The Capo Castello Shear Zone (Eastern Elba Island): Deformation at the Contact between Oceanic and Continent Tectonic Units
Abstract
:1. Introduction
2. Geological Framework
3. The Capo Castello Shear Zone
3.1. Protomylonites
3.2. Mylonites
3.3. Ultramylonite
3.4. Petrographic Features of the Mylonitic and Ultramylonitic Serpentine
3.5. Brittle Structures
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Pennacchioni, G.; Mancktelow, N.S. Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions. J. Struct. Geol. 2007, 29, 1757–1780. [Google Scholar] [CrossRef]
- Van der Zee, W.; Wibberley, C.A.; Urai, J.L. The influence of layering and pre-existing joints on the development of internal structure in normal fault zones: The Lodève basin, France. Geol. Soc. Lond. Spec. Publ. 2008, 299, 57–74. [Google Scholar] [CrossRef]
- Regenauer-Lieb, K.; Weinberg, R.; Rosenbaum, G. The effect of energy feedbacks on continental strength. Nature 2006, 442, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Barnes, I.; O’Neil, J.R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Geol. Soc. Am. Bull. 1969, 80, 1947–1960. [Google Scholar] [CrossRef]
- Evans, J.P.; Chester, F.M. Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. J. Geophys. Res. Solid Earth 1995, 100, 13007–13020. [Google Scholar] [CrossRef]
- White, S.H.; Burrows, S.E.; Carreras, J.; Shaw, N.D.; Humphreys, F.J. On mylonites in ductile shear zones. J. Struct. Geol. 1980, 2, 175–187. [Google Scholar] [CrossRef]
- Platt, J.P.; Behr, W.M. Grain size evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere. J. Struct. Geol. 2011, 33, 537–550. [Google Scholar] [CrossRef]
- Menegon, L.; Stünitz, H.; Nasipuri, P. Partitioning of metamorphism and deformation at the nappe scale and implications for nappe-stacking mechanisms: The example of the Kalaknappe complex (north-Norwegian Caledonides). In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012. [Google Scholar]
- Ruiz-Agudo, E.; Putnis, C.V.; Putnis, A. Coupled dissolution and precipitation at mineral–fluid interfaces. Chem. Geol. 2014, 383, 132–146. [Google Scholar] [CrossRef]
- Gratier, J.P.; Thouvenot, F.; Jenatton, L.; Tourette, A.; Doan, M.L.; Renard, F. Geological control of the partitioning between seismic and aseismic sliding behaviours in active faults: Evidence from the Western Alps, France. Tectonophys. 2013, 600, 226–242. [Google Scholar] [CrossRef]
- Silver, C.R.; Murphy, M.A.; Taylor, M.H.; Gosse, J.; Baltz, T. Neotectonics of the western Nepal fault system: Implications for Himalayan strain partitioning. Tectonics 2015, 34, 2494–2513. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; van der Hilst, R.D.; Li, Y.; Yao, H.; Chen, J.; Guo, B.; Qi, S.; Wang, J.; Huang, H.; Li, S. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci. 2014, 7, 361–365. [Google Scholar] [CrossRef]
- Leever, K.A.; Gabrielsen, R.H.; Sokoutis, D.; Willingshofer, E. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics 2011, 30, TC2013. [Google Scholar] [CrossRef]
- Lee, P.E.; Jessup, M.J.; Shaw, C.A.; Hicks III, G.L.; Allen, J.L. Strain partitioning in the mid-crust of a transpressional shear zone system: Insights from the Homestake and Slide Lake shear zones, central Colorado. J. Struct. Geol. 2012, 39, 237–252. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Zhong, D. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. J. Struct. Geol. 2010, 32, 445–463. [Google Scholar] [CrossRef]
- Holdsworth, R.E.; Tavarnelli, E.; Clegg, P.; Pinheiro, R.V.L.; Jones, R.R.; McCaffrey, K.J.W. Domain deformation patterns and strain partitioning during transpression: An example from the Southern Uplands terrane, Scotland. J. Geol. Soc. 2002, 159, 401–415. [Google Scholar] [CrossRef]
- Beltrando, M.; Rubatto, D.; Manatschal, G. From passive margins to orogens: The link between ocean-continent transition zones and (ultra) high-pressure metamorphism. Geology 2010, 38, 559–562. [Google Scholar] [CrossRef]
- Molli, G.; Tribuzio, R.; Marquer, D. Deformation and metamorphism at the eastern border of the Tenda Massif (NE Corsica): A record of subduction and exhumation of continental crust. J. Struct. Geol. 2006, 28, 1748–1766. [Google Scholar] [CrossRef]
- Wintsch, R.P.; Yi, K. Dissolution and replacement creep: A significant deformation mechanism in mid-crustal rocks. J. Struct. Geol. 2002, 24, 1179–1193. [Google Scholar] [CrossRef]
- Guillot, S.; Schwartz, S.; Reynard, B.; Agard, P.; Prigent, C. Tectonic significance of serpentinites. Tectonophysics 2015, 646, 1–19. [Google Scholar] [CrossRef]
- Chernak, L.J.; Hirth, G. Deformation of antigorite serpentinite at high temperature and pressure. Earth Planet. Sci. Lett. 2010, 296, 23–33. [Google Scholar] [CrossRef]
- Schroeder, T.; John, B.E. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 2004, 5, Q11007. [Google Scholar] [CrossRef] [Green Version]
- Passchier, C.W.; Simpson, C. Porphyroclast systems as kinematic indicators. J. Struct. Geol. 1986, 8, 831–843. [Google Scholar] [CrossRef]
- Mancktelow, N.S. How ductile are ductile shear zones? Geology 2006, 34, 345–348. [Google Scholar] [CrossRef]
- Raleigh, C.B.; Paterson, M.S. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 1965, 70, 3965–3985. [Google Scholar] [CrossRef]
- Amiguet, E.; Van De Moortèle, B.; Cordier, P.; Hilairet, N.; Reynard, B. Deformation mechanisms and rheology of serpentines in experiments and in nature. J. Geophys. Res. Solid Earth 2014, 119, 4640–4655. [Google Scholar] [CrossRef]
- Hirauchi, K.I.; Katayama, I. Rheological contrast between serpentine species and implications for slab–mantle wedge decoupling. Tectonophysics 2013, 608, 545–551. [Google Scholar] [CrossRef]
- Morrow, C.A.; Moore, D.E.; Lockner, D.A. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys. Res. Lett. 2000, 27, 815–818. [Google Scholar] [CrossRef] [Green Version]
- Escartin, J.; Hirth, G.; Evans, B. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults. J. Geophys. Res. Solid Earth 1997, 102, 2897–2913. [Google Scholar] [CrossRef]
- Collettini, C.; Viti, C.; Smith, S.A.F.; Holdsworth, R.E. Development of interconnected talc networks and weakening of continental low-angle normal faults. Geology 2009, 37, 567–570. [Google Scholar] [CrossRef]
- Viti, C.; Hirose, T. Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites. Contrib. Mineral. Petrol. 2009, 157, 327–338. [Google Scholar] [CrossRef]
- Bianco, C.; Brogi, A.; Caggianelli, A.; Giorgetti, G.; Liotta, D.; Meccheri, M. HP-LT metamorphism in Elba Island: Implications for the geodynamic evolution of the inner Northern Apennines (Italy). J. Geodyn. 2015, 91, 13–25. [Google Scholar] [CrossRef]
- Bianco, C.; Godard, G.; Halton, A.; Brogi, A.; Liotta, D.; Caggianelli, A. The lawsonite-glaucophaneblueschists of Elba Island (Italy). Lithos 2019, 348–349, 105198. [Google Scholar] [CrossRef]
- Ramsay, J.G.; Graham, R.H. Strain variation in shear belts. Can. J. Earth Sci. 1970, 7, 786–813. [Google Scholar] [CrossRef]
- Sibson, R.H. Transient discontinuities in ductile shear zones. J. Struct. Geol. 1980, 2, 165–171. [Google Scholar] [CrossRef]
- Vitale, S.; Mazzoli, S. Heterogeneous shear zone evolution: The role of shear strain hardening/softening. J. Struct. Geol. 2008, 30, 1383–1395. [Google Scholar] [CrossRef]
- Bonini, M.; Cerrina Feroni, A.; Martinelli, P.; Moratti, G.; Valleri, G.; Certini, L. The intramessinian angular unconformity within the Radicondoli syncline (Siena, Tuscany, Italy): Structural and biostratigraphical preliminary data. Mem. Soc. Geol. Ital. 1994, 48, 501–507. [Google Scholar]
- Bonini, M.; Moratti, G. Evoluzione tettonica del bacino neogenico di Radiocondoli-Volterra (Toscana meridionale). Boll. Soc. Geol. Ital. 1995, 114, 549–573. [Google Scholar]
- Moratti, G.; Bonini, M. Structural development of the NeogeneRadicondoli–Volterra and adjoining hinterland basins in Western Tuscany (Northern Apennines, Italy). Geol. J. 1998, 33, 223–241. [Google Scholar] [CrossRef]
- Sani, F.; Bonini, M.; Cerina Feroni, A.; Mazzarini, F.; Moratti, G.; Musumeci, G.; Corti, G. Iatta, F.; Ellero, A. Messinian-Early Pliocene crustal shortening along the Tyrrhenian margin of Tuscany, Italy. Boll. Soc. Geol. Ital. 2009, 128, 593–604. [Google Scholar]
- Musumeci, G.; Vaselli, L. Neogene deformation and granite emplacement in the metamorphic units of northern Apennines (Italy): Insights from mylonitic marbles in the Porto Azzurro pluton contact aureole (Elba Island). Geosphere 2012, 8, 470–490. [Google Scholar] [CrossRef] [Green Version]
- Bonini, M.; Moratti, G.; Sani, F.; Balestrieri, M.L. Compression-to-extension record in the Late Pliocene-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy): Structural and thermochronological constraints. Ital. J. Geosci. 2013, 132, 54–80. [Google Scholar] [CrossRef]
- Brogi, A. Contractional structures as relicts of the Northern Apennines collisional stage recorded in the Tuscan nappe of the Mt. Amiata geothermal area (Italy). Boll. Soc. Geol. Ital. 2005, 4, 53–64. [Google Scholar]
- Brogi, A.; Lazzarotto, A.; Liotta, D.; Ranalli, G.; CROP18 Working Group. Crustal structures in the geothermal areas of southern Tuscany (Italy): Insights from the CROP 18 deep seismic reflection lines. J. Volcanol. Geotherm. Res. 2005, 148, 60–80. [Google Scholar] [CrossRef]
- Brogi, A.; Fidolini, F.; Liotta, D. Tectonic and sedimentary evolution of the Upper Valdarno Basin: New insights from the lacustrine S. Barbara Basin. Ital. J. Geosci. 2013, 132, 81–97. [Google Scholar]
- Liotta, D.; Brogi, A.; Meccheri, M.; Dini, A.; Bianco, C.; Ruggieri, G. Coexistence of low-angle normal and high-angle strike-to oblique-slip faults during Late Miocene mineralization in eastern Elba Island (Italy). Tectonophysics 2015, 660, 17–34. [Google Scholar] [CrossRef]
- Brogi, A.; Liotta, D. Highly extended terrains, lateral segmentation of the substratum, and basin development: The middle-late Miocene Radicondoli Basin (inner northern Apennines, Italy). Tectonics 2008, 27, 1–20. [Google Scholar] [CrossRef]
- Boccaletti, M.; Elter, P.; Guazzone, G.P. Plate tectonic models for the development of the western Alps and Northern Apennines. Nature 1971, 234, 108–111. [Google Scholar] [CrossRef]
- Scandone, P. Origin of the Tyrrhenian Sea and Calabrian Arc. Boll. Soc. Geol. Ital. 1979, 98, 27–34. [Google Scholar]
- Molli, G. Northern Apennines-Corsica orogenic system: An updated overview. Siegesmund, S., Fügenschuh, B., Froitzheim N. (Eds.), Tectonic aspects of the Alpine–Dinaride–Carpathian system. Geol. Soc. London Spec. Publ. 2008, 298, 413–442. [Google Scholar] [CrossRef]
- Carmignani, L.; Decandia, F.A.; Disperati, L.; Fantozzi, P.L.; Lazzarotto, A.; Liotta, D.; Oggiano, G. Relationships between the Sardinia–Corsica–Provencal Domain and the Northern Apennines. Terra Nova 1995, 7, 128–137. [Google Scholar] [CrossRef]
- Barchi, M.; Beltrando, M. The Neogene-Quaternary evolution of the Northern Apennines: Crustal structure, style of deformation and seismicity. J. Virtual Explor. 2010, 36. [Google Scholar] [CrossRef]
- Rossetti, F.; Glodny, J.; Theye, T.; Maggi, M. Pressure–temperature–deformation–time of the ductile Alpine shearing in Corsica: From orogenic construction to collapse. Lithos 2015, 218, 99–116. [Google Scholar] [CrossRef]
- Serri, G.; Innocenti, F.; Manetti, P. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene Quaternary magmatism of central Italy. Tectonophysics 1993, 223, 117–147. [Google Scholar] [CrossRef]
- Keller, J.V.A.; Pialli, G. Tectonics of the island of Elba: A reappraisal. Boll. Soc. Geol. Ital. 1990, 109, 413–425. [Google Scholar]
- Collettini, C.; Holdsworth, R.E. Fault zone weakening and character of slip along low-angle normal faults: Insights from the Zuccale fault, Elba, Italy. J. Geol. Soc. 2004, 161, 1039–1051. [Google Scholar] [CrossRef]
- Smith, S.A.F.; Holdsworth, R.E.; Collettini, C. Interactions between Low-Angle normal faults and plutonism in the upper crust: Insights from the Island of Elba, Italy. Bull. Geol. Soc. Am. 2011, 123, 329–346. [Google Scholar] [CrossRef]
- Westerman, D.S.; Dini, A.; Innocenti, F.; Rocchi, S. Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol. Soc. Lond. Spec. Publ. 2004, 234, 195–213. [Google Scholar] [CrossRef]
- Dini, A.; Innocenti, F.; Rocchi, S.; Tonarini, S.; Westerman, D.S. The magmatic evolution of the late Miocene laccolith–pluton–dyke granitic complex of Elba Island, Italy. Geol. Mag. 2002, 139, 257–279. [Google Scholar] [CrossRef]
- Maineri, C.; Benvenuti, M.; Costagliola, P.; Dini, A.; Lattanzi, P.; Ruggieri, G.; Villa, I.M. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): Interplay between magmatism, tectonics and hydrothermal activity. Miner. Depos. 2003, 38, 67–86. [Google Scholar] [CrossRef]
- Bortolotti, V.; Fazzuoli, M.; Pandeli, F.; Principi, G.; Babbini, A.; Corti, S. Geology of Central and Eastern Elba Island Italy. Ofioliti 2001, 26, 97–150. [Google Scholar]
- Duranti, S.; Palmeri, R.; Pertusati, P.C.; Ricci, C.A. Geological evolution and metamorphic petrology of the basal sequences of eastern Elba (complex II). ActaVulcanol. 1992, 2, 213–229. [Google Scholar]
- Pandeli, E.; Bortolotti, V.; Principi, G. La successione toscana epimetamorfica di Capo Castello (Cavo, Isola d’Elba nord-orientale). Atti Ticinesi Scienze Terra 1995, 38, 171–191. [Google Scholar]
- Elter, F.M.; Pandeli, E. Structural evolution of anchi-/epimetamorphic units of Central and Eastern Elba (Ortano, Acquadolce, Monticiano-Roccastrada and Grassera Units). Ofioliti 2001, 26, 219–228. [Google Scholar]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Viti, C.; Mellini, M. Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, Italy. Eur. J. Mineral. 1997, 9, 585–596. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Salvioli Mariani, E.; Mantovani, L.; Tribaudino, M.; Lottici, P.P.; Laporte-Magoni, C.; Bersani, D. Micro-Raman mapping of the polymorphs of serpentine. J. Raman Spectrosc. 2015, 46, 953–958. [Google Scholar] [CrossRef]
- Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur. J. Miner. 2006, 18, 319–329. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C.; Lanari, P.; Auzende, A.L. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 2013, 178, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Andréani, M.; Boullier, A.M.; Gratier, J.P. Development of schistosity by dissolution–crystallization in a Californian serpentinite gouge. J. Struct. Geol. 2005, 27, 2256–2267. [Google Scholar]
- Viti, C.; Mellini, M. Mesh textures and bastites in the Elba retrograde serpentinites. Eur. J. Mineral. 1998, 10, 1341–1359. [Google Scholar] [CrossRef] [Green Version]
- Christensen, N.I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 2004, 46, 795–816. [Google Scholar] [CrossRef]
- Boudier, F.; Baronnet, A.; Mainprice, D. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. J. Petrol. 2009, 51, 495–512. [Google Scholar] [CrossRef]
- Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- O’Hanley, D.S. Serpentinites, Records of Tectonic and Petrological History; Oxford University Press: New York, NY, USA, 1996; p. 277. [Google Scholar]
- Nicolas, A.; Meshi, A.; Boudier, F.; Jousselin, D.; Muceku, B. Mylonites in ophiolite of Mirdita (Albania): Oceanic detachment shear zone. Geosphere 2017, 13, 136–154. [Google Scholar] [CrossRef] [Green Version]
- Reinen, L.A.; Weeks, J.D.; Tullis, T.E. The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults. Pure Appl. Geophys. 1994, 143, 317–358. [Google Scholar] [CrossRef]
- Moore, D.E.; Lockner, D.A.; Ma, S.; Summers, R.; Byerlee, J.D. Strengths of serpentinite gouges at elevated temperatures. J. Geophys. Res. Solid Earth 1997, 102, 14787–14801. [Google Scholar] [CrossRef]
- Behnsen, J.; Faulkner, D.R. The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. J. Struct. Geol. 2012, 42, 49–61. [Google Scholar] [CrossRef]
- Hirauchi, K.I.; Michibayashi, K.; Ueda, H.; Katayama, I. Spatial variations in antigorite fabric across a serpentinite subduction channel: Insights from the Ohmachi Seamount, Izu-Bonin frontal arc. Earth Planet. Sci. Lett. 2010, 299, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Wenner, D.B.; Taylor, H.P. Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contrib. Miner. Petrol. 1971, 32, 165–185. [Google Scholar] [CrossRef]
- Holdsworth, R.E.; Stewart, M.; Imber, J.; Strachan, R.A. The structure and rheological evolution of reactivated continental fault zones: A review and case study. Geol. Soc. Lond. Spec. Publ. 2001, 184, 115–137. [Google Scholar] [CrossRef]
- Moore, D.E.; Rymer, M.J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 2007, 448, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C. Fault zone fabric and fault weakness. Nature 2009, 462, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks: Metamorphism of Ultramafic Rocks; Springer: Berlin/Heidelberg, Germany, 2011; pp. 191–338. [Google Scholar]
- Kelemen, P.B.; Hirth, G. Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. Earth Planet. Sci. Lett. 2012, 345, 81–89. [Google Scholar] [CrossRef]
- Klein, F.; Garrido, C.J. Thermodynamic constraints on mineral carbonation of serpentinizedperidotite. Lithos 2011, 126, 147–160. [Google Scholar] [CrossRef]
- Quesnel, B.; Gautier, P.; Boulvais, P.; Cathelineau, M.; Maurizot, P.; Cluzel, D.; Ulrich, M.; Guillot, S.; Lesimple, S.; Couteau, C. Syn-tectonic, meteoric water-derived carbonation of the New Caledonia peridotitenappe. Geology 2013, 41, 1063–1066. [Google Scholar] [CrossRef]
- Abu-Jaber, N.S.; Kimberley, M.M. Origin of ultramafic-hosted vein magnesite deposits. Ore Geol. Rev. 1992, 7, 155–191. [Google Scholar] [CrossRef]
- Boschi, C.; Dini, A.; Dallai, L.; Ruggieri, G.; Gianelli, G. Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem. Geol. 2009, 265, 209–226. [Google Scholar] [CrossRef]
- El-Sharkawy, M.F. Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Miner. Depos. 2000, 35, 346–363. [Google Scholar] [CrossRef]
- Mancktelow, N.S.; Pennacchioni, G. The control of precursor brittle fracture and fluid—Rock interaction on the development of single and paired ductile shear zones. J. Struct. Geol. 2005, 27, 645–661. [Google Scholar] [CrossRef]
- Stewart, M.; Holdsworth, R.E.; Strachan, R.A. Deformation processes and weakening mechanisms within the frictional—Viscous transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland. J. Struct. Geol. 2000, 22, 543–560. [Google Scholar] [CrossRef]
Lithology | Strain Intensity | Features |
---|---|---|
Quartzofeldspathic rock (metasandstone) | Low strain domain | Protomylonitic fabric Weak crystallized matrix (< 50%) Weak foliation Low frequency distribution of S/C structures Absence of shear bands (C’/C’’) Minor grainsize reduction Minor sintectonic mineral growth with weak preferred orientation Area covered by porphyroclasts: 0.8% |
High strain domain | Mylonitic fabric Dark grey recrystallized matrix (between 50% and 90%) Intensely foliated High frequency of S/C structures Presence of C/C’’ shear bands Significantly grainsize reduction Moderate sintectonic mineral growth with moderate preferred orientation Porphyroclast with σ-shape, rare θ-type Area covered by porphyroclasts: 10% | |
Ophiolite (serpentinite) | Low Strain domain | Mylonitic fabric Dark crystallized matrix (between 50% and 90%) Intensely foliated Moderate frequency distribution of S/C structures Absence of shear bands (C’/C’’) Moderate grainsize reduction Moderate sintectonic mineral growth with strong preferred orientation Porphyroclast with σ and ∂-shape Area covered by porphyroclasts: 13% |
High strain domain | Ultramylonitic fabric Almost completely recrystallized matrix (<90%) Intensely foliated High frequency of S/C structures Presence of C/C’’ shear bands Intense grainsize reduction Pervasive sin-tectonic mineral growth with strong preferred orientation Porphyroclast ∂ and θ-shape area covered by porphyroclasts: 2% |
Mgs | Cal | Dol | Tlc | Srp | Chl-Penninite | Chl-Oycnochlorite | Chl- Chlinochlore | Chl- Sheridanite | Mag | Mg-Chr | |
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 0.000 | 0.000 | 0.000 | 62.360 | 41.960 | 35.060 | 34.960 | 35.640 | 31.200 | 0.000 | 0.000 |
TiO2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.370 |
Al2O3 | 0.000 | 0.000 | 0.000 | 0.470 | 2.210 | 16.440 | 20.070 | 24.300 | 27.200 | 0.000 | 4.900 |
Cr2O3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.410 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 32.400 |
FeO | 8.520 | 0.870 | 0.770 | 1.910 | 3.340 | 11.200 | 19.790 | 1.870 | 3.500 | 92.410 | 46.380 |
MnO | 0.260 | 0.230 | 0.370 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MgO | 38.970 | 2.710 | 16.070 | 29.320 | 38.440 | 30.250 | 19.860 | 33.700 | 31.080 | 0.410 | 14.450 |
CaO | 0.980 | 45.490 | 27.510 | 0.000 | 0.000 | 0.080 | 0.360 | 0.360 | 0.360 | 0.180 | 0.000 |
Na2O | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.830 | 0.580 | 0.780 | 0.780 | 0.000 | 0.000 |
K2O | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.120 | 0.160 | 0.180 | 0.180 | 0.000 | 0.000 |
CO2 | 48.700 | 39.335 | 39.838 | ||||||||
TOTAL | 97.430 | 88.635 | 84.558 | 94.060 | 86.360 | 93.980 | 95.780 | 96.830 | 94.300 | 93.000 | 98.500 |
Si | 0.000 | 0.000 | 0.000 | 8.030 | 1.979 | 6.349 | 6.414 | 5.965 | 5.426 | 0.000 | 0.000 |
Al | 0.000 | 0.000 | 0.000 | 0.071 | 0.123 | 3.509 | 4.340 | 4.793 | 5.575 | 0.000 | 0.009 |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.189 |
Cr | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.835 |
Fe3+ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 0.958 |
Fe2+ | 0.214 | 0.027 | 0.023 | 0.206 | 0.132 | 1.696 | 3.037 | 0.262 | 0.509 | 0.969 | 0.307 |
Mn | 0.007 | 0.009 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mg | 1.747 | 0.153 | 0.891 | 5.628 | 2.703 | 8.167 | 5.432 | 8.408 | 8.058 | 0.024 | 0.702 |
Ca | 0.032 | 1.811 | 1.076 | 0.016 | 0.000 | 0.016 | 0.071 | 0.065 | 0.067 | 0.007 | 0.000 |
Na | 0.000 | 0.000 | 0.000 | 0.291 | 0.000 | 0.291 | 0.206 | 0.253 | 0.263 | 0.000 | 0.000 |
K | 0.000 | 0.000 | 0.000 | 0.028 | 0.000 | 0.028 | 0.037 | 0.038 | 0.040 | 0.000 | 0.000 |
Σcations | 2.000 | 2.000 | 2.000 | 13.935 | 4.952 | 20.056 | 19.538 | 19.784 | 19.938 | 3.000 | 3.000 |
CO3 | 2.000 | 2.000 | 2.000 | ||||||||
XMg | 0.874 | 0.077 | 0.445 | 0.965 | 0.954 | 0.828 | 0.641 | 0.970 | 0.941 | 0.024 | 0.696 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, C. The Capo Castello Shear Zone (Eastern Elba Island): Deformation at the Contact between Oceanic and Continent Tectonic Units. Geosciences 2020, 10, 361. https://doi.org/10.3390/geosciences10090361
Bianco C. The Capo Castello Shear Zone (Eastern Elba Island): Deformation at the Contact between Oceanic and Continent Tectonic Units. Geosciences. 2020; 10(9):361. https://doi.org/10.3390/geosciences10090361
Chicago/Turabian StyleBianco, Caterina. 2020. "The Capo Castello Shear Zone (Eastern Elba Island): Deformation at the Contact between Oceanic and Continent Tectonic Units" Geosciences 10, no. 9: 361. https://doi.org/10.3390/geosciences10090361
APA StyleBianco, C. (2020). The Capo Castello Shear Zone (Eastern Elba Island): Deformation at the Contact between Oceanic and Continent Tectonic Units. Geosciences, 10(9), 361. https://doi.org/10.3390/geosciences10090361