Perspectives on Snow Avalanche Dynamics Research
Abstract
:1. Why a Special Issue on Snow Avalanche Dynamics?
- “avalanche geography”, comprising the connection between geographic and climatic variables and the probability and severity of avalanching, the geomorphologic effects of avalanches, and the socio-economic aspects of avalanche hazard,
- avalanche formation, including the sequence of processes leading to fracture, its probability under given conditions, and the extent and depth of the released snow slab, and
- avalanche dynamics, including the study of flow regimes, density, velocity, snow entrainment and deposition as well as the interaction of avalanches with obstacles.
- How can one estimate the release probability in a given slope with given statistical properties of the climate (distributions of temperature, precipitation and wind)? How do the release area and fracture depth vary with the return period and climatic conditions?
- What are the physical mechanisms that allow some snow avalanches to attain very long run-out? How likely are the conditions under which such flows can occur?
- What are the mechanisms responsible for snow entrainment and deposition, and how can they be modeled adequately?
- How can one compute the pressure distribution on a building hit by a snow avalanche?
- How can avalanche activity be monitored, reliably and affordably, in near-real-time and over large areas?
2. The Underrated Potential of Field Observations
3. Avalanche Experiments—In Large Sites, Small Sites or the Laboratory?
4. The Open Theoretical Questions
5. How to Bring All Advances Together for Avalanche Hazard Mitigation?
- Seismic methods are promising for surveying avalanche activity (item 5) and are in many respects complementary to satellite- or aircraft-based imaging. The road towards an operative seismic real-time monitoring network is full of challenges, but the paper [16] represents one piece in the puzzle. For recent related but complementary work, also see [48].
- In this Special Issue, only [41] explores the problem of flow regimes (item 2), but much more work is needed to arrive at a practical tool. The observational papers [2,3,4] highlight the challenges and provide opportunities for model validation. The latter task is non-trivial, however; it is addressed in [6].
- With regard to erosion and entrainment (item 3), several of the entrainment models summarized in the review [20] are worth a fresh look in view of recent experimental data on avalanche mass balance. In [23], avenues for improving the erosion model of [22] and two conceptually related, parameter-free entrainment models are outlined. The paper [42] convincingly shows that realistic back-calculations of several avalanche events with the same parameter set require modeling of both entrainment and deposition.
- There is an evident capability gap when it comes to modeling the impact pressure distribution on obstacles with complex shapes. The pioneering work of [49] and the more recent attempt of [50] need to be developed further into a tool for practical work. None of the papers in this Special Issue address this need, but the experimental results reported in [13] and the observations in [2,3,4,5] may provide opportunities for validating a future model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ancey, C.; Jóhannesson, T.; Bakkehøi, S.; Lied, K.; Birkeland, K.; Nishimura, K.; Decker, R.; Pudasaini, S.P.; Hutter, K.; Schaerer, P.; et al. Some notes on the history of snow and avalanche research in Europe, Asia and America. ICE 2005, 3–11. [Google Scholar]
- Oller, P.; Fischer, J.T.; Muntán, E. Multidisciplinary approach to reconstruct the historic avalanche that destroyed the village of Àrreu in 1803, Catalan Pyrenees. Geosciences 2020, 10, 169. [Google Scholar] [CrossRef]
- Furdada, G.; Margalef, A.; Trapero, L.; Pons, M.; Areny, F.; Baró, M.; Reyes, A.; Guinau, M. The avalanche of Les Fonts d’Arinsal (Andorra): An example of a pure powder, dry snow avalanche. Geosciences 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Issler, D.; Gauer, P.; Schaer, M.; Keller, S. Inferences on Mixed Snow Avalanches from Field Observations. Geosciences 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Issler, D. The 2017 Rigopiano avalanche—Dynamics inferred from field observations. Geosciences 2020, 10, 466. [Google Scholar] [CrossRef]
- Fischer, J.T.; Kofler, A.; Huber, A.; Fellin, W.; Mergili, M.; Oberguggenberger, M. Bayesian inference in snow avalanche simulation with r.avaflow. Geosciences 2020, 10, 191. [Google Scholar] [CrossRef]
- Nishimura, K. Studies on the Fluidized Snow Dynamics; The Institute of Low Temperature Science, Hokkaido University: Sapporo, Japan, 1991. [Google Scholar]
- Oda, K.; Nakamura, K.; Kobayashi, Y.; Suzumura, J. Inverse simulation for extracting the flow characteristics of snow avalanches based on Computational Fluid Dynamics. Geosciences 2020, 10, 221. [Google Scholar] [CrossRef]
- Gray, J.M.N.T. Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 2001, 441, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Heil, K.; Kaitna, R.; Fischer, J.T.; Reiweger, I. Granulation experiments with snow in a rotating drum. In Proceedings of the International Snow Science Workshop, Innsbruck, Austria, 7–12 October 2018; pp. 94–97. [Google Scholar]
- Dent, J.D.; Burrell, K.J.; Schmidt, D.S.; Louge, M.Y.; Adams, E.E.; Jazbutis, T.G. Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 1998, 26, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Sovilla, B.; Sommavilla, F.; Tomaselli, A. Measurements of mass balance in dense snow avalanche events. Ann. Glaciol. 2001, 32, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, M.; Barbero, M.; Barpi, F.; Borri-Brunetto, M.; De Biagi, V.; Freppaz, M.; Frigo, B.; Pallara, O.; Chiaia, B. Snow avalanche impact measurements at the Seehore test aite in Aosta Valley (NW Italian Alps). Geosciences 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Gauer, P. Comparison of avalanche front velocity measurements and implications for avalanche models. Cold Regions Sci. Technol. 2014, 97, 132–150. [Google Scholar] [CrossRef]
- McClung, D.M.; Gauer, P. Maximum frontal speeds, alpha angles and deposit volumes of flowing snow avalanches. Cold Regions Sci. Technol. 2018, 153, 78–85. [Google Scholar] [CrossRef]
- Suriñach, E.; Flores-Márquez, E.L.; Roig-Lafon, P.; Furdada, G.; Tapia, M. Estimation of avalanche development and frontal velocities based on the spectrogram of the seismic signals generated at the Vallée de la Sionne test site. Geosciences 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Bakkehøi, S.; Domaas, U.; Lied, K. Calculation of snow avalanche runout distance. Ann. Glaciol. 1983, 4, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Derron, M.H.; Sletten, K. Method for the Susceptibility Mapping of Snow Avalanches in Norway; Technical Report; NGU Report 2016.032; Geological Survey of Norway (NGU) and Institute of Geomatics and Risk Analysis (IGAR), University of Lausanne: Lausanne, Switzerland, 2016. [Google Scholar]
- Voellmy, A. Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg. 1955, 73, 159–165, 212–217, 246–249, 280–285. [Google Scholar]
- Eglit, M.E.; Yakubenko, A.; Zayko, J. A review of Russian snow avalanche models — from analytical solutions to novel 3D models. Geosciences 2020, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, S.S. A new law of friction and mechanism for large-scale avalanches and landslides. Sov. Phys. Dokl. 1979, 24, 110–111. [Google Scholar]
- Grigorian, S.S.; Ostroumov, A.V. On a continuum model for avalanche flow and its simplified variants. Geosciences 2020, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Issler, D. Comments on “On a Continuum Model for Avalanche Flow and Its Simplified Variants” by S. S. Grigorian and A. V. Ostroumov. Geosciences 2020, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Salm, B.; Gubler, H. Measurement and analysis of the motion of dense flow avalanches. Ann. Glaciol. 1985, 6, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Norem, H.; Irgens, F.; Schieldrop, B. Simulation of snow-avalanche flow in run-out zones. Ann. Glaciol. 1989, 13, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, P.; Bühler, Y.; Christen, M.; Deubelbeiss, Y.; Salz, M.; Schneider, M.; Schumacher, L. RAMMS::AVALANCHE User Manual; Version 1.7.0; WSL Institute for Snow and Avalanche Research: Davos, Switzerland, 2017. [Google Scholar]
- Steinkogler, W.; Sovilla, B.; Lehning, M. Influence of snow cover properties on avalanche dynamics. Cold Regions Sci. Technol. 2014, 97, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Steinkogler, W.; Gaume, J.; Löwe, H.; Sovilla, B.; Lehning, M. Granulation of snow: From tumbler experiments to discrete element simulations. J. Geophys. Res. 2015, F120, 1107–1126. [Google Scholar] [CrossRef] [Green Version]
- Jop, P.; Forterre, Y.; Pouliquen, O. A constitutive law for dense granular flows. Nature 2006, 441, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Maeno, F.; Hogg, A.J.; Sparks, R.S.J.; Matson, G.P. Unconfined slumping of a granular mass on a slope. Phys. Fluids 2013, 25, 023302. [Google Scholar] [CrossRef]
- Baker, J.L.; Barker, T.; Gray, J.M.N.T. A two-dimensional depth-averaged μ(I)-rheology for dense granular avalanches. J. Fluid Mech. 2016, 787, 367–395. [Google Scholar] [CrossRef] [Green Version]
- Tsunematsu, K.; Maeno, F.; Nishimura, K. Application of inertia dependent flow friction model to snow avalanches. Geosciences 2020, 10, 436. [Google Scholar] [CrossRef]
- Holyoake, A.J.; McElwaine, J.N. High-speed granular chute flows. J. Fluid Mech. 2012, 710, 35–71. [Google Scholar] [CrossRef] [Green Version]
- Gauer, P.; Issler, D. Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 2004, 38, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.S.; Louge, M.Y.; Turnbull, B. Frontal dynamics of powder snow avalanches. J. Geophys. Res. 2013, 118, 913–924. [Google Scholar] [CrossRef]
- Issler, D. Notes on Fluidization of Snow Avalanches by Air Expulsion from the Snow Cover; NGI Technical Note 20140053-03-TN_rev0; Norwegian Geotechnical Institute: Oslo, Norway, 2017. [Google Scholar]
- Zimmermann, E. Von Lawinen. Schweiz. Bauztg. 1936, 107, 284–286. (In German) [Google Scholar]
- Issler, D.; Gauer, P. Exploring the significance of the fluidized flow regime for avalanche hazard mapping. Ann. Glaciol. 2008, 49, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, P.; Buser, O.; Vera Valero, C.; Bühler, Y. Configurational energy and the formation of mixed flowing/powder snow and ice avalanches. Ann. Glaciol. 2016, 57, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Issler, D.; Jenkins, J.T.; McElwaine, J.N. Comments on avalanche flow models based on extensions of the concept of random kinetic energy. J. Glaciol. 2018, 64, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Niiya, H.; Awazu, A.; Nishimori, H. Simple particle model for low-density granular flow interacting with ambient fluid. Geosciences 2020, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Rauter, M.; Köhler, A. Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data. Geosciences 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Sovilla, B.; Bartelt, P. Observations and modelling of snow avalanche entrainment. Nat. Haz. Earth Syst. Sci. 2002, 2, 169–179. [Google Scholar] [CrossRef]
- Takebayashi, H.; Fujita, M. Numerical simulation of a debris flow on the basis of a two-dimensional continuum body model. Geosciences 2020, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.E. Gravity Currents: In the Environment and the Laboratory; Ellis Horwood Series in Environmental Science; Ellis Horwood Ltd.: Chichester, UK, 1987. [Google Scholar]
- McCaffrey, W.D.; Kneller, B.C.; Peakall, J. (Eds.) Particulate Gravity Currents; International Association of Sedimentologists, Blackwell Science Ltd.: Oxford, UK, 2001. [Google Scholar]
- Jenkins, J.; Meiburg, E.; Valance, A. Fluid-Mediated Particle Transport in Geophysical Flows. In Proceedings of the Workshop and Conference hosted by the Kavli Institute of Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, USA, 23 September–20 December 2013; Available online: https://www.kitp.ucsb.edu/activities/geoflows13 (accessed on 4 January 2021).
- Pérez-Guillén, C.; Tsunematsu, K.; Nishimura, K.; Issler, D. Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan. Earth Surf. Dyn. 2019, 7, 989–1007. [Google Scholar] [CrossRef] [Green Version]
- Kulibaba, V.S.; Eglit, M.E. Numerical modeling of an avalanche impact against an obstacle with account of snow compressibility. Ann. Glaciol. 2008, 49, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Rauter, M.; Fellin, W. Estimation of powder snow avalanche impact pressures with OpenFOAM. In Proceedings of the 12th OpenFOAM Workshop, University of Exeter, Exeter, UK, 24–27 July 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, K.; Barpi, F.; Issler, D. Perspectives on Snow Avalanche Dynamics Research. Geosciences 2021, 11, 57. https://doi.org/10.3390/geosciences11020057
Nishimura K, Barpi F, Issler D. Perspectives on Snow Avalanche Dynamics Research. Geosciences. 2021; 11(2):57. https://doi.org/10.3390/geosciences11020057
Chicago/Turabian StyleNishimura, Kouichi, Fabrizio Barpi, and Dieter Issler. 2021. "Perspectives on Snow Avalanche Dynamics Research" Geosciences 11, no. 2: 57. https://doi.org/10.3390/geosciences11020057