium, and Nonequilibrium Landforms in the Landscape. Geomorphology 1992, 5, 265–276. [Google Scholar] [CrossRef]
- Jaramillo, C.; Sánchez-García, E.; Jaru, M.S.; González, M.; Palomar-Vasquez, J.M. Subpixel satellite-derived shorelines as valuable data for equilibrium shoreline evolution models. J. Coast. Res. 2020, 36(6), 1215–1228. [Google Scholar] [CrossRef]
- Jackson, D.W.T.J.; Cooper, J.A.G. Application of the equilibrium planform concept to natural beaches in Northern Ireland. Coast. Eng. 2010, 57, 112–123. [Google Scholar] [CrossRef]
- Gilbert, G.K. Report on the geology of the Henry Mountains: US Geogr. and Geol. Survey of the Rocky Mountain Region (Powell Survey): US Govt. Printing Office, 160 p. 1909, The convexity of hilltops: Lour. Geology 1877, 17, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Ahnert, F. An approach to dynamic equilibrium in theoretical simulations of slope development. Earth Surf. Process. Landf. 1987, 12, 3–15. [Google Scholar] [CrossRef]
- Willgoose, G.; Bras, R.L.; Rodriguez-Iturbe, I. The relationship between catchment and hillslope properties: Implications of a catchment evolution. Geomorphology 1992, 5, 21–37. [Google Scholar] [CrossRef]
- Schumm, S.A.; Lichty, R.W. Time, space and casualty in geomorphology. Amer. Jn. Sci. 1965, 263, 110–119. [Google Scholar] [CrossRef]
- Beattie, J.A.; Oppenheim, I. Principles of Thermodynamics; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1979; p. 329. [Google Scholar]
- Howard, A.D. Equilibrium models in geomorphology. In Modelling Geomorphological Systems; Anderson, M.G., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1988; pp. 49–72. [Google Scholar]
- Bracken, L.J.; Wainwright, J. Geomorphological equilibrium; myth or metaphor? Trans. Brit. Geog. 2006, 31, 167–178. [Google Scholar] [CrossRef]
- Richards, R. Rivers, form and Processs in Alluvial Channels; Methuen: London, UK, 1982; p. 358. [Google Scholar]
- Chorley, R.J.; Kennedy, B.A. Physical Geography: A Systems Approach; Prentice Hall: London, UK, 1971; p. 370. [Google Scholar]
- Ahnert, F. Introduction to Geomorphology; Arnold: London, UK, 1996; p. 360. [Google Scholar]
- Bogaert, P.; Montreuil, A.L.; Chen, M. Predicting volume change for beach intertidal systems: A space-time stochastic approach. J. Mar. Sci. Eng. 2020, 8, 901. [Google Scholar] [CrossRef]
- Hallermaier, R.J. Use for a calculated limit depth to beach erosion. Coast. Eng. 1978, 1978, 1493–1512. [Google Scholar]
- Short, A.D.; Masselink, G. Embayed and structurally controlled beaches. In Handbook of Beach and Shoreface Morpho-Dynamics; Wiley: Chichester, UK, 1999; pp. 230–250. [Google Scholar]
- Bird, E.C.F. Coastline Changes; A Global Review; Wiley: Chichester, UK, 1985; p. 219. [Google Scholar]
- Bird, E.C.F. Encyclopedia of the World’s Coastal Landforms; Springer: Berlin/Heidelberg, Germany, 2010; p. 1516. [Google Scholar]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Rosati, J.D. Concepts in Sediment Budgets. J. Coast. Res. 2005, 21, 307–322. [Google Scholar]
- Pranzini, E. Cause naturali ed antropiche nelle variazioni del bilancio sedimentario del litorali. Riv. Geogr. It 1995, 1, 47–62. [Google Scholar]
- Pethick, J. An Introduction to Coastal Geomorphology; Arnold: London, UK, 1984; p. 260. [Google Scholar]
- Best, T.C.; Griggs, G.B. A sediment budget for the Santa Cruz littoral cell. In: From Shoreline to the Abyss. Soc. Econ. Palaeontol. Mineral. 1991, 46, 35–50. [Google Scholar]
- Nastos, P.T.; Evelpidou, N.; Vassilopoulos, A. Does climatic change in precipitation drive erosion in Naxos Island, Greece? Nat. Hazards Earth Syst. Sci. 2010, 10, 379–382. [Google Scholar]
- Fensham, R.J.; Fairfax, R.J.; Arecher, S.R. Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J. Ecol. 2005, 93, 596–606. [Google Scholar] [CrossRef]
- Langbein, W.B.; Schumm, S.A. Yield of sediment in relation to mean annual precipitation. Eos Trans. Am. Geophys. Union 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Holtmeier, F.-K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Milevski, I. Morphometric elements of terrain morphology in the Republic of Macedonia and their influence on soil erosion. In Proceedings of the International Conference Erosion and Torrent Control as A Factor in Sustainable River Basin Management, Belgrade, Serbia, 25–28 September 2007; pp. 25–28. [Google Scholar]
- Hughes, J.D.; Thirgood, J.V. Deforestation, erosion, and forest management in ancient Greece and Rome. J. For. 1982, 29, 60–75. [Google Scholar] [CrossRef]
- Innocenti, L.; Pranzini, E. Geomorphological evolution and sedimentology of the Ombrone River delta (Italy). J. Coast. Res. 1993, 9, 481–493. [Google Scholar]
- Han, Z.; Dai, Z. Reclamation and river training in the Quintang estuary. In Engineered Coasts; Chen, J., Eisma, D., Hotta, K., Walker, H.J., Eds.; Kluwer Academic Press: Dordrecht, The Netherlands, 2002; pp. 121–138. [Google Scholar]
- Cipriani, L.E.; Pranzini, E.; Rosas, V.; Wetzel, L. Landuse changes and erosion of pocket beaches in Elba Island (Tuscany, Italy). J. Coast. Res. 2011, SI64, 1774–1778. [Google Scholar]
- Frangipane, A.; Paris, E. Long-term variability of sediment transport in the Ombrone River basin (Italy). Iahs Publ. -Ser. Proc. Rep. -Intern Assoc Hydrol. Sci. 1994, 224, 317–324. [Google Scholar]
- Nyssen, J.; Van den Branden, J.; Spalević, V.; Frankl, A.; Van de Velde, L.; Čurović, M.; Billi, P. Twentieth century land resilience in Montenegro and consequent hydrological response. Land Degrad. Dev. 2014, 25, 336–349. [Google Scholar] [CrossRef] [Green Version]
- Arnaez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejoj. Land Degrad. Develop. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Pasquinucci, M.; Mecucci, S.; Morelli, P. Territorio e popolamento tra i fiumi Arno, Cascina ed Era: Ricerche archeologiche, topografiche e archivistiche. In Proceeding of the Atti 1° Congresso Archeologia Medioevale, Pisa, Italy, 29–31 May 1997. [Google Scholar]
- Rinaldi, M. Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surf. Process Landf. 2003, 28, 587–608. [Google Scholar] [CrossRef]
- Zunica, M. Le Spagge del Veneto. Consiglio Nazionale Delle Ricerche; Tipografia Antoniana: Padova, Italy, 1971; p. 146. [Google Scholar]
- Im, D.; Kang, H.; Kim, K.-H.; Choi, S.-U. Changes of river morphology and physical fish habitat following weir removal. Ecol. Eng. 2011, 37, 883–892. [Google Scholar] [CrossRef]
- Walling, D.E. The Impact of Global Changen Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges; UNESCO World Water Assessment Programme: Paris, France, 2009; p. 30. [Google Scholar]
- Torab, M.; Azab, M. Modern shoreline changes along the Nile delta coast as an impact of construction of the Aswan high dam. Geogr. Tech. 2007, 2, 69–76. [Google Scholar]
- Liu, P.; Li, Q.; Li, Z.; Hoey, T.; Liu, Y.; Wang, C. Land Subsidence over Oilfields in the Yellow River Delta. Remote Sens. 2015, 7, 1540–1564. [Google Scholar] [CrossRef] [Green Version]
- Amore, C.; Giuffrida, E. L’influenza dell’interrimento dei bacini artificiali del F. Simeto sul litorale del Golfo di Catania. Boll. Soc. Geol. Italy 1984, 103, 731–753. [Google Scholar]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Duda, J.J.; Grant, G.E. 1000 dams down and counting. Science 2015, 348, 496–497. [Google Scholar] [CrossRef]
- Harrison, L.R.; East, A.E.; Smith, D.P.; Logan, J.B.; Bond, R.M.; Nicol, C.L.; Williams, T.H.; Boughton, D.A. River response to large-dam removal in a Mediterranean hydroclimatic setting: Carmel River, California, USA. Earth Surf. Process. Landf. 2019, 43, 3009–3021. [Google Scholar] [CrossRef]
- East, A.E.; Pess, G.R.; Bountry, J.A.; Magirl, C.S.; Ritchie, A.C. Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology 2015, 246, 687–708. [Google Scholar]
- Warrick, J.; Bountry, J.; East, A.; Magirl, C.S.; Randle, T.J.; Gelfenbaum, G.; Ritchie, A.C.; Pess, G.R.; Leung, V.; Duda, J.J. Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis. Geomorphology 2015, 246, 729–750. [Google Scholar] [CrossRef]
- Dongxing, X.; Wenhai, Y.; Guiqiu, W.; Jinrui, C.; Fulin, L. Coastal erosion in China. Acta Geogr. Sin. 1993, 60, 468–476. [Google Scholar]
- Coltorti, M. Human impact in the Holocene fluvial and coastal evolution of the Marche region, Central Italy. Catena 1977, 30, 311–335. [Google Scholar] [CrossRef]
- Bondesan, M.; Dal Cin, R. Rapporti fra Erosione Lungo i Litorali Emiliano-Romagnoli e del Delta del Po e Attività Estrattiva Negli Alvei Fluviali. Cave e Assetto del Territorio; Italia Nostra—Regione Emilia-Romagna: Rome, Italy, 1975; pp. 127–137. [Google Scholar]
- Padmalal, D.; Maya, K.; Sreebha, S.; Sreeja, R. Environmental effects of river sand mining: A case from the river catchments of Vembanad lake, Southwest coast of India. Environ. Geol. 2008, 54, 879–889. [Google Scholar] [CrossRef]
- Bartolini, C.; Berriolo, G.; Pranzini, E. Il riassetto del litorale di Cecina. Porti Mare Territ. 1982, 4, 79–87. [Google Scholar]
- Duck, R. On the Edge: Coastlines of Britain; Edinburgh University Press: Edinburgh, UK, 2015; p. 222. [Google Scholar]
- Pranzini, E. Protection projects at two recreational beaches: Poetto and Cala Gonone beaches, Sardinia, Italy. In Beach Management; Williams, A., Micalleff, A., Eds.; Earthscan: London, UK, 2009; pp. 287–306. [Google Scholar]
- Thornton, E.B.; Sallengerb, A.; Conforto Sestoc, J.; Egleyd, L.; McGeee, T.; Parsons, R. Sand mining impacts on long-term dune erosion in southern Monterey Bay. Mar. Geol. 2006, 229, 45–58. [Google Scholar] [CrossRef]
- Vicinanza, D.; Ciavola, P.; Biagi, S. Progetto sperimentale di iniezione d’acqua in unità geologiche profonde per il controllo della subsidenza costiera: Il caso di studio di Lido Adriano (Ravenna). Studi Costieri 2008, 15, 121–138. [Google Scholar]
- Luo, X.X.; Yang, S.L.; Wang, R.S.; Zhang, C.Y.; Li, P. New evidence of Yangtze delta recession after closing of the Three Gorges Dam. Sci. Rep. 2017, 7, 41735. [Google Scholar] [CrossRef] [Green Version]
- Bartolini, C.; Palla, B.; Pranzini, E. Studi di geomorfologia costiera: X—Il ruolo della subsidenza nell’erosione litoranea della pianura del Fiume Cornia. Boll. Soc. Geol. It. 1988, 108, 635–647. [Google Scholar]
- Bruun, P. Sea level rise as a cause of shore erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar]
- Schwartz, M.L. The Bruun Rule—twenty years later. J. Coast. Res. 1987, 3, ii–iv. [Google Scholar]
- Dubois, R.N. A re-evaluation of Bruun’s rule and supporting evidence. J. Coast. Res. 1992, 8, 618–628. [Google Scholar]
- Davidson-Arnott, R.G.D. A conceptual model of the effects of sea level rise on sandy coasts. J. Coast. Res. 2005, 21, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, R.; Callaghan, D.; Stive, M.J.F. Estimating coastal recession due to sea level rise: Beyond the Bruun Rule. Clim. Chang. 2012, 110, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.A.G.; Pilkey, O.H. Longshore drift: Trapped in an expected universe. J. Sediment. Res. 2004, 74, 599–606. [Google Scholar] [CrossRef]
- van Straaten, L.M.J.U. Coastal barrier deposits in south and north Holland, in particular in the area around Scheveningen and Ijmuiden. Geol. Sticht. Med. 1965, 17, 41–87. [Google Scholar]
- Shepard, F.P. 35,000 years of sea level. In Essay in Marine Geology; Clement, T., Ed.; University Southern California Press: Los Angeles, CL, USA, 1963; pp. 1–10. [Google Scholar]
- Zenkovich, V.P. Processes of Coastal Development; Oliver & Boyd: Edinburgh, UK, 1967; p. 738. [Google Scholar]
- Psuty, N.P. Foredune mobility and stability. Fire Island, New York. In Coastal Dunes. Form and Processes; Nordstrom, K.F., Psuty, N., Bartel, B., Eds.; Wiley: Chichester, UK, 1990; pp. 159–176. [Google Scholar]
- Linklater, E. Orkney and Shetland; Robert Hale: London, UK, 1971; 272p. [Google Scholar]
- Steers, J.A. The Sea Coast, 3rd ed.; Collins: London, UK, 1962; 292p. [Google Scholar]
- Clemmensen, L.B.; Glad, A.C.; Hansen, K.W.T.; Murray, A.S. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age. Bull. Geol. Soc. Den. 2015, 63, 17–28. [Google Scholar]
- Vallejo, I.; Ojeda, J. El sistema de dunas activas del Parque Nacional de Doñana. In La dunas en España. Enquadernaciones Martinez; Sanjaume, E., Garcia, E.J., Eds.; CandelaInk: Cadiz, Spain, 2011; pp. 427–444. [Google Scholar]
- Illenberger, W.K.; Rust, I.C. A sand budget for the Alexandria coastal dune field, South Africa. Sedimentology 1988, 35, 513–521. [Google Scholar] [CrossRef]
- Hesp, P.A.; Short, A.D. Barrier morphodynamics. In Handbook of Beach and Shore Morphodynamics; Short, A.D., Ed.; John Wiley & Sons: Chichester, UK, 1999; pp. 307–333. [Google Scholar]
- Choi, J.Y.; Jeong, H.; Choi, K.Y.; Hong, G.H.; Yang, D.B.; Kim, K.; Ra, K. Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Mar. Pollut. Bull. 2020, 161, 111724. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.; Kraus, N. Prediction of cross-shore sediment transport and temporal scales at different spatial. Mar. Geol. 1995, 126, 11l–127. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R. Effect of long-term wave climate variability on longshore sediment transport along regional coastlines. Prog. Oceanogr. 2017, 156, 145–153. [Google Scholar] [CrossRef]
- Seymour, R.J.; Castel, D. Episodicity in longshore sediment transport. J. Waterw. Portcoastalocean Eng. J. Waterw. Port Coast. Ocean Eng. 1985, 111, 542–551. [Google Scholar] [CrossRef]
- Shi-Leng, X.; Teh-Fu, L. Long-term variation of longshore sediment transport. Coast. Eng. 1987, 11, 131–140. [Google Scholar] [CrossRef]
- Inman, D.L. Littoral cells. In Encyclopaedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 594–599. [Google Scholar]
- Davies, J.L. Geographical Variations in Coastal Development; Oliver and Boyd: Edinburgh, UK, 1977; p. 212. [Google Scholar]
- Perlin, A.; Kit, E. Longshore sediment transport on Mediterranean coast of Israel. J. Waterw. Portcoastalocean Eng. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Raynor, S. Prediction and other approaches to climate change policy. In Prediction: Science; Sarewitz, D., Pielke, R.A., Jr., Byerly, R., Jr., Eds.; Decision Making and the Future of Nature: Washington, DC, USA, 2000; pp. 269–296. [Google Scholar]
- Pilkey, O.H.; Cooper, J.A.G. Longshore transport volumes: A critical review. J. Coast. Res. 2002, 36, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Nobre Silva, A.; Taborda, R.; Bertin, X.; Dodet, G. 2012 Seasonal to Decadal Variability of Longshore Sand Transport at the Northwest Coast of Portugal. J. Waterw. Portcoastalocean Eng. J. Waterw. Port Coast. Ocean Eng. 2009, 138, 464–472. [Google Scholar] [CrossRef]
- Meier, D. The Historical Geography of the German North-Sea Coast: A Changing Landscape. Die Küste 2008, 74, 18–30. [Google Scholar]
- Trevelyan, M. Llantwit Major: Its History and Antiquities; John E. Southhall: Newport, UK, 1910; p. 124. [Google Scholar]
- Davies, P.; Williams, A.T. The enigma of Colhuw Port. Geogr. Rev. 1991, 81, 257–262. [Google Scholar] [CrossRef]
- Nott, J.; Smithers, S.; Walsh, K.; Rhodes, E. Sand beach ridges record 6000 year history of extreme tropical cyclone activity in north-eastern Australia. Quat. Sci. Rev. 2009, 28, 1511–1520. [Google Scholar] [CrossRef]
- Lozano, I.; Devoy, R.J.N.; May, W.; Andersen, U. Storminess and vulnerability along the Atlantic coastlines of Europe: Analysis of storm records and of a greenhouse gases induced climate scenario. Mar. Geol. 2004, 210, 205–225. [Google Scholar]
- Short, A.D.; Woodroffe, C.D. The Coast of Australia; Cambridge University Press: New York, NY, USA, 2009; p. 288. [Google Scholar]
- Devoti, S.; Silenzi, S.; Amici, I.; Aminti, P.; Amodio, M.; Bovina, G.; Callori Vignale, C.; Cappietti, L.; Chiocchini, O.; Di Gregorio, F.; et al. Il Sistema Spiaggia-Duna Della Pelosa (Stintino); Quaderno: Ispra, Italy, 2010; p. 288. [Google Scholar]
- Whittow, J.B. Geology and Scenery in Scotland; Penguin Books: Harmondsworth, UK, 1977; p. 362. [Google Scholar]
- Entwistle, J.A.; Abrahams, P.W.; Dodgshon, R.A. Multi-element analysis of soils from Scottish historical sites. Interpreting Land-use history through the physical and geochemical analysis of soil. J. Archaeol. Sci. 1998, 25, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Inman, D.L. Shore Processes. In Encyclopaedia of Science and Technology; McGraw Hill: New York, NY, USA, 1960; pp. 299–306. [Google Scholar]
- Dias, J.M.A.; Neal, W.J. Sea Cliff Retreat in Southern Portugal: Profiles, Processes, and Problems. J. Coast. Res. 1992, 8, 641–654. [Google Scholar]
- Mogi, A.; Tsuchide, M.; Fukushima, M. Coastal erosion of a new volcanic island Nishinoshima. Geogr. Rev. Jpn. 1980, 53, 449–462. [Google Scholar] [CrossRef]
- Morris, B. In defence of oblivion: The case of Dunwich, Suffolk. Int. J. Herit. Stud. 2014, 20, 196–216. [Google Scholar] [CrossRef]
- Hapke, C.; Plant, N. Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar. Geol. 2010, 278, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Priest, G.R. Coastal Shoreline Change Study Northern and Central Lincoln County, Oregon. J. Coast. Res. 1999, 28, 140–157. [Google Scholar]
- French, P.W. Coastal defences. In Processes, Problems and Solutions; Routledge: London, UK, 2001; p. 366. [Google Scholar]
- Silvester, R.; Hsu, J.R.C. Coastal Stabilization. Innovative Concepts. Englewood Cliffs; PRT: Prentice Hall, NJ, USA, 1993; p. 539. [Google Scholar]
- Anfuso, G.; Pranzini, E.; Vitale, G. An integrated approach to coastal erosion problems in northern Tuscany (Italy): Littoral morphological evolution and cells distribution. Geomorphology 2011, 129, 204–214. [Google Scholar] [CrossRef]
- Aagaard, T.; Masselink, G. The Surf Zone. In Handbook of Beach and Shore Morphodynamics; Short, A.D., Ed.; John Wiley & Sons: Chichester, UK, 1999; pp. 72–118. [Google Scholar]
- Evert, C.H. Beach behaviour in vicinity of groins -two New Jersey field experiments. Proc. Coast. Struct. 1979, 2, 853–857. [Google Scholar]
- Muir Wood, A.M.; Fleming, C.A. Coastal Hydraulics; The Macmillan Press Ltd.: London, UK, 1969; p. 280. [Google Scholar]
- Allen, J.R. Nearshore Sediment Transport. Geogr. Rev. 1988, 78, 148–157. [Google Scholar] [CrossRef]
- Bernatchez, P.; Fraser, C. Evolution of coastal defence structures and consequences for beach width trend, Québec, Canada. J. Coast. Res. 2012, 28, 1550–1566. [Google Scholar] [CrossRef]
- Neshaei, M.L.; Holmes, P.; Salimi, M.G. A semi-empirical model for beach profile evolution in the vicinity of reflective structures. Ocean Eng. 2009, 36, 1303–1315. [Google Scholar] [CrossRef]
- Lima, M.; Coelho, C.; Veloso-Gomes, F.; Roebeling, P. An integrated physical and cost-benefit approach to assess groins as a coastal erosion mitigation strategy. Coast. Eng. 2020, 156, 103614. [Google Scholar] [CrossRef]
- Tereszkiewicz, P.; McKinney, N.; Meyer-Arendt, K.J. Groins along the northern Yucatan coast. J. Coast. Res. 2018, 34, 911–919. [Google Scholar] [CrossRef]
- King, C.A.M. Feedback relationships in geomorphology. Geogr. Ann. 1970, 52A, 147–159. [Google Scholar] [CrossRef]
- Pranzini, E.; Rossi, L. The Role Of Coastal Evolution Monitoring. In Coastal Erosion Monitoring. A Network of Regional Observatories; Cipriani, L.E., Ed.; Nuova Grafica Fiorentina: Florence, Italy, 2013; pp. 11–55. [Google Scholar]
- Mossa, J.; Meisburger, E.P.; Morang, A. Geomorphic Variability in the Coastal Zone, Coastal Geology and Geotechnical Program; Technical Report CERC-92-4; Army Corps of Engineers: Washington, DC, USA, 1992; pp. 20314–21000.
- Furlani, S.; Ninfo, A. Is the present the key to the future? Earth-Sci. Rev. 2015, 142, 38–46. [Google Scholar] [CrossRef]
- Dean, R.G.; Maurmeyer, E.M. Models for Beach Profile Response. In CRC Handbook of Coastal Processes and Erosion; Komar, P.D., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1983; pp. 151–167. [Google Scholar]
- Cooper, J.A.G.; Pilkey, O.H. Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Glob. Planet. Chang. 2004, 43, 157–171. [Google Scholar] [CrossRef]
- Carroll, L. The Hunting of the Snark; Macmillan and Co.: London, UK, 1876; p. 84. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranzini, E.; Williams, A.T. The Equilibrium Concept, or…(Mis)concept in Beaches. Geosciences 2021, 11, 59. https://doi.org/10.3390/geosciences11020059
Pranzini E, Williams AT. The Equilibrium Concept, or…(Mis)concept in Beaches. Geosciences. 2021; 11(2):59. https://doi.org/10.3390/geosciences11020059
Chicago/Turabian StylePranzini, Enzo, and Allan T. Williams. 2021. "The Equilibrium Concept, or…(Mis)concept in Beaches" Geosciences 11, no. 2: 59. https://doi.org/10.3390/geosciences11020059
APA StylePranzini, E., & Williams, A. T. (2021). The Equilibrium Concept, or…(Mis)concept in Beaches. Geosciences, 11(2), 59. https://doi.org/10.3390/geosciences11020059