Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fire Intensity Gradient Experiment
2.2. Soil Microbial Mixtures
2.3. Microbial Analysis
2.4. Statistical Analysis
3. Results
3.1. Microbial Community Structure
3.2. Bacterial Growth
3.3. Microbial Biomass
3.4. Correlations of Microbial Parameters with the Degree-Hours and Maximum Temperatures
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Martin, D.; Tomida, M.; Meacham, B. Environmental impact of fire. Fire Sci. Rev. 2016, 5, 5. [Google Scholar] [CrossRef]
- Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 2001, 10, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Hallema, D.W.; Robinne, F.N.; Bladon, K.D. Reframing the challenge of global wildfire threats to water supplies. Earth Future 2018, 6, 772–776. [Google Scholar] [CrossRef]
- Jones, G.M.; Gutiérrez, R.J.; Tempel, D.J.; Whitmore, S.A.; Berigan, W.J.; Peery, M.Z. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 2016, 14, 300–306. [Google Scholar] [CrossRef]
- Moore, P.F. Global wildland fire management research needs. Curr. For. Rep. 2019, 5, 210–225. [Google Scholar] [CrossRef]
- Ferreira-Leite, F.; Bento-Goncalves, A.; Vieira, A.; da Vinha, L. Mega-fires around the world: A literature review. In Wildland Fires: A Worldwide Reality; Bento-Goncalves, A., Vieira, A., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 15–33. [Google Scholar]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Carballas, T.; Martín, A.; Díaz-Raviña, M. Efecto de los incendios forestales sobre los suelos de Galicia. In Efectos de los Incendios Forestales Sobre los Suelos de España: El Estado de la Cuestión Visto Por los Científios Españoles; Cerdá, A., Mataix-Solera, J., Eds.; Cátedra de Divulgación de la Ciencia; Universidad de Valencia: Valencia, Spain, 2009; pp. 269–301. [Google Scholar]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Almendros, G.; González-Vila, F.J. Wildfires, soil carbon balance and resilient organic matter in mediterranean ecosystems. A review. Span. J. Soil Sci. 2012, 2, 8–33. [Google Scholar]
- Gimeno-García, E.; Andreu, V.; Rubio, J.L. Spatial patterns of soil temperatures during experimental fires. Geoderma 2004, 118, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Shiozawa, S.; Campbell, G.S. Soil thermal conductivity. Remote Sens. Rev. 1990, 5, 301–310. [Google Scholar] [CrossRef]
- Valette, J.C.; Gomendy, V.; Marechal, J.; Houssard, C.; Gillon, D. Heat-transfer in the soil during very low-intensity experimental fires—The role of duff and soil-moisture content. Int. J. Wildland Fire 1994, 4, 225–237. [Google Scholar] [CrossRef]
- Verma, S.; Jayakumar, S. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 168. [Google Scholar]
- Dunn, P.H.; Barro, S.C.; Poth, M. Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biol. Biochem. 1985, 17, 143–148. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P.; Barcenas, M. Forest fire effects on soil microbiology. Fire Eff. Soils Restor. Strateg. 2009, 5, 133–175. [Google Scholar]
- Zhang, W.; Parker, K.M.; Luo, Y.; Wan, S.; Wallace, L.L.; Hu, S. Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob. Chang. Biol. 2005, 11, 266–277. [Google Scholar] [CrossRef]
- Hamman, S.T.; Burke, I.C.; Stromberger, M.E. Relationships between microbial community structure and soil environmental conditions in a recently burned soil. Soil Biol. Biochem. 2007, 39, 1703–1711. [Google Scholar] [CrossRef]
- Campbell, C.D.; Cameron, C.M.; Bastias, B.A.; Chen, C.; Cairney, J.W.G. Long-term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates. Soil Biol. Biochem. 2008, 40, 2246–2252. [Google Scholar] [CrossRef]
- Dangi, S.R.; Stahl, P.D.; Pendall, E.; Cleary, M.B.; Buyer, J.S. Recovery of soil microbial community structure after fire in a sagebrush-grassland ecosystem. Land Degrad. Dev. 2010, 21, 423–432. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.; Bååth, E. Soil microbial recolonization after a fire in Mediterranean Forest. Biol. Fertil. Soils 2011, 47, 261–272. [Google Scholar] [CrossRef]
- Goberna, M.; García, C.; Insam, H.; Hernández, M.T. Burning fire-prone mediterranean shublands: Immediate changes in soil microbial community structure and ecosystem functions. Microb. Ecol. 2012, 64, 242–255. [Google Scholar] [CrossRef]
- Weber, C.F.; Lockhart, J.S.; Charaska, E.; Aho, K.; Lohse, K.A. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol. Biochem. 2014, 69, 242–250. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, Y.; Yang, J.; Kong, J.; Lin, X.; Zhang, H.; Zeng, J.; Chu, H. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 2014, 4, 3829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haile, K.F. Fuel Load and Heat Effects on Northern Mixed Prairie and Four Prominent Rangeland Graminoids. Ph.D. Thesis, College of Agriculture, Montana State University-Bozeman, Bozeman, MT, USA, 2011. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Dooley, S.R.; Treseder, K.K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 2012, 109, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Wellington, E.M.H.; Berry, A.; Krsek, M. Resolving functional diversity in relation to microbial community structure in soil: Exploiting genomics and stable isotope probing. Curr. Opin. Microbiol. 2003, 6, 295–301. [Google Scholar] [CrossRef]
- Guerrero, C.; Mataix-Solera, J.; Gómez, I.; García-Orenes, F.; Jordán, M.M. Microbial recolonization and chemical changes in a soil heated at different temperatures. Int. J. Wildland Fire 2005, 14, 385–400. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Bååth, E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol. Biochem. 2009, 41, 2517–2526. [Google Scholar] [CrossRef]
- Cancelo-González, J.; Rial-Rivas, M.E.; Barros, N.; Díaz-Fierros, F. Assessment of the impact of soil heating on soil cations using the degree-hour method. Span. J. Soil Sci. 2012, 2, 32–44. [Google Scholar]
- Lombao, A.; Barreiro, A.; Fontúrbel, M.T.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Sci. Total Environ. 2020, 741, 140363. [Google Scholar] [CrossRef] [PubMed]
- Bååth, E.; Pettersson, M.; Söderberg, K.H. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol. Biochem. 2001, 33, 1571–1574. [Google Scholar] [CrossRef]
- Frostegård, A.; Tunlid, A.; Bååth, E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 1993, 59, 3605–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frostegård, Å.; Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111. [Google Scholar] [CrossRef] [Green Version]
- Lombao, A.; Barreiro, A.; Carballas, T.; Fontúrbel, M.T.; Martín, Á.; Vega, J.A.; Fernández, C.; Díaz-Raviña, M. Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena 2015, 135, 409–418. [Google Scholar] [CrossRef]
- Barreiro, A.; Fontúrbel, M.T.; Lombao, A.; Martín, A.; Vega, J.A.; Fernández, C.; Carballas, T.; Díaz-Raviña, M. Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. Catena 2015, 135, 419–429. [Google Scholar] [CrossRef]
- Raviña, M.D.; Vázquez, A.L.; Buján, A.I.B.; Jiménez, A.M.; Fernández, T.C. Medium-term impact of post-fire emergency rehabilitation techniques on a shrubland ecosystem in Galicia (NWSpain). Span. J. Soil Sci. 2018, 8, 322–346. [Google Scholar]
- Lombao, A.; Barreiro, A.; Cancelo-González, J.; Martín, Á.; Díaz-Raviña, M. Impact of thermal shock on forest soils affected by fires of different severity and recurrence. Span. J. Soil Sci. 2015, 5, 165–179. [Google Scholar]
- Díaz-Raviña, M.; Prieto, A.; Bååth, E. Bacterial activity in a forest soil after soil heating and organic amendments measured by the thymidine incorporation technique. Soil Biol. Biochem. 1996, 28, 419–426. [Google Scholar] [CrossRef]
- Barreiro, A.; Bååth, E.; Díaz-Raviña, M. Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biol. Biochem. 2016, 97, 102–111. [Google Scholar] [CrossRef]
- Badía-Villas, D.; González-Pérez, J.A.; Aznar, J.M.; Arjona-Gracia, B.; Martí-Dalmau, C. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma 2014, 213, 400–407. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernández, C.; Fonturbel, T.; González-Prieto, S.; Jiménez, E. Testing the effects of straw mulching and herb seeding on soil erosion after fire in a gorse shrubland. Geoderma 2014, 223, 79–87. [Google Scholar] [CrossRef]
- Aznar, J.M.; González-Pérez, J.A.; Badía, D.; Martí, C. At what depth are the properties of a gypseous forest topsoil affected by burning? Land Degrad. Dev. 2016, 27, 1344–1353. [Google Scholar] [CrossRef]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Beadle, N.C.W. Soil temperatures during forest fires and their effect on the survival of vegetation. J. Ecol. 1940, 28, 180–192. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 86, 1537–5110. [Google Scholar] [CrossRef]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601–602, 1119–1128. [Google Scholar]
- Busse, M.D.; Shestak, C.J.; Hubbert, K.R.; Knapp, E.E. Soil physical properties regulate lethal heating during burning of woody residues. Soil Sci. Soc. Am. J. 2010, 74, 947–955. [Google Scholar] [CrossRef]
- González-Pelayo, O.; Gimeno-García, E.; Ferreira, C.S.S.; Ferreira, A.J.D.; Keizer, J.J.; Andreu, V.; Rubio, J.L. Water repellency of air-dried and sieved samples from limestone soils in central Portugal collected before and after prescribed fire. Plant Soil 2015, 394, 199–214. [Google Scholar] [CrossRef]
- Bao, T.; Liu, S.; Qin, Y.; Liu, L.Z. 3D modeling of coupled soil heat and moisture transport beneath a surface fire. Int. J. Heat Mass Transf. 2020, 149, 119163. [Google Scholar] [CrossRef]
- Campbell, G.S.; Jungbauer, J.D.; Bidlake, W.R.; Hungerford, R.D. Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 1994, 158, 307–313. [Google Scholar] [CrossRef]
- Guo, J.; Chen, G.; Xie, J.; Yang, Z.; Yang, Y. Effect of heat-disturbance on microbial biomass carbon and microbial respiration in Chinese fir (Cunninghamia lanceolata) forest soils. J. For. Res. 2015, 26, 933–939. [Google Scholar] [CrossRef]
- Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Clim. Chang. 2016, 135, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Venäläinen, A.; Korhonen, N.; Hyvärinen, O.; Koutsias, N.; Xystrakis, F.; Urbieta, I.R.; Moreno, J.M. Temporal variations and change in forest fire danger in Europe for 1960-2012. Nat. Hazards Earth Syst. Sci. 2014, 14, 1477. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 2019, 62, 1551–1563. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Laudicina, V.A.; Parra, A.; Albert-Belda, E.; Moreno, J.M. Drought and its legacy modulate the post-fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland. Glob. Chang. Biol. 2019, 25, 1409–1427. [Google Scholar] [CrossRef]
- Smith, J.E.; Cowan, A.D.; Fitzgerald, S.A. Soil heating during the complete combustion of mega-logs and broadcast burning in central Oregon USA pumice soils. Int. J. Wildland Fire 2016, 25, 1202–1207. [Google Scholar] [CrossRef]
0% WC | 25% WC | 50% WC | ||||
---|---|---|---|---|---|---|
DH | Tmax (°C) | DH | Tmax (°C) | DH | Tmax (°C) | |
100 a | 44–125 | 132–210 | 35–87 | 93–164 | 61–86 | 98–122 |
(68 ± 12) | (168 ± 12) | (52 ± 8) | (122 ± 11) | (75 ± 4) | (106 ± 4) | |
100 b | 16–47 | 60–72 | 23–43 | 71–89 | 48–71 | 90–97 |
(26 ± 5) | (66 ± 2) | (32 ± 4) | (79 ± 3) | (60 ± 4) | (94 ± 1) | |
200 a | 104–168 | 238–269 | 66–167 | 169–223 | 80–184 | 167–205 |
(134 ± 12) | (253 ± 5) | (100 ± 17) | (197 ± 10) | (127 ± 14) | (190 ± 6) | |
200 b | 37–64 | 79–82 | 34–72 | 80–94 | 51–117 | 88–99 |
(49 ± 5) | (79 ± 1) | (49 ± 7) | (88 ± 2) | (83 ± 9) | (96 ± 1) | |
400 a | 156–403 | 367–407 | 237–646 | 379–398 | 282–630 | 390–398 |
(254 ± 35) | (392 ± 7) | (484 ± 75) | (392 ± 3) | (458 ± 57) | (395 ± 1) | |
400 b | 63–159 | 108–153 | 71–281 | 94–216 | 102–332 | 97–200 |
(103 ± 14) | (128 ± 7) | (191 ± 38) | (165 ± 23) | (195 ± 36) | (135 ± 18) |
Mixture 1 | Mixture 2 | Mixture 3 | |
---|---|---|---|
Location Vegetation | 42°51′48.6′′ N, 9°06′18′′ W Grassland (old pinewood) | 42°51′49.2′′22N, 9°06′20.4′′ W 42°45′45.1′′ N, 9°06′32.6′′ W Pinewood with herbaceus vegetation | |
Type of soil | Alumbric Regosol | Umbric Regosol | Humic Cambisol |
Basic rock | Granodiorite | Granite | Granite |
pH (H2O) | 5.9 | 4.4 | 5.8 |
Total Carbon (%) | 6.5 | 13.3 | 8.2 |
Degrees of Freedom | F. Model | R2 | p-Value | ||
---|---|---|---|---|---|
Soil mixture 1 (0) | Water content | 2 | 3.051 | 0.15379 | 0.0001 |
Depth | 1 | 2.301 | 0.05819 | 0.0554 | |
Temperature | 1 | 0.261 | 0.00659 | 0.7233 | |
Soil mixture 2 (0) | Water content | 2 | 4.656 | 0.18359 | 0.0001 |
Depth | 1 | 6.498 | 0.1280 | 0.0001 | |
Temperature | 1 | 3.946 | 0.07773 | 0.0022 | |
Soil mixture 3 (0) | Water content | 2 | 4.454 | 0.09992 | 0.0016 |
Depth | 1 | 4.714 | 0.10575 | 0.0001 | |
Temperature | 1 | 4.409 | 0.09891 | 0.0047 | |
Soil mixture 1 (1) | Water content | 2 | 4.100 | 0.14355 | 0.0001 |
Depth | 1 | 8.947 | 0.15713 | 0.0001 | |
Temperature | 1 | 8.948 | 0.15665 | 0.0001 | |
Soil mixture 2 (1) | Water content | 2 | 8.026 | 0.31472 | 0.0001 |
Depth | 1 | 3.160 | 0.06196 | 0.0226 | |
Temperature | 1 | 0.792 | 0.01553 | 0.5031 | |
Soil mixture 3 (1) | Water content | 2 | 1.560 | 0.07273 | 0.0744 |
Depth | 1 | 3.719 | 0.08669 | 0.0009 | |
Temperature | 1 | 6.066 | 0.14138 | 0.0001 |
Estimate | Std. Error | t Value | p-Value | ||
---|---|---|---|---|---|
M1 (0) | (Intercept) | 216.942 | 135.053 | 1.606 | 0.118 |
Water content | 0.778 | 2.501 | 0.311 | 0.758 | |
Temperature | −0.806 | 0.409 | −1.969 | 0.058 | |
Depth | 232.009 | 102.091 | 2.273 | 0.030 * | |
M2 (0) | (Intercept) | 5.848 | 13.642 | 0.429 | 0.671 |
Water content | 0.128 | 0.423 | 0.302 | 0.765 | |
Temperature | −0.012 | 0.052 | −0.242 | 0.811 | |
Depth | 64.591 | 19.293 | 3.348 | 0.002 ** | |
WC × Temp | 0.000 | 0.002 | 0.242 | 0.811 | |
WC × Depth | −1.577 | 0.598 | −2.639 | 0.013 * | |
Temp × Depth | −0.184 | 0.073 | −2.524 | 0.018 * | |
WC × Temp × Depth | 0.005 | 0.002 | 2.233 | 0.034 * | |
M3 (0) | (Intercept) | 167.588 | 51.552 | 3.251 | 0.003 ** |
Water content | 0.945 | 0.955 | 0.990 | 0.329 | |
Temperature | −0.543 | 0.156 | −3.473 | 0.002 ** | |
Depth | 75.742 | 38.969 | 1.944 | 0.061 | |
M1 (1) | (Intercept) | 6721.357 | 1730.025 | 3.885 | 0.000 *** |
Water content | −78.894 | 32.034 | −2.463 | 0.019 * | |
Temperature | 0.558 | 5.243 | 0.106 | 0.916 | |
Depth | 3042.829 | 1307.776 | 2.327 | 0.026 * | |
M2 (1) | (Intercept) | 5748.134 | 3339.430 | 1.721 | 0.095 |
Water content | 30.842 | 61.834 | 0.499 | 0.621 | |
Temperature | −9.362 | 10.120 | −0.925 | 0.362 | |
Depth | 5047.885 | 2524.372 | 2.000 | 0.054 | |
M3 (1) | (Intercept) | 5424.106 | 2699.428 | 2.009 | 0.053 |
Water content | 37.211 | 49.984 | 0.744 | 0.462 | |
Temperature | 3.402 | 8.181 | 0.416 | 0.680 | |
Depth | 3231.508 | 2040.576 | 1.584 | 0.123 |
Estimate | Std. Error | t Value | p-Value | ||
---|---|---|---|---|---|
M1 (0) | (Intercept) | 335.320 | 48.677 | 6.889 | 0.000 *** |
Water content | −1.514 | 0.901 | −1.680 | 0.103 | |
Temperature | −0.599 | 0.148 | −4.061 | 0.000 *** | |
Depth | 112.825 | 36.797 | 3.066 | 0.004 ** | |
M2 (0) | (Intercept) | 368.569 | 77.275 | 4.770 | 0.000 *** |
Water content | −1.503 | 1.431 | −1.050 | 0.301 | |
Temperature | −0.528 | 0.234 | −2.256 | 0.031 * | |
Depth | 135.193 | 58.414 | 2.314 | 0.027 * | |
M3 (0) | (Intercept) | 307.644 | 52.004 | 5.916 | 0.000 *** |
Water content | −1.670 | 0.963 | −1.734 | 0.092 | |
Temperature | −0.482 | 0.158 | −3.059 | 0.004 ** | |
Depth | 99.666 | 39.312 | 2.535 | 0.016 * | |
M1 (1) | (Intercept) | 611.493 | 106.942 | 5.718 | 0.000 *** |
Water content | −8.324 | 3.313 | −2.512 | 0.018 * | |
Temperature | −1.554 | 0.404 | −3.845 | 0.001 *** | |
Depth | 53.955 | 151.239 | 0.357 | 0.724 | |
WC × Temp | 0.026 | 0.013 | 2.092 | 0.046 * | |
WC × Depth | −1.237 | 4.686 | −0.264 | 0.794 | |
Temp × Depth | 0.407 | 0.572 | 0.711 | 0.483 | |
WC × Temp × Depth | −0.005 | 0.018 | −0.266 | 0.792 | |
M2 (1) | (Intercept) | 232.360 | 48.118 | 4.829 | 0.000 *** |
Water content | −1.935 | 0.891 | −2.172 | 0.037 * | |
Temperature | −0.001 | 0.146 | −0.007 | 0.995 | |
Depth | 85.083 | 36.374 | 2.339 | 0.026 * | |
M3 (1) | (Intercept) | 270.100 | 31.560 | 8.559 | 0.000 *** |
Water content | −2.080 | 0.978 | −2.128 | 0.042 * | |
Temperature | −0.361 | 0.119 | −3.023 | 0.005 ** | |
Depth | −9.880 | 44.630 | −0.221 | 0.826 | |
WC × Temp | 0.003 | 0.004 | 0.696 | 0.492 | |
WC × Depth | −0.216 | 1.383 | −0.156 | 0.877 | |
Temp × Depth | 0.282 | 0.169 | 1.670 | 0.106 | |
WC × Temp × Depth | 0.000 | 0.005 | 0.062 | 0.951 |
DH (0) | T Max (0) | DH (1) | T Max (1) | ||
---|---|---|---|---|---|
Total biomass indicator (nmol g−1) | M1 0% | −0.82 ** | −0.86 *** | −0.74 ** | −0.63 * |
M2 0% | −0.84 *** | −0.86 *** | −0.86 *** | −0.77 ** | |
M3 0% | −0.77 ** | −0.83 *** | −0.92 *** | −0.82 ** | |
M1 25% | −0.85 *** | −0.84 *** | −0.60 * | −0.66 * | |
M2 25% | −0.64 * | −0.60 * | −0.28 | −0.40 | |
M3 25% | −0.90 *** | −0.83 *** | −0.85 *** | −0.80 ** | |
M1 50% | −0.86 *** | −0.78 ** | 0.79 ** | −0.67 * | |
M2 50% | −0.94 *** | −0.91 *** | −0.62 * | −0.65 * | |
M3 50% | −0.38 | −0.34 | 0.18 | 0.16 | |
Bacterial growth indicator (mol leucine 10−14 mL−1 h−1) | M1 0% | −0.35 | −0.34 | −0.26 | −0.36 |
M2 0% | −0.49 | −0.52 | −0.60 * | −0.67 * | |
M3 0% | −0.60 * | −0.60 * | −0.36 | −0.48 | |
M1 25% | −0.51 | −0.60 * | −0.31 | −0.28 | |
M2 25% | −0.33 | −0.26 | −0.44 | −0.46 | |
M3 25% | −0.73 ** | −0.76 ** | 0.42 | 0.32 | |
M1 50% | −0.44 | −0.48 | −0.41 | −0.47 | |
M2 50% | 0.12 | 0.017 | −0.49 | −0.33 | |
M3 50% | −0.31 | −0.23 | −0.17 | −0.069 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro, A.; Lombao, A.; Martín, A.; Cancelo-González, J.; Carballas, T.; Díaz-Raviña, M. Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms. Geosciences 2020, 10, 355. https://doi.org/10.3390/geosciences10090355
Barreiro A, Lombao A, Martín A, Cancelo-González J, Carballas T, Díaz-Raviña M. Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms. Geosciences. 2020; 10(9):355. https://doi.org/10.3390/geosciences10090355
Chicago/Turabian StyleBarreiro, Ana, Alba Lombao, Angela Martín, Javier Cancelo-González, Tarsy Carballas, and Montserrat Díaz-Raviña. 2020. "Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms" Geosciences 10, no. 9: 355. https://doi.org/10.3390/geosciences10090355
APA StyleBarreiro, A., Lombao, A., Martín, A., Cancelo-González, J., Carballas, T., & Díaz-Raviña, M. (2020). Soil Heating at High Temperatures and Different Water Content: Effects on the Soil Microorganisms. Geosciences, 10(9), 355. https://doi.org/10.3390/geosciences10090355