Coupling Mineralogical Analyses, Leaching Tests and Kinetic Modelling to Unravel Groundwater Flow-Paths in a Complex Landslide: An Attempt from the Vedriano Case Study (Northern Italian Apennines)
Abstract
:1. Introduction
2. Study Site
3. Methodology
3.1. Groundwater Sampling and Laboratory Analyses
3.2. Soil Sampling and Laboratory Analyses
3.3. Hydrochemical Modelling
3.3.1. Model Formulation
3.3.2. Data Inputs
4. Results
4.1. Groundwater Chemistry
4.2. Leaching Tests
4.3. Soil Analyses
4.4. Modelling
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jenkins, A.; Ferrier, R.C.; Harriman, R.; Ogunkoya, Y.O. A case study in catchment hydrochemistry: Conflicting interpretations from hydrological and chemical observations. Hydrol. Process. 1994, 8, 335–349. [Google Scholar] [CrossRef]
- Burns, D.A.; McDonnell, J.J.; Hooper, R.P.; Peters, N.E.; Freer, J.; Kendall, C.; Beven, K. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrol. Process. 2001, 15, 1903–1924. [Google Scholar] [CrossRef]
- Bogaard, T.; Guglielmi, Y.; Marc, V.; Emblanch, C.; Bertrand, C.; Mudry, J. Hydrogeochemistry in landslide research: A review. Bull. Soc. Géol. Fr. 2007, 178, 113–126. [Google Scholar] [CrossRef]
- De Montety, V.; Marc, V.; Emblach, C.; Malet, J.-P.; Bertrand, C.; Maquaire, O.; Bogaard, T. Identifying origin of groundwater and flow processes in complex landslides affecting black marls in southern French Alps: Insights from an hydrochemical survey. Earth Surf. Proc. Landf. 2007, 32, 32–48. [Google Scholar] [CrossRef]
- Bogaard, T.; Buma, J.; Klawer, C. Testing the potential of geochemical techniques for identifying hydrological systems within landslides in partly weathered marls. Geomorphology 2004, 58, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, Y.; Vengeon, J.; Bertrand, C.; Mudry, J.; Follacci, J.; Giraud, A. Hydrogeochemistry: An investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull. Int. Assoc. Eng. Geol. 2002, 61, 311–324. [Google Scholar] [CrossRef]
- Binet, S.; Spadini, L.; Bertrand, C.; Guglielmi, Y.; Mudry, J.; Scavia, C. Variability of the groundwater sulfate concentration in fractured rock slopes: A tool to identify active unstable areas. Hydrol. Earth Syst. Sci. 2009, 13, 2315–2327. [Google Scholar] [CrossRef] [Green Version]
- Guglielmi, Y.; Bertrand, C.; Compagnon, F.; Follacci, J.; Mudry, J. Acquisition of water chemistry in a mobile fissured basement massif: Its role in the hydrogeological knowledge of the La Clapière landslide (Mercantour massif, southern Alps, France). J. Hydrol. 2000, 229, 138–148. [Google Scholar] [CrossRef]
- Deiana, M.; Cervi, F.; Pennisi, M.; Mussi, M.; Bertrand, C.; Tazioli, A.; Corsini, A.; Ronchetti, F. Chemical and isotopic investigations (δ18O, δ2H, 3H, 87Sr/86Sr) to define groundwater processes occurring in a deep-seated landslide in flysch. Hydrogeol. J. 2018, 26, 2669–2691. [Google Scholar] [CrossRef]
- Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T.A.; Corsini, A. Origin and assessment of deep groundwater inflow in the Ca’ Lita landslide using hydrochemistry and in situ monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4205–4221. [Google Scholar] [CrossRef] [Green Version]
- Marc, V.; Bertrand, C.; Malet, J.-P.; Carry, N.; Simler, R.; Cervi, F. Groundwater-Surface waters interactions at slope and catchment scales: Implications for landsliding in clay-rich slopes. Hydrol. Process. 2016, 31, 364–381. [Google Scholar] [CrossRef]
- Krzeminska, D.M.; Bogaard, T.A.; Debieche, T.-H.; Cervi, F.; Marc, V.; Malet, J.-P. Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments. Earth Surf. Dyn. 2014, 2, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Bogaard, T.; Bakker, M.; Berti, M. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide. J. Hydrol. 2016, 543, 360–372. [Google Scholar] [CrossRef]
- Bogaard, T.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2015, 3, 439–459. [Google Scholar] [CrossRef]
- Cervi, F.; Nistor, M.-M. High Resolution of Water Availability for Emilia-Romagna Region over 1961–2015. Adv. Meteorol. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Bertolini, G.; Gorgoni, C. La lavina di Roncovetro (Vedriano, Comune di Canossa, Provincia di Reggio Emilia). Quad. Geol. Appl. 2001, 8, 1–21. (In Italian) [Google Scholar]
- Mucchi, L.; Jayousi, S.; Martinelli, A.; Caputo, S.; Intrieri, E.; Gigli, G.; Gracchi, T.; Mugnai, F.; Favalli, M.; Fornaciai, A.; et al. A Flexible Wireless Sensor Network Based on Ultra-Wide Band Technology for Ground Instability Monitoring. Sensors 2018, 18, 2948. [Google Scholar]
- Vannucchi, P.; Bettelli, G. Myths and recent progress regarding the Argille Scagliose, Northern Apennines, Italy. Int. Geol. Rev. 2010, 52, 1106–1137. [Google Scholar] [CrossRef] [Green Version]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 661–671. [Google Scholar] [CrossRef]
- USGS. A Simple Field Leach Test to Assess Potential Leaching of Soluble Constituents from Mine Wastes, Soils, and Other Geologic Materials; USGS Fact Sheet: Denver, CO, USA, 2005; pp. 2005–3100.
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. PHREEQC User’s Manual Program, Water-Resources Investigations Report; US Geological Survey: Denver, CO, USA, 2004.
- Lasaga, A.C. Chemical kinetics of water-rock interactions. J. Geophys. Res. Space Phys. 1984, 89, 4009–4025. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall International: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Santamarina, J.C.; Klein, K.A.; Wang, Y.H.; Prencke, E. Specific surface: Determination and relevance. Can. Geotech. J. 2002, 39, 233–241. [Google Scholar]
- Palandri, J.L.; Kharaka, Y.K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Open-File Rep. 2004. [Google Scholar] [CrossRef]
- Marty, N.C.; Claret, F.; Lassin, A.; Tremosa, J.; Blanc, P.; Madé, B.; Giffaut, E.; Cochepin, B.; Tournassat, C. A database of dissolution and precipitation rates for clay-rocks minerals. Appl. Geochem. 2015, 55, 108–118. [Google Scholar] [CrossRef]
- Panettiere, P.; Cortecci, G.; Dinelli, E.; Bencini, A.; Guidi, M. Chemistry and sulfur isotopic composition of precipitation at Bologna. Italy. Appl. Geochem. 2000, 15, 1455–1467. [Google Scholar] [CrossRef]
Groundwater Monitoring Point | pH | Cond (µs cm−1) | t (°C) | Eh (mV) | Na+ (mg L−1) | Ca2+ (mg L−1) | K+ (mg L−1) | Mg2+ (mg L−1) | SO42− (mg L−1) | HCO3− (mg L−1) | Cl− (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 6.80–7.10 | 1620–1790 | 13.2–14.7 | +98 | 206–288 | 42–48 | 41–43 | 2 | 390–470 | 430–500 | 24–26 |
P2 | 7.22–7.36 | 2445–2876 | 13.9–14.2 | +69 | 780–878 | 40–42 | 43–47 | 2–3 | 698–876 | 610–690 | 31–38 |
S1 | 7.10–7.19 | 2750–2983 | 14.5–15.9 | +67 | 698–736 | 45–47 | 48–50 | 2–3 | 1298–1401 | 370–460 | 44–46 |
S2 | 7.12–7.24 | 3980–4830 | 14.3–15.8 | +18 | 890–1098 | 46–47 | 46–50 | 3 | 1415–1440 | 860–960 | 33–50 |
Sample Code | Referring Geological Formation (or Landslide Area) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|
S1 | MSF3 | 13.9 | 64.8 | 21.2 |
S2 | MSF2 | 31.9 | 57.0 | 11.1 |
S3 | MSF3b | 8.5 | 68.8 | 22.7 |
S4 | MSF3a | 23.1 | 60.4 | 16.5 |
S5 | Landslide-crown area | 10.8 | 75.2 | 14.1 |
S6 | Landslide-head zone | 9.5 | 69.8 | 20.7 |
S7 | Landslide-body | 9.2 | 68.1 | 22.7 |
Mineral Phase | Molecular Formula | S1 (%) | S2 (%) | S3 (%) | S4 (%) | S5 (%) | S6 (%) | S7 (%) |
---|---|---|---|---|---|---|---|---|
quarz | SiO2 | 51.6 | 47.5 | 38.0 | 49.4 | 44.5 | 47.2 | 50.6 |
K-feldspar | KAlSi3O8 | 2.7 | 1.7 | 0.4 | 0.6 | 3.4 | 11.6 | 0.7 |
albite | NaAlSi3O8 | 5.6 | 6.1 | 0.6 | 5.7 | 11.4 | 0.0 | 3.4 |
smectite (Ca-montmorillonite) | Ca0.165Al2.33Si3.67O10(OH)2 | 0.5 | 0.0 | 23.8 | 0.0 | 0.1 | 0.0 | 0.3 |
chlorite | Mg5Al2Si3O10(OH)8 | 13.5 | 16.3 | 7.2 | 14.7 | 16.7 | 10.6 | 15.4 |
illite | K0.6Mg0.25Al2.3Si3.5O10(OH)2 | 20.0 | 24.2 | 5.5 | 22.0 | 16.4 | 12.0 | 21.3 |
calcite | CaCO3 | 6.1 | 4.2 | 6.3 | 7.6 | 8.0 | 18.6 | 8.3 |
kaolinite | K0.6Mg0.25Al2.3Si3.5O10(OH)2 | 0.0 | 0.0 | 18.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Mineral Phase | Moles | Specific Surface (m−2) | Chemical Reaction | Thermodinamic | Kinetic | ||
---|---|---|---|---|---|---|---|
logK | KmH (mol m−2 s−1) | KmH2O (mol m−2 s−1) | KmOH (mol m−2 s−1) | ||||
quartz | 53.5325 | 600.04 | SiO2 + H2O = H4SiO4 | −2.72 | 1.02 × 10−14 | 1.02 × 10−14 | 5.12 × 10−17 |
K-feldspar | 0.6046 | 32.49 | KAlSi3O8:3H2O + 4H+ + H2O = Al3+ + K+ + 3H4SiO4 | 0.04 | 8.70 × 10−11 | 3.79 × 10−13 | 6.31 × 10−22 |
albite | 1.330872765 | 66.61 | NaAlSi3O8 + 4H++4H2O = Al3+ + Na+ + 3H4SiO4 | 2.74 | 6.92 × 10−11 | 2.75 × 10−13 | 2.51 × 10−16 |
smectite | 0.0849 | 2493.21 | Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.4Al3+ + 0.3Ca2+ + 0.6Mg2+ + 4H4SiO4 | 8.94 | 1.05 × 10−11 | 1.66 × 10−13 | 3.02 × 10−17 |
chlorite | 1.3758 | 84,145.50 | Mg5Al2Si3O10(OH)8 + 16H+ = 2Al3+ + 5Mg2+ + 3H4SiO4 + 6H2O | 61.72 | 7.76 × 10−12 | 2.95 × 10−13 | 4.57 × 10−14 |
illite | 3.2464 | 124,660.78 | K0.85Mg0.25Al2.35Si3.4O10(OH)2 + 8.4H+ + 1.6H2O = 2.35Al3+ + 0.85K+ + 0.25Mg2+ + 3.4H4SiO4 | 9.72 | 1.41 × 10−12 | 2.81 × 10−14 | 2.81 × 10−15 |
calcite | 3.9988 | 0.72 | CaCO3 + H+ = HCO3− + Ca2+ | 1.84 | 5.01 × 10−1 | 1.55 × 10−6 | 3.31 × 10−4 |
thenardite | 0.0542 | 34.21 | Na2SO4 = 2Na+ + SO42− | −0.34 | 2.05 × 10 | 3.48 × 10−6 | 5.24 × 10−9 |
natron | 0.1209202 | 77.43 | Na2CO37H2O + H+ = HCO3− + 2Na+ + 7H2O | 9.51 | 4.14 × 1 | 7.17 × 10−3 | 4.34 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervi, F.; Tazioli, A. Coupling Mineralogical Analyses, Leaching Tests and Kinetic Modelling to Unravel Groundwater Flow-Paths in a Complex Landslide: An Attempt from the Vedriano Case Study (Northern Italian Apennines). Geosciences 2021, 11, 1. https://doi.org/10.3390/geosciences11010001
Cervi F, Tazioli A. Coupling Mineralogical Analyses, Leaching Tests and Kinetic Modelling to Unravel Groundwater Flow-Paths in a Complex Landslide: An Attempt from the Vedriano Case Study (Northern Italian Apennines). Geosciences. 2021; 11(1):1. https://doi.org/10.3390/geosciences11010001
Chicago/Turabian StyleCervi, Federico, and Alberto Tazioli. 2021. "Coupling Mineralogical Analyses, Leaching Tests and Kinetic Modelling to Unravel Groundwater Flow-Paths in a Complex Landslide: An Attempt from the Vedriano Case Study (Northern Italian Apennines)" Geosciences 11, no. 1: 1. https://doi.org/10.3390/geosciences11010001
APA StyleCervi, F., & Tazioli, A. (2021). Coupling Mineralogical Analyses, Leaching Tests and Kinetic Modelling to Unravel Groundwater Flow-Paths in a Complex Landslide: An Attempt from the Vedriano Case Study (Northern Italian Apennines). Geosciences, 11(1), 1. https://doi.org/10.3390/geosciences11010001