Micromorphological Study of Site Formation Processes at El Sidrón Cave (Asturias, Northern Spain): Encrustations over Neanderthal Bones
Abstract
:1. Introduction
2. Geological Setting and Sediment Sequence
- Unit 0, a unit of massive mud. No clear sedimentary structures can be distinguished. In a preliminary approach, they seem to be sediments deposited through a low energy outflow or backswamp conditions.
- Unit I, a unit of laminated fine sands and mud, with cross-stratification. It includes low-intensity fluvial–karstic material with a relative increase in energy at the top.
- Unit II, a unit of poorly sorted gravels, sands, and mud. It represents the lower limit of the ‘fossiliferous units’ (units where Neanderthal bones are embedded) so far. The fluvial–karstic materials originated from a high energy event and are clearly erosive to underlying sediments, especially in the eastern and central parts of the gallery. This unit corresponds to a diamicton facies.
- Unit III, a unit of massive clays with dispersed levels of gravels, sands, and silts. Interbedded silts and fine sands showing fluid escape structures are common. At the base, this unit is very similar to Unit II and the grain size diminishes towards the top in general terms. In the western part of the gallery, the grain size of the unit is also coarser, with a predominance of pebble and gravel deposits. At the top of the unit, a prominent feature is the existence of calcareous crusts (IIIc) of variable thickness and texture, with a horizontal arrangement and a high lateral continuity. These speleothemic crusts (flowstone) reach a greater development and thickness towards the east wall of the gallery (Figure 3).
- Unit IV, a unit of massive mud with some interbedded sands. These sediments formed in a very low energy fluvial–karstic environment and correspond to the final infill episode in the gallery, which can be regarded as still in progress.
3. Materials and Methods
4. Results
4.1. Calcite Crusts with Abundant Siliciclastic (Terrigenous) Grains
- Silty (orange) crusts discontinuously adhere to some of the bones and locally infiltrate through cracks and fractures. They consist of micritic crusts of a yellowish-orange hue about 50–500 µm thick, directly adhering to bone surface (Figure 7A). These crusts are quite dense and compact, and they are mainly composed of micritic cement, with clays (predominantly illites), some iron oxide, and a few small (25–50 µm) terrigenous grains (such as quartz and feldspars).
- Sandy (yellowish) crusts up to 2–3 cm thick, directly developed on the surface of the bones or on the previously described silty crusts. Their colour is lighter, and their clays and iron oxide content are lower and more dispersed. On the contrary, the content of terrigenous grains is higher (Figure 7B). The nature of the grains is mostly quartz, with a very variable size (40–800 µm) and the majority being 50–250 µm thick. Quartz grains seem to display a bimodal sorting with fine, subangular (dominant), and coarser rounded grains. Feldspars, metamorphic rock fragments, and carbonate bioclasts are also present, although to a lesser extent, as are bone fragments (chips) of varying size and morphology (Figure 7C,D). The size of the calcitic cement crystals is microsparitic to mesosparitic (40–100 µm), and an increase in the size of the detrital grains and in the porosity can be observed as one moves away from the bone surface. There are darker (orange) areas that are irregularly dispersed and about 50 µm thick; these correspond to a higher content of clays and smaller size of the quartz grains and crystals of calcite cement. Voids are scarce and mostly correspond to regular vugs or planes. Associated with large voids, discontinuous clayey cutans (clay coatings) can be observed, as can some calcitic cement fillings consisting of palisades (sometimes radially arranged) composed of calcitic tabular crystals with a maximum length of 0.5–0.6 mm. This type of crust is the most abundant at the studied sector of the site.
4.2. Calcite Crusts without (Or with Few) Siliciclastic (Terrigenous) Grains
- Sparitic crusts alternating (sometimes erosively) with terrigenous-rich crusts. They consist of layers of palisades composed of millimetre-thick calcite crystals that alternate with bands rich in terrigenous grains (Figure 8A,B). Together, they constitute a 2–3 cm thick banded precipitate. There are areas of compact palisades showing banding growth and very porous areas showing the growth of large clustered or arborescent crystals that are somewhat zoned and sometimes present displacing textures (Figure 8C). Remobilized areas can also be observed with crystals or aggregates of broken and moved crystals, as well as local patinas (cutans) of clays and oxides (Figure 8D). The crystals that make up the palisades—both the compact and arborescent ones—usually show scalenohedral terminations, and morphologies similar to regrown skeletal crystals and/or calcitic rafts can be observed (Figure 9).
- Micritic crusts, normally with a compact and massive microstructure and locally characterized by the presence of an irregular lamination involving the alternation of (1) dark laminae (0.05–0.2 mm thick) of dense micrite and (2) laminae of variable thickness (0.1–1 mm) consisting of less dense, clotted-to-peloidal micrite–microsparite that locally present with a wavy–cloudy structure (Figure 10A,B). Areas with the presence of dispersed terrigenous grains (mainly quartz) of variable size (25–100 µm) are present. Peloidal or spherical structures have diameters ranging between 5 and 80 µm (Figure 10B). In some cases, acicular crystals (1–2 µm thick and approximately 10 µm long) are present in a random deposition (Figure 9C). These are whisker or needle-fibre calcite (NFC) morphologies (Figure 10C). They are arranged to fill small pores or partially cover the large ones in association with the clayey patina (clay coatings and cutans) (Figure 9D). In some cases, their recrystallization to microsparite crystals is intuited. In the sometimes-transitional contact zones with the yellow–orange terrigenous-rich crusts, the abundance of fibrous textures, NFC, is significantly higher. In some cases, an undulating banded arrangement can be observed (Figure 9A).
4.3. Black Crusts and Patina
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortea, J.; Rasilla, M.D.L.; Sánchez-Moral, S.; Cañaveras, J.C.; Cuezva, S.; Rosas, A.; Soler, V.; Julià, R.; Torres, T.D.; Ortiz, J.E.; et al. La cueva de El Sidrón (Borines, Piloña, Asturias): Primeros resultados. Estudios Geológicos 2003, 59, 159–179. [Google Scholar]
- Rosas, A.; Martinez-Maza, C.; Bastir, M.; García-Tabernero, A.; Lalueza-Fox, C.; Huguet, R.; Ortiz, J.E.; Julia, R.; Soler, V.; de Torres, T.; et al. Paleobiology and comparative morphology of a late Neandertal sample from El Sidron, Asturias, Spain. Proc. Natl. Acad. Sci. USA 2006, 103, 19266–19271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortea, J.; Rasilla, M.D.L.; Martínez, E.; Sánchez-Moral, S.; Cañaveras, J.C.; Cuezva, S.; Rosas, A.; Soler, V.; Julià, R.; Torres, T.D.; et al. La cueva de El Sidrón (Borines, Piloña, Asturias): Campañas arqueológicas de 2000 a 2002. In Excavaciones Arqueológicas en Asturias 1999–2002; Servicio de Publicaciones: Oviedo, Spain, 2007; Volume 5, pp. 191–205. [Google Scholar]
- Fortea, J.; Rasilla, M.D.L.; Santamaría, D.; Martínez, L.; Duarte, E.; Fernández de la Vega, J.; Martínez, E.; Cañaveras, J.C.; Sánchez-Moral, S.; Cuezva, S.; et al. La cueva de El Sidrón (Borines, Piloña, Asturias). In Campañas Arqueológicas de 2003–2006. Excavaciones Arqueológicas en Asturias 2003 a 2006; Servicio de Publicaciones: Oviedo, Spain, 2007; Volume 6, pp. 367–384. [Google Scholar]
- Lalueza-Fox, C.; Rosas, A.; Estalrrich, A.; Gigli, E.; Campos, P.F.; García-Tabernero, A.; García-Vargas, S.; Sánchez-Quinto, F.; Ramírez, O.; Civit, S.; et al. Genetic evidence for patrilocal mating behaviour among Neandertal groups. Proc. Natl. Acad. Sci. USA 2011, 108, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Rosas, A.; Estalrrich, A.; García-Vargas, S.; García-Tabernero, A.; Bastir, M.; Huguet, R.; Peña-Melián, A. Los fósiles neandertales de la cueva de El Sidrón. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdisciplinar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 81–116. [Google Scholar]
- Lalueza-Fox, C.; Rosas, A.; de la Rasilla, M. Palaeogenetic research at the El Sidrón Neandertal site. Ann. Anat. 2012, 194, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Rosas, A.; Estalrrich, A.; García-Tabernero, A.; Bastir, M.; García-Vargas, S.; Sánchez-Meseguer, A.; Huguet, R.; Lalueza-Fox, C.; Peña-Melián, A.; Kranioti, E.F.; et al. Les Néandertaliens d’El Sidrón (Asturies, Espagne). Actualisation d’un nouvel échantillon. L’Anthropologie 2012, 116, 57–76. [Google Scholar] [CrossRef]
- Rosas, A.; Estalrrich, A.; García-Tabernero, A.; Huguet, R.; Lalueza-Fox, C.; Ríos, L.; Bastir, M.; Fernández-Cascón, B.; Pérez-Criado, L.; Rodríguez-Pérez, F.; et al. Investigación paleoantropológica de los fósiles neandertales de El Sidrón (Asturias, España). Cuaternario Geomorfología 2015, 29, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Santamaría, D.; Fortea, J.; De La Rasilla, M.; Martínez, L.; Martínez, E.; Cañaveras, J.C.; Sánchez-Moral, S.; Rosas, A.; Estalrrich, A.; García-Tabernero, A.; et al. The technological and typological behaviour of a neanderthal group from el sidrón cave (Asturias, Spain). Oxf. J. Archaeol. 2010, 29, 119–148. [Google Scholar] [CrossRef]
- Santamaría, D. La Transición del Paleolítico Medio al Superior en Asturias. El abrigo de La Viña (La Manzaneda, Oviedo) y la Cueva de El Sidrón (Borines, Piloña); Servicio de Publicaciones: Oviedo, Spain, 2012; Available online: http://hdl.handle.net/10651/19328 (accessed on 12 May 2021).
- Rosas, A.; Huguet, R.; Estalrrich, A.; García-Tabernero, A.; García-Vargas, S.; Bastir, M.; Peña-Melían, Á. Fauna de ma-cromamíferos en la Galería del Osario. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M.D.L., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdiscipli-nar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 147–148. [Google Scholar]
- De Torres, T.; Ortiz, J.E.; Grun, R.; Eggins, S.; Valladas, H.; Mercier, N.; Tisnérat-Laborde, N.; Juliá, R.; Soler, V.; Martinez, E.; et al. Dating of the hominid (Homo Neanderthalensis) remains accumulation from El Sidrón Cave (Piloña, Asturias, North Spain): An example of a multi-methodological approach to the dating of upper pleistocene sites. Archaeometry 2009, 52, 680–705. [Google Scholar] [CrossRef]
- Wood, R.E.; Higham, T.F.G.; Torres, T.D.; Tisnérat-Laborde, N.; Valladas, H.; Ortiz, J.E.; Lalueza, C.; Sánchez-Moral, S.; Cañaveras, J.C.; Rosas, A.; et al. A new date for the Neanderthals from El Sidrón Cave (Asturias, Northern Spain). Archaeometry 2013, 55, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J. Descripción física del complejo cárstico y sus conexiones exteriores. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdisciplinar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 21–26. [Google Scholar]
- Cañaveras, J.C.; Sánchez-Moral, S.; Lario, J.; Cuezva, S.; Fernández, A.; Muñoz, M.C. El modelo de relleno, o cómo llegaron los restos a la Galería del Osario. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdisciplinar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 43–63. [Google Scholar]
- Martínez García, E. Evolución geológica de la zona de El Sidrón y sus áreas limítrofes. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdisciplinar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 29–33. [Google Scholar]
- Silva, P.G.; Santos, G.; Carrasco, P.; Huerta, P.; Ayarza, P.; Álvarez Lobato, F.; Fernández Macarro, B.; Standing, M. La geomorfología, topografía y prospección geofísica del complejo de El Sidrón. La búsqueda del lugar de procedencia de los restos fósiles. In La Cueva de El Sidrón (Borines, Piloña, Asturias), 1st ed.; Rasilla, M., Rosas, A., Cañaveras, J.C., Lalueza-Fox, C., Eds.; Investigación Interdisciplinar de un Grupo Neandertal; Consejería de Cultura y Turismo, Gobierno del Principado de Asturias, Trabe SLU: Oviedo, Spain, 2011; Volume 1, pp. 65–79. [Google Scholar]
- Cañaveras, J.C.; Sánchez-Moral, S.; Cuezva, S.; Fernández-Cortés, A.; Muñoz, M.C.; Silva, P.G.; Santos, G.; Duarte, E.; Santamaría, D.; Rasilla, M.D.L. Estudio Geoarqueológico de la Cueva de El Sidrón (Asturias); Boletín del Instituto Geológico y Minero: Madrid, Spain, 2018; Volume 129, pp. 107–128. [Google Scholar]
- Collcutt, S.N. The analysis of quaternary cave sediments. World Archaeol. 1979, 10, 290–301. [Google Scholar] [CrossRef]
- Farrand, W.R. Sediments and stratigraphy in rock shelters and caves: A personal perspective on principles and pragmatic. Geoarchaeology 2001, 16, 537–557. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, P.; Macphail, R.I. Practical and Theoretical Geoarchaeology; Wiley-Blackwell, TJ International, Padstow: Cornwall, UK, 2005. [Google Scholar]
- Goldberg, P.; Sherwood, S.D. Deciphering human prehistory through the geoarchaeological study of cave sediments. Evol. Anthropol. 2006, 15, 20–36. [Google Scholar] [CrossRef]
- Polo, A.; Fernández-Eraso, J. Same anthropogenic activity, different taphonomic processes: A comparison of deposits from Los Husos I & II (Upper Ebro Basin, Spain). Quatern. Int. 2010, 214, 82–97. [Google Scholar]
- White, E.M.; Hannus, L.A. Chemical weathering of bone in archaeological soils. Am. Antiq. 1983, 48, 316–322. [Google Scholar] [CrossRef]
- Stephan, E. Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica 1997, 25, 173–180. [Google Scholar]
- Nielsen-Marsh, C.M.; Hedges, R.E. Patterns of diagenesis in bone I: The effects of site environments. J. Archaeol. Sci. 2000, 27, 1139–1150. [Google Scholar] [CrossRef]
- Hedges, R.E.M. Bone diagenesis: An overview of processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Reiche, I.; Favre-Quattropani, L.; Vignaud, C.; Bocherens, H.; Charlet, L.; Menu, M. A multi-analytical study of bone diagenesis: The neolithic site of bercy (Paris, France). Meas. Sci. Technol. 2003, 14, 1608–1619. [Google Scholar] [CrossRef]
- Karkanas, P.; Goldberg, P. Site formation processes at pinnacle point cave 13B (Mossel Bay, Western Cape Province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology. J. Hum. Evol. 2010, 59, 256–273. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moral, S.; Cañaveras, J.C.; Lario, J.; Cuezva, S.; Silva, P.G.; Rasilla, M.D.L.; Fortea, J. Caracterización del relleno sedimentario de la Galería del Osario (cueva de El Sidrón, Asturias, España). In XII Reunión Nacional de Cuaternario; Lario, J., Silva, P.G., Eds.; AEQUA: Ávila, Spain, 2007; pp. 123–124. [Google Scholar]
- Rosas, A.; Estalrrich, A.; García-Vargas, S.; García-Tabernero, A.; Huguet, R.; Lalueza-Fox, C.; Rasilla, M.D.L.; Fortea, J. Identification of neandertal individuals in fragmentary fossil assemblages by means of teeth associations. The case of the El Sidrón (Asturias, Spain). C. R. Palevol 2013, 12, 279–291. [Google Scholar] [CrossRef]
- Martín-Ramos, J.; Diazhernandez, J.L.; Cambeses, A.; Scarrow, J.H.; Lpez-Galindo, A. Pathways for quantitative analysis by X-ray diffraction. In An Introduction to the Study of Mineralogy; Aydinalp, C., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 73–92. [Google Scholar]
- Rosas, A.; Fortea, J.; Rasilla, M.D.L.; Fernández, P.; Hidalgo, A.; Lacasa, E.; Martínez-Maza, C.; García Tabernero, A.; Bastir, M. Restos neandertales de la Cueva de El Sidrón (Borines, Piloña, Asturias): Una restauración al servicio de la investigación paleontológica. PH Boletín Instituto Andaluz Patrimonio Histórico 2005, 53, 70–73. [Google Scholar]
- Mallol, C.; Mentzer, S.M.; Wrinn, P.J. A micromorphological and mineralogical study of site formation processes at the late Pleistocene site of Obi-Rakhmat, Uzbekistan. Geoarchaeology 2009, 24, 548–575. [Google Scholar] [CrossRef]
- Riding, R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofirms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Verrecchia, E.P.; Verrecchia, K.E. Needle fiber calcite: A critical review and a proposed classification. J. Sediment. Res. 1994, 64, 650–664. [Google Scholar]
- Cañaveras, J.C.; Cuezva, S.; Sanchez-Moral, S.; Lario, J.; Laiz, L.; Gonzalez, J.M.; Saiz-Jimenez, C. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 2005, 93, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Moral, S.; Portillo, M.C.; Janices, I.; Cuezva, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Gonzalez, J.M. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology 2012, 139-140, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Cailleau, G.; Verrecchia, E.P.; Braissant, O.; Emmanuel, L. The biogenic origin of needle fibre calcite. Sedimentology 2009, 56, 1858–1875. [Google Scholar] [CrossRef]
- Jones, B.; Peng, X. Abiogenic growth of needle-fiber calcite in spring towers at Shiqiang, Yunnan Province, China. J. Sediment. Res. 2014, 84, 1021–1040. [Google Scholar] [CrossRef]
- Denniston, R.F.; Luetscher, M. Speleothems as high-resolution paleoflood archives. Quat. Sci. Rev. 2017, 170, 1–13. [Google Scholar] [CrossRef]
- Goldberg, P. Micromorphology and site formation at Die Kelders Cave I, South Africa. J. Hum. Evol. 2000, 38, 43–90. [Google Scholar] [CrossRef]
- Macphail, R.I.; Goldberg, P. Geoarchaeological investigation of sediments from Gorham’s and Vanguard caves, Gibraltar: Microstratigraphical (soil micromorphological and chemical) signatures. In Neanderthals on the Edge; Stringer, C.B., Barton, R.N., Finlayson, J.C., Eds.; Oxbow Books: Oxford, UK, 2000; pp. 183–200. [Google Scholar]
- Hill, C.A. Origin of Black Deposits in Caves; National Speleological Society: Huntsville, AL, USA, 1982; Volume 44, pp. 15–19. [Google Scholar]
- Hill, C.A.; Forti, P. Cave Minerals of the World, 2nd ed.; National Speleological Society: Huntsville, AL, USA, 1997. [Google Scholar]
- López-González, F.; Grandal-D’Anglade, A.; Vidal-Romaní, J.R. Deciphering bone depositional sequences in caves through the study of manganese coatings. J. Archaeol. Sci. 2006, 33, 707–717. [Google Scholar] [CrossRef]
- Baskar, S.; Baskar, R.; Lee, N.; Kaushik, A.; Theophilus, P.K. Precipitation of iron in microbial mats of the spring waters of Borra Caves, Vishakapatnam, India: Some geomicro-biological aspects. Environ. Geol. 2008, 56, 237–243. [Google Scholar] [CrossRef]
- Frierdich, A.J.; Catalano, J.G. Distribution and speciation of trace elements in iron and manganese oxide cave deposits. Geochim. Cosmochim. Acta 2012, 91, 240–253. [Google Scholar] [CrossRef]
- Karkanas, P.; Goldberg, P. Micromorphology of cave sediments. In Treatise on Geomorphology, Karst Geomorphology; Shroder, J., Frumkin, S., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 6, pp. 286–297. [Google Scholar]
- Stoops, G.; Melo, V.D.; Mees, F. Micromorphological features and their relation to processes and classification: General guidelines and overview. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Melo, V.D., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 895–917. [Google Scholar]
Sample | Square | Sub-Square | X (cm) | Y (cm) | Z (cm) | Neanderthal Bone (Anatomical Part) |
---|---|---|---|---|---|---|
280 | F8 | 5 | 38 | 48 | 144.0 | Indeterminate |
282 | F8 | 6 | 51 | 82 | 133.0 | Indeterminate |
299 | F8 | 2 | 21 | 60 | 149.0 | Incisor |
304 | F8 | 4 | 57 | 30 | 150.5 | Vertebra |
317 | F8 | 2 | 17 | 59 | 156.0 | Scapula |
324 | F8 | 2/3 | 20 | 70 | 139.5 | Indeterminate |
696 | F8 | 7 | 80 | 18 | 135.0 | Vertebra |
709 | F8 | 9 | 81 | 80 | 151.0 | Rib |
Sample | Crust Subtypes | Calcite (%) | Quartz (%) | Feldspars (%) | Hydroxyl-Apatite (%) |
---|---|---|---|---|---|
280-A | T | 53 | 39 | 8 | |
282-A | T | 62 | 33 | <5 | |
299-A | T | 64 | 36 | ||
299-B | Cm | 87 | 13 | ||
304-A | Cp | 68 | 32 | ||
304-B | T | 80 | 20 | ||
304-C | T | 71 | 12 | 17 | |
317-A | Cm | 79 | 21 | ||
324-A | T | 45 | 34 | 21 | |
696-A | Cm | 96 | 4 | ||
696-B | T | 63 | 37 | ||
696-C | Cp | 78 | 22 | ||
696-D | T | 67 | 33 | ||
709-A | T | 52 | 48 | ||
709-B | T | 50 | 50 |
Sid 01 | Sid 02 | Sid 04 | Sid 05 | Sid 06 | |
---|---|---|---|---|---|
O | 49.45 | 50.64 | 48.63 | 47.15 | 53.50 |
C | 15.41 | 21.65 | 11.01 | 15.58 | 8.79 |
Si | 2.41 | 5.72 | 4.46 | 3.30 | 1.24 |
Al | 4.11 | 4.55 | 3.80 | 2.89 | 6.47 |
Mg | 0.46 | 0.38 | 0.19 | 0.29 | - |
Fe | 3.26 | 3.91 | 28.98 | 18.02 | 10.10 |
Mn | 18.56 | 8.51 | 1.05 | 10.28 | 17.10 |
Ca | 3.00 | 3.94 | 1.36 | 2.00 | 2.55 |
K | - | 0.47 | 0.38 | 0.34 | 0.04 |
P | 0.38 | 0.25 | 0.14 | 0.16 | 0.21 |
F | 3.03 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañaveras, J.C.; Sánchez-Moral, S.; Duarte, E.; Santos-Delgado, G.; Silva, P.G.; Cuezva, S.; Fernández-Cortés, Á.; Lario, J.; Muñoz-Cervera, M.C.; Rasilla, M.d.l. Micromorphological Study of Site Formation Processes at El Sidrón Cave (Asturias, Northern Spain): Encrustations over Neanderthal Bones. Geosciences 2021, 11, 413. https://doi.org/10.3390/geosciences11100413
Cañaveras JC, Sánchez-Moral S, Duarte E, Santos-Delgado G, Silva PG, Cuezva S, Fernández-Cortés Á, Lario J, Muñoz-Cervera MC, Rasilla Mdl. Micromorphological Study of Site Formation Processes at El Sidrón Cave (Asturias, Northern Spain): Encrustations over Neanderthal Bones. Geosciences. 2021; 11(10):413. https://doi.org/10.3390/geosciences11100413
Chicago/Turabian StyleCañaveras, Juan Carlos, Sergio Sánchez-Moral, Elsa Duarte, Gabriel Santos-Delgado, Pablo G. Silva, Soledad Cuezva, Ángel Fernández-Cortés, Javier Lario, María Concepción Muñoz-Cervera, and Marco de la Rasilla. 2021. "Micromorphological Study of Site Formation Processes at El Sidrón Cave (Asturias, Northern Spain): Encrustations over Neanderthal Bones" Geosciences 11, no. 10: 413. https://doi.org/10.3390/geosciences11100413
APA StyleCañaveras, J. C., Sánchez-Moral, S., Duarte, E., Santos-Delgado, G., Silva, P. G., Cuezva, S., Fernández-Cortés, Á., Lario, J., Muñoz-Cervera, M. C., & Rasilla, M. d. l. (2021). Micromorphological Study of Site Formation Processes at El Sidrón Cave (Asturias, Northern Spain): Encrustations over Neanderthal Bones. Geosciences, 11(10), 413. https://doi.org/10.3390/geosciences11100413