Whole-Rock Elemental and Sr-Nd Isotope Geochemistry and Petrogenesis of the Miocene Elmadağ Volcanic Complex, Central Anatolia (Ankara, Turkey)
Abstract
:1. Introduction
2. Geology of the EVC and Its Basement
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Whole-Rock Geochemistry
4.2.1. Major Elements and Chemical Classification
4.2.2. Trace Elements
4.2.3. Multielement and REE Patterns
4.2.4. Sr-Nd Isotopes
5. Discussion
5.1. Mantle Source Characteristics and Origin of the Basaltic Units
5.2. Differentiation of the EVC Rocks
5.2.1. Interpretations of Major and Trace Element Variations
5.2.2. Interpretation of REE Systematics
5.2.3. Fractional Crystallization
5.2.4. Crustal Assimilation
5.2.5. Magma Mixing
5.3. Geodynamic Implications
6. Conclusions
- (a)
- Two distinct basaltic rocks (e.g., B1 and B2) derived from different mantle sources have been identified on the chemical and isotopic grounds in the EVC. Geochemistry of the B1 basaltic rocks was similar to those of oceanic island basalts (OIB), and they were derived from asthenospheric mantle source. However, B2 basalts had geochemical characteristics typical for orogenic basalts derived from subduction-modified lithospheric mantle source. B2 basalts represented parental magma to the intermediate to felsic rocks.
- (b)
- Major-trace element variations, REE systematics, and geochemical modeling showed that fractional crystallization of the observed mineral phase in the EVC rocks played an important role in the evolution of basaltic to felsic rocks. Likewise, Sr-Nd isotopic systematics suggests that crustal assimilation was also evident to some extent in the differentiation of B2 basalts. However, crustal assimilation style of the EVC magmas was different from the combined assimilation and fractional crystallization (AFC), and can be explained by fractional crystallization in deep magma chambers, followed by various degrees of wall-rock assimilation in the shallow crust.
- (c)
- The dominantly orogenic nature of the EVC rocks suggests that magma generation was mainly associated with the post-collisional extensional tectonic regime in the Central Anatolia, but the coexistence of OIB-like anorogenic rocks suggests variations in the extension dynamics during Miocene.
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Şengör, A.M.C.; Yılmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Yılmaz, Y.; Ketin, İ. Remnants of a pre-late Jurassic ocean in northern Turkey: Fragments of Permo-Triassic PaleoTethys? Discussion and Reply. Geol. Soc. Am. Bull. 1982, 93, 932–936. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Lom, N.; Sunal, G.; Zabcı, C.; Sancar, T. The phanerozoic palaeotectonics of Turkey. Part I: An inventory. Mediterr. Geosci. Rev. 2019, 1, 91–161. [Google Scholar] [CrossRef] [Green Version]
- Okay, A.I. Tectonic units and sutures in the Pontides, northern Turkey. In Tectonic Evolution of the Tethyan Region; Şengör, A.M.C., Ed.; Kluwer Academic Publications: Dordrecht, The Netherlands, 1989; pp. 109–115. [Google Scholar]
- Okay, A.I. Geology of Turkey: A Synopsis. Anschnitt 2008, 21, 19–42. [Google Scholar]
- Okay, A.I.; Tüysüz, O. Tethyan sutures of northern Turkey. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Hovarth, F., Séranne, M., Eds.; Special Publications, 156; Geological Society: London, UK, 1999; Volume 156, pp. 475–515. [Google Scholar]
- Okay, A.I.; Şengör, A.M.C.; Görür, N. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 1994, 22, 267–270. [Google Scholar] [CrossRef]
- Asan, K.; Kurt, H. Petrology and Geochemistry of Post-Collisional Early Miocene Volcanism in the Karacadag Area (Central Anatolia, Turkey). Acta Geol. Sin. 2011, 85, 1100–1117. [Google Scholar] [CrossRef]
- Kurt, H.; Asan, K.; Ruffet, G. The relationship between collision-related calcalkaline, and within-plate alkaline volcanism in the Karacadağ Area (Konya-Türkiye, Central Anatolia). Chem. Erde-Geochem. 2008, 68, 155–176. [Google Scholar] [CrossRef]
- Tankut, A.; Wilson, M.; Yihunie, T. Geochemistry and tectonic setting of Tertiary volcanism in the Güvem area, Anatolia, Turkey. J. Volcanol. Geotherm. Res. 1998, 85, 285–301. [Google Scholar] [CrossRef]
- Temel, A.; Yürür, T.; Alıcı, P.; Varol, E.; Gourgaud, A.; Bellon, H.; Demirbağ, H. Alkaline series related to Early-Middle Miocene intra-continental rifting in a collision zone: An example from Polatlı, Central Anatolia, Turkey. J. Asian Earth Sci. 2010, 38, 289–306. [Google Scholar] [CrossRef]
- Varol, E.; Temel, A.; Yürür, T.; Gourgaud, A.; Bellon, H. Petrogenesis of the Neogene bimodal magmatism of the Galatean Volcanic Province, Central Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2014, 280, 14–29. [Google Scholar] [CrossRef]
- Wilson, M.; Tankut, A.; Guleç, N. Tertiary volcanism of the Galatia province, north-west Central Anatolia, Turkey. Lithos 1997, 42, 105–121. [Google Scholar] [CrossRef]
- MTA. Magmatic Rocks Map of Turkey; General Directorate of Mineral Research and Explorations: Ankara, Turkey, 2013.
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
- Lustrino, M.; Morra, V.; Fedele, L.; Serracino, M. The transition between ‘orogenic’ and ‘anorogenic’ magmatism in the western Mediterranean area: The Middle Miocene volcanic rocks of Isola del Toro (SW Sardinia, Italy). Terra Nova 2007, 19, 148–159. [Google Scholar] [CrossRef]
- Lustrino, M.; Wilson, M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev. 2007, 81, 1–65. [Google Scholar] [CrossRef]
- Wilson, M.; Bianchini, G. Tertiary-Quaternary Magmatism within the Mediterranean and Surrounding Regions. Geol. Soc. Lond. Spec. Publ. 1999, 156, 141–168. [Google Scholar] [CrossRef]
- Dönmez, M.; Akçay, A.E.; Türkecan, A.; Satır, M.; Evcimen, Ö.; Atakay, E.; Görmüş, T. The Stratigraphy of Late Cretaceous-Tertiary Volcanic Rocks in Ankara and Surroundings and New Age Findings. In Proceedings of the 62nd Geological Kurultai of Turkey, Ankara, Turkey, 13−17 April 2009; p. 633. [Google Scholar]
- Görmüş, T. Ankara (Gölbaşı güneydoğusu-Sincan) Volkanitlerinin Petrolojisi ve Jeokimyası. Ph.D. Thesis, Hacettepe Üniversitesi, Ankara, Turkey, 2009. [Google Scholar]
- Sayıt, K.; Göncüoglu, M.C. Geodynamic evolution of the Karakaya Mélange Complex, Turkey: A review of geological and petrological constraints. J. Geodyn. 2013, 65, 56–65. [Google Scholar] [CrossRef]
- Sayıt, K.; Göncüoglu, M.C. Geochemistry of mafic rocks of the Karakaya complex, Turkey: Evidence for plume-involvement in the Palaeotethyan extensional regime during the Middle and Late Triassic. Int. J. Earth Sci. 2009, 98, 367–385. [Google Scholar] [CrossRef]
- Sayit, K.; Tekin, U.K.; Göncüoglu, M.C. Early-middle Carnian radiolarian cherts within the Eymir Unit, Central Turkey: Constraints for the age of the Palaeotethyan Karakaya Complex. J. Asian Earth Sci. 2011, 42, 398–407. [Google Scholar] [CrossRef]
- Sayıt, K. Geochemistry and Petrogenesis of the Oceanic Island and SubductionRelated Assemblages from the Palaeotetyhan Karakaya Subduction/Accretion Complex, Central and NW Turkey. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey, 2010. [Google Scholar]
- Koçyiğit, A. An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geol. Soc. Am. Bull. 1991, 103, 22–36. [Google Scholar] [CrossRef]
- Görür, N.; Oktay, F.Y.; Seymen, İ.; Şengör, A.M.C. Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: Sedimentary record of a Neo-Tethyan closure. Geol. Soc. Lond. Spec. Publ. 1984, 17, 467–482. [Google Scholar] [CrossRef]
- Çemen, I.; Göncüoglu, M.C.; Dirik, K. Structural Evolution of the Tuzgölü Basin in Central Anatolia, Turkey. J. Geol. 1999, 107, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Akyürek, B.; Duru, M.; Sütçü, Y.F.; Papak, İ.; Şaroğlu, F.; Pehlivan, N.; Gönenç, O.; Granit, S.; Yaşar, T. Geological Map of Turkey with 1:100.000 Scale; General Directorate of Mineral Research and Explorations (MTA): Ankara, Turkey, 1997.
- Dönmez, M.; Akçay, A.E.; Kara, H.; Yergök, A.F.; Esentürk, K. Geological Map of Turkey with 1:100.000 Scale; General Directorate of Mineral Research and Explorations (MTA): Ankara, Turkey, 2008. [Google Scholar]
- Hoernle, K.; Tilton, G.R. Sr-Nd-Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: Applications to magma genesis and evolution. Schweiz. Mineral. Petrogr. Mitteilungen 1991, 71, 3–18. [Google Scholar]
- Geldmacher, J.; Hoernle, K.; Klügel, A.; Bogaard, P.V.D.; Wombacher, F.; Berning, B. Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic). J. Geophys. Res. Solid Earth 2006, 111, B09206. [Google Scholar] [CrossRef] [Green Version]
- Hoernle, K.; Abt, D.L.; Fischer, K.M.; Nichols, H.; Hauff, F.; Abers, G.A.; van den Bogaard, P.; Heydolph, K.; Alvarado, G.; Protti, M.; et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 2008, 451, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying Look-up Table for Deriving Numerical Age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Ginibre, C.; Wörner, G.; Kronz, A. Crystal zoning as an archive for magma evolution. Elements 2007, 3, 261–266. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral Textures and Zoning as Evidence for Open System Processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Nelson, S.T.; Montana, A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am. Miner. 1992, 77, 1242–1249. [Google Scholar]
- Tsuchiyama, A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contr. Mineral. Petrol. 1985, 89, 1–16. [Google Scholar] [CrossRef]
- Nixon, G.T.; Pearce, T.H. Laser-interferometry of oscillatory zoning in plagioclase: The record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccihuat Volcano, Mexico. Am. Miner. 1987, 72, 1144–1162. [Google Scholar]
- Tepley, F.J., III; Davidson, J.P.; Tilling, R.I.; Arth, J.G. Magma Mixing, Recharge and Eruption Histories Recorded in Plagioclase Phenocrysts from El Chichón Volcano, Mexico. J. Petrol. 2000, 41, 1397–1411. [Google Scholar] [CrossRef] [Green Version]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contr. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle compositions and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Special Publication 42; Geological Society of London: London, UK, 1989; pp. 313–345. [Google Scholar]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Publishing Ltd.: Cambridge, UK, 1983; pp. 230–249. [Google Scholar]
- Davidson, J.; Turner, S.; Handley, H.; Macpherson, C.; Dosseto, A. Amphibole “sponge” in arc crust? Geology 2007, 35, 787–790. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contr. Mineral. Petrol. 1986, 94, 42–45. [Google Scholar] [CrossRef]
- Mahood, G.; Hildreth, W. Large partition coefficients for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta 1983, 47, 11–30. [Google Scholar] [CrossRef]
- Sisson, T.W.; Grove, T.L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contr. Mineral. Petrol. 1993, 113, 143–166. [Google Scholar] [CrossRef]
- Baker, D.R.; Eggler, D.H. Fractionation paths of Atka (Aleutians) high-alumina basalts: Constraints from phase relations. J. Volcanol. Geotherm. Res. 1983, 18, 387–404. [Google Scholar] [CrossRef]
- Eggler, D.H. Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral. Petrol. 1972, 34, 261–271. [Google Scholar] [CrossRef]
- Presnall, D.C.; Dixon, S.A.; Dixon, J.R.; O’Donnell, T.H.; Brenner, N.L.; Schrock, R.L.; Dycus, D.W. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: Their bearing on the generation and crystallization of basaltic magma. Contr. Mineral. Petrol. 1978, 66, 203–220. [Google Scholar] [CrossRef]
- McKay, G.A. Partitioning of rare earth elements between major silicate minerals and basaltic melts. Rev. Mineral. Geochem. 1989, 21, 45–77. [Google Scholar]
- Drake, M.J.; Weill, D.F. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: An experimental study. Geochim. Cosmochim. Acta 1975, 39, 689–712. [Google Scholar] [CrossRef]
- Gündüz, M.; Asan, K. PetroGram: An Excel-based petrology program for modeling of magmatic processes. Geosci. Front. 2020. [Google Scholar] [CrossRef]
- Keskin, M. FC-Modeler: A Microsoft® Excel© spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Comput. Geosci. 2002, 28, 919–928. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01-Composition of the Continental Crust A2-Turekian, Heinrich D. HollandKarl K. In Treatise on Geochemistry; Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- Devey, C.W.; Cox, K.G. Relationships between crustal contamination and crystallisation in continental flood basalt magmas with special reference to the Deccan Traps of the Western Ghats, India. Earth Planet. Sci. Lett. 1987, 84, 59–68. [Google Scholar] [CrossRef]
- Cox, K.G.; Hawkesworth, C.J. Geochemical Stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with Implications for Open System Magmatic Processes. J. Petrol. 1985, 26, 355–377. [Google Scholar] [CrossRef]
- Kerr, A.C.; Kempton, P.D.; Thompson, R.N. Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, N. W. Scotland. Contr. Mineral. Petrol. 1995, 119, 142–154. [Google Scholar] [CrossRef]
- Peccerillo, A.; Dallai, L.; Frezzotti, M.L.; Kempton, P.D. Sr-Nd-Pb-O isotopic evidence for decreasing crustal contamination with ongoing magma evolution at Alicudi volcano (Aeolian arc, Italy): Implications for style of magma-crust interaction and for mantle source compositions. Lithos 2004, 78, 217–233. [Google Scholar] [CrossRef]
- Bacon, C.R. Magmatic inclusions in silicic and intermediate volcanic rocks. J. Geophys. Res. Solid Earth 1986, 91, 6091–6112. [Google Scholar] [CrossRef]
- Fourcade, S.; Allegre, C.J. Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contr. Mineral. Petrol. 1981, 76, 177–195. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asan, K. Whole-Rock Elemental and Sr-Nd Isotope Geochemistry and Petrogenesis of the Miocene Elmadağ Volcanic Complex, Central Anatolia (Ankara, Turkey). Geosciences 2020, 10, 348. https://doi.org/10.3390/geosciences10090348
Asan K. Whole-Rock Elemental and Sr-Nd Isotope Geochemistry and Petrogenesis of the Miocene Elmadağ Volcanic Complex, Central Anatolia (Ankara, Turkey). Geosciences. 2020; 10(9):348. https://doi.org/10.3390/geosciences10090348
Chicago/Turabian StyleAsan, Kürşad. 2020. "Whole-Rock Elemental and Sr-Nd Isotope Geochemistry and Petrogenesis of the Miocene Elmadağ Volcanic Complex, Central Anatolia (Ankara, Turkey)" Geosciences 10, no. 9: 348. https://doi.org/10.3390/geosciences10090348
APA StyleAsan, K. (2020). Whole-Rock Elemental and Sr-Nd Isotope Geochemistry and Petrogenesis of the Miocene Elmadağ Volcanic Complex, Central Anatolia (Ankara, Turkey). Geosciences, 10(9), 348. https://doi.org/10.3390/geosciences10090348