Morphotectonic Evolution of an Alluvial Fan: Results of a Joint Analog and Numerical Modeling Approach
Abstract
:1. Introduction
2. Methods
2.1. Analog Modeling
2.1.1. Experimental Setup
- A reservoir, equipped with rotating blades, containing a mix of granular material and water.
- A transfer zone used to reduce and control the flow.
- A sediment deposit area where the fan grows.
2.1.2. Material Properties
2.1.3. Scaling
Dynamic Scaling
Geometric Scaling
Kinematic Scaling
2.1.4. Model Monitoring and Data Processing
- a CCD Panasonic Gx80 camera located above the deposit area took one frame every 30 s. This acquisition gave a collection of 270 high-resolution pictures (4600 × 3500 px) for each experiment. These pictures were used to make a time-lapse video and analyze the fan building phase qualitatively (see movies in Supplementary Materials S3).
- The final morphology was quantified by photogrammetry from 9 high-resolution pictures taken with a Sony Alpha7R2 camera (42 Mpx). After processing the data with Micmac [34] and CloudCompare software [35], we obtained a georeferenced digital elevation model (DEM) composed of about 10 million points with an average spatial resolution of 0.16 mm and an accuracy of 0.6 mm. The DEMs were analyzed using the library Matplotlib in Python.
2.2. Numerical Modeling
2.3. Common Modeling Assumptions
2.3.1. Geometry
2.3.2. Initial and Boundary Conditions
2.3.3. Time Scenario
3. Results
3.1. Repeatability of Analog Experiments
3.2. Calibration of Numerical Erosion Law Parameters from the Alluvial Fan Building Phase
3.3. Morpho-Tectonic Evolution
3.4. Stable versus Stick-slip Behaviors
4. Discussion
4.1. Effect of Slip Rate on Surface Morphology
4.2. Return Period
4.3. Distance between Fault and Sediment Source
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bishop, P. Long-term landscape evolution: Linking tectonics and surface processes. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 329–365. [Google Scholar] [CrossRef]
- Burbank, D.W.; Pinter, N. Landscape evolution: The interactions of tectonics and surface processes. Basin Res. 1999, 11, 1–6. [Google Scholar] [CrossRef]
- Naylor, L.A.; Spencer, T.; Lane, S.N.; Darby, S.E.; Magilligan, F.J.; Macklin, M.G.; Möller, I. Stormy geomorphology: Geomorphic contributions in an age of climate extremes. Earth Surf. Process. Landf. 2017, 42, 166–190. [Google Scholar] [CrossRef]
- Turowski, J.M.; Cook, K.L. Field techniques for measuring bedrock erosion and denudation. Earth Surf. Process. Landf. 2017, 42, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Giano, S.I.; Schiattarella, M. Age constraints and denudation rate of a multistage fault line scarp: An example from Southern Italy. Geochronometria 2014, 41, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Giano, S.I.; Pescatore, E.; Agosta, F.; Prosser, G. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy. Geomorphology 2018, 303, 172–190. [Google Scholar] [CrossRef]
- Migon, P. Book Review: Morphotectonics. Prog. Phys. Geogr. Earth Environ. 2006, 30, 138–140. [Google Scholar] [CrossRef]
- Weldon, R.; Scharer, K.; Fumal, T.; and Biasi, G. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today 2004, 14, 4. [Google Scholar] [CrossRef]
- Harel, M.A.; Mudd, S.M.; Attal, M. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 2016, 268, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Richardson, P.W.; Perron, J.T.; Schurr, N.D. Influences of climate and life on hillslope sediment transport. Geology 2019, 47, 423–426. [Google Scholar] [CrossRef]
- Barnhart, K.R.; Hutton, E.W.; Tucker, G.E.; Gasparini, N.M.; Istanbulluoglu, E.; Hobley, D.E.; Lyons, N.J.; Mouchene, M.; Nudurupati, S.S.; Adams, J.M.; et al. Landlab v2. 0: A software package for Earth surface dynamics. Earth Surf. Dyn. 2020, 8, 379–397. [Google Scholar] [CrossRef]
- Graveleau, F.; Dominguez, S. Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts. Comptes Rendus Geosci. 2008, 340, 324–333. [Google Scholar] [CrossRef]
- Graveleau, F.; Hurtrez, J.E.; Dominguez, S.; Malavieille, J. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics 2011, 513, 68–87. [Google Scholar] [CrossRef]
- Graveleau, F.; Strak, V.; Dominguez, S.; Malavieille, J.; Chatton, M.; Manighetti, I.; Petit, C. Experimental modelling of tectonics–erosion–sedimentation interactions in compressional, extensional, and strike–slip settings. Geomorphology 2015, 244, 146–168. [Google Scholar] [CrossRef]
- Hobley, D.E.; Adams, J.M.; Nudurupati, S.S.; Hutton, E.W.; Gasparini, N.M.; Istanbulluoglu, E.; Tucker, G.E. Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surf. Dyn. 2017, 5, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Paola, C.; Straub, K.; Mohrig, D.; Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 2009, 97, 1–43. [Google Scholar] [CrossRef]
- Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N. Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling. Tectonophysics 2011, 513, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Buiter, S.J.; Babeyko, A.Y.; Ellis, S.; Gerya, T.V.; Kaus, B.J.; Kellner, A.; Schreurs, G.; Yamada, Y. The numerical sandbox: Comparison of model results for a shortening and an extension experiment. Geol. Soc. Lond. Spec. Publ. 2006, 253, 29–64. [Google Scholar] [CrossRef] [Green Version]
- Reitano, R.; Faccenna, C.; Funiciello, F.; Corbi, F.; Willett, S.D. Erosional response of granular material in landscape models. Earth Surf. Dyn. 2020, 8, 973–993. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Yan, B.; Wang, X.; Jia, D.; Chen, Y. Response of Surface Erosion to Crustal Shortening and its Influence on Tectonic Evolution in Fold-and-Thrust Belts: Implications from Sandbox Modeling on Tectonic Geomorphology. Tectonics 2021, 40, e2020TC006515. [Google Scholar] [CrossRef]
- Dal Zilio, L.; Jolivet, R.; van Dinther, Y. Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geophys. Res. Lett. 2020, 47, e2019GL086424. [Google Scholar] [CrossRef] [Green Version]
- Langridge, R.M.; Villamor, P.; Almond, P.; Basili, R.; Hemphill-Haley, M.; Ries, W. Late Holocene paleoseismicity of the Australia-Pacific plate boundary in central South Island: The Alpine to Hope Fault transition. Geol. Soc. Am. Abstr. Programs 2009, 41, 691. [Google Scholar]
- Le Roux-Mallouf, R.; Ferry, M.; Cattin, R.; Ritz, J.F.; Drukpa, D.; & Pelgay, P. A 2600-year-long paleoseismic record for the Himalayan Main Frontal Thrust (western Bhutan). Solid Earth 2020, 11, 2359–2375. [Google Scholar] [CrossRef]
- Marechal, A.; Mazzotti, S.; Cattin, R.; Cazes, G.; Vernant, P.; Drukpa, D.; Thinley, K.; Tarayoun, A.; Le Roux-Mallouf, R.; Thapa, B.B.; et al. Evidence of interseismic coupling variations along the Bhutan Himalayan arc from new GPS data. Geophys. Res. Lett. 2016, 43, 12–399. [Google Scholar] [CrossRef] [Green Version]
- Hubbert, M.K. Theory of scale models as applied to the study of geologic structures. Bull. Geol. Soc. Am. 1937, 48, 1459–1520. [Google Scholar] [CrossRef]
- Cobbold, P.R.; Jackson, M.P.A. Gum rosin (colophony): A suitable material for thermomechanical modelling of the lithosphere. Tectonophysics 1992, 210, 255–271. [Google Scholar] [CrossRef]
- Davy, P.; Cobbold, P.R. Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophysics 1991, 188, 1–25. [Google Scholar] [CrossRef]
- Horsfield, K. Morphology of branching trees related to entropy. Respir. Physiol. 1977, 29, 179–184. [Google Scholar] [CrossRef]
- Malverti, L.; Lajeunesse, E.; Métivier, F. Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Niemann, J.D.; Hasbargen, L.E. A comparison of experimental and natural drainage basin morphology across a range of scales. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Peakall, J.; Ashworth, P.; Best, J. Physical modelling in fluvial geomorphology: Principles, applications and unresolved issues. Sci. Nat. Geomorphol. 1996, 221–253. [Google Scholar]
- Liu, Y.; Métivier, F.; Lajeunesse, É.; Lancien, P.; Narteau, C.; Ye, B.; & Meunier, P. Measuring bedload in gravel-bed mountain rivers: Averaging methods and sampling strategies. Geodin. Acta 2008, 21, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; Barrier, L.; Dominguez, S.; Guerit, L.; Heilbronn, G.; Fu, B. Unbalanced sediment budgets in the catchment–alluvial fan system of the Kuitun River (northern Tian Shan, China): Implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology 2014, 214, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Girod, L.; Nuth, C.; Kääb, A.; McNabb, R.; Galland, O. MMASTER: Improved ASTER DEMs for elevation change monitoring. Remote Sens. 2017, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Carretier, S.; Martinod, P.; Reich, M.; Godderis, Y. Modelling sediment clasts transport during landscape evolution. Earth Surf. Dyn. 2016, 4, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Davy, P.; and Lague, D. Fluvial erosion/transport equation of landscape evolution models revisited. J. Geophys. Res. Earth Surf. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Barnhart, K.R.; Glade, R.C.; Shobe, C.M.; Tucker, G.E. Terrainbento 1.0: A Python package for multi-model analysis in long-term drainage basin evolution. Geosci. Model Dev. 2019, 12, 1267–1297. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.D.; Dietrich, W.E.; Seidl, M.A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. Solid Earth 1994, 99, 13971–13986. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Stock, J.D.; Montgomery, D.R. Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. Solid Earth 1999, 104, 4983–4993. [Google Scholar] [CrossRef]
- Field, J. Channel avulsion on alluvial fans in southern Arizona. Geomorphology 2001, 37, 93–104. [Google Scholar] [CrossRef]
- Radiguet, M.; Cotton, F.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Kostoglodov, V. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Dal Zilio, L.; Hetényi, G.; Hubbard, J.; Bollinger, L. Building the Himalaya from tectonic to earthquake scales. Nat. Rev. Earth Environ. 2021, 2, 251–268. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, S. Estimation of recurrence interval of large earthquakes on the Central Longmen Shan fault zone based on seismic moment accumulation/release model. Sci. World J. 2013, 2013, 458341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, R.; Bond, C. Chapter 9—Thrust systems and contractional tectonics. In Regional Geology and Tectonics, 2nd ed.; Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G., Bally, A.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–167. [Google Scholar]
- Dean, S.L.; Morgan, J.K.; & Fournier, T. Geometries of frontal fold and thrust belts: Insights from discrete element simulations. J. Struct. Geol. 2013, 53, 43–53. [Google Scholar] [CrossRef]
- Faulkner, D.; Jackson, C.; Lunn, R.; Schlische, R.; Shipton, Z.; Wibberley, C.; and Withjack, M. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 2010, 32, 1557–1575. [Google Scholar] [CrossRef]
- Fossen, H. Structural Geology; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Yang, H.; Quigley, M.; King, T. Surface slip distributions and geometric complexity of intraplate reverse-faulting earthquakes. GSA Bull. 2021. [Google Scholar] [CrossRef]
- Adams, B.A.; Whipple, K.X.; Forte, A.M.; Heimsath, A.M.; Hodges, K.V. Climate controls on erosion in tectonically active landscapes. Sci. Adv. 2020, 6, eaaz3166. [Google Scholar] [CrossRef]
- Wolman, M.G.; Miller, J.P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 1960, 68, 54–74. [Google Scholar] [CrossRef] [Green Version]
Parameter | Experimental Model | Numerical Model |
---|---|---|
Length | 1 mm | 10 m |
Time | 1 s | 10 yr |
60 cm | 6 km | |
1.5 h | 54 ka | |
1 h | 36 ka | |
1 cm.h−1 | 2.8 mm.yr−1 | |
180 s | 1.8 ka | |
L.s−1 | m3.yr−1 | |
L.s−1 | m3.yr−1 | |
0.3 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Estève, C.; Caniven, Y.; Cattin, R.; Dominguez, S.; Sylvain, R. Morphotectonic Evolution of an Alluvial Fan: Results of a Joint Analog and Numerical Modeling Approach. Geosciences 2021, 11, 412. https://doi.org/10.3390/geosciences11100412
Garcia-Estève C, Caniven Y, Cattin R, Dominguez S, Sylvain R. Morphotectonic Evolution of an Alluvial Fan: Results of a Joint Analog and Numerical Modeling Approach. Geosciences. 2021; 11(10):412. https://doi.org/10.3390/geosciences11100412
Chicago/Turabian StyleGarcia-Estève, Clément, Yannick Caniven, Rodolphe Cattin, Stéphane Dominguez, and Romain Sylvain. 2021. "Morphotectonic Evolution of an Alluvial Fan: Results of a Joint Analog and Numerical Modeling Approach" Geosciences 11, no. 10: 412. https://doi.org/10.3390/geosciences11100412
APA StyleGarcia-Estève, C., Caniven, Y., Cattin, R., Dominguez, S., & Sylvain, R. (2021). Morphotectonic Evolution of an Alluvial Fan: Results of a Joint Analog and Numerical Modeling Approach. Geosciences, 11(10), 412. https://doi.org/10.3390/geosciences11100412