Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Stations
2.2. Sampling and Analytical Measurements
2.3. Statistical Analysis
3. Results
3.1. Temporal Dynamic of Discharges, TSS, TDS and DOC Concentrations
3.2. Monthly Concentrations and Fluxes
3.3. Annual Fluxes
3.4. Concentrations of Matter versus Water Discharges
3.5. Spatio-Temporal Distribution of TSS Central Sampling Vertical Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.M.; Lu, X.X.; Zhou, Y. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the upper Yangtze catchment, China. Geomorphology 2007, 84, 111–125. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Brakenridge, G.R. Latitudinal Controls on Siliciclastic Sediment Production and Transport. In Latitudinal Controls on Stratigraphic Models and Sedimentary Concepts; SEPM Special Publication: Tulsa, OK, USA, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Molliex, S.; Kettner, A.J.; Laurent, D.; Droz, L.; Marsset, T.; Laraque, A.; Rabineau, M.; Moukandi N’Kaya, G.D. Simulating sediment supply from the Congo watershed over the last 155 ka. Quarter. Sci. Rev. 2019, 203, 38–55. [Google Scholar] [CrossRef]
- Van Mierlo, J.G. Le mécanisme des alluvions du Congo. Annls Ass Ingrs Éc Gand 1926, 5, 349–354. [Google Scholar]
- Spronck, R. Mesures hydrographiques dans la région divagante de bief maritime du fleuve Congo. Mém. Inst. Roy. Colon, Sect. Sci. Technol. 1941, 3, 56. [Google Scholar]
- Devroey, E. Le Bassin Hydrographique Congolais, Spécialement Celui du Bief Maritime; Institut Royal Colonial Belge: Brussels, Belgium, 1941; p. 172. [Google Scholar]
- Nedeco (Netherlands Engineering Company). River Studies, Niger and Benué; North Holland Publ. Co.: Amsterdam, The Netherlands, 1959. [Google Scholar]
- Gibbs, R.J. Amazon river - environmental factors that control Iits dissolved and suspended load. Science 1967, 156, 1203–1232. [Google Scholar] [CrossRef]
- Van der Linden, M.J.H. Reactions between Acids and Leaf Liter. Premier Colloque Int. Biodegradation et Humification. Ph.D. Thesis, University of Nancy, Pont-à-Mousson, France, 1975. [Google Scholar]
- Eisma, D.; Kalf, J.; Vandergaast, S.J. Suspended Matter in the Zaire Estuary and the Adjacent Atlantic Ocean. Neth. J. Sea Res. 1978, 12, 382–406. [Google Scholar] [CrossRef]
- Meybeck, M. Note on e1ementa1 contents of the Zaïre River. Neth. J. Sea Res. 1978, 12, 293–295. [Google Scholar] [CrossRef]
- Molinier, M. Note sur les débits et la qualité des eaux du Congo à Brazzaville. Cah. ORSTOM Sér. Hydrol. 1979, 16, 55–66. [Google Scholar]
- Eisma, D. Suspended matter as a carrier for pollutants in estuaries and the sea. In Marine Environmental pollution, 2. Mining and Dumping; Geyer, R.A., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 27, pp. 281–295. [Google Scholar]
- Mouzeo, K. Transport Particulaire Actuel du Fleuve Congo et de Quelques Affluents; Enregistrement Quaternaire Dans L’éventail Détritique Profond (Sédimentologie, Mineralogie et Géochimie). Ph.D. Thesis, Université de Perpignan, Perpignan, France, 1986. [Google Scholar]
- Olivry, J.C.; Bricquet, J.P.; Thiébaux, J.P.; Sigha-Nkamdjou, L. Transport de matière sur les grands fleuves des régions intertropicales: Les premiers résultats des mesures de flux particulaires sur le bassin du fleuve Congo. In Sediment Budgets; AISH: Porto-Alegre, Brazil, 1988; pp. 509–521. [Google Scholar]
- Symoens, J.J. La minéralisation des eaux naturelles. Résultats scientifiques. Explo. hydrobiol. Bassin du Lac Bangwelo et du Luapula 1968, 2, 1–199. [Google Scholar]
- Meybeck, M. Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Rev. Géol. Dyn. Géogr. Phys. 1979, 21, 215–246. [Google Scholar]
- Deronde, L.; Symoens, J.J. L’exportation des éléments dominants du bassin du fleuve Zaïre: Une réévaluation. Ann. Limnol-Int. J. Limnol. 1980, 16, 183–188. [Google Scholar] [CrossRef]
- Moukolo, N.; Laraque, A.; Olivry, J.-C.; Bricquet, J.P. Transport en solution et en suspension par le fleuve Congo (Zaïre) et ses principaux affluents de la rive droite. Hydrol. Sci. J. 1993, 38, 133–145. [Google Scholar] [CrossRef]
- Meybeck, M. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–450. [Google Scholar] [CrossRef]
- Nkounkou, R.; Probst, J.L. Hydrology and geochemistry of the Congo River system. In Transport of Carbon and Minerals in Major World Rivers; Degens, E.T., Ed.; SCOPE/UNEP Sond, Part 4; Mitt. Geol-palaont. Insti. Univ.: Hambourg, Germany, 1987; Volume 64, pp. 483–508. [Google Scholar]
- Laraque, A.; Briquet, J.P.; Olivry, J.C.; Berthelot, M. Transport solides et dissous du fleuve Congo (bilan de six années d’observation. In Grands Bassins Fluviaux Périatlantiques: Congo, Niger, Amazone; Olivry, J.C., Boulegue, J., Eds.; IRD: Marseille, France, 1995; pp. 133–145. [Google Scholar]
- Sondag, F.; Laraque, A.; Riandey, C. Chimie des eaux du fleuve Congo à Brazzaville et de l’Oubangui à Bangui (années 1988 à 1992). In Grands Bassins Fluviaux Périatlantiques: Congo, Niger, Amazone; Olivry, J.C., Boulegue, J., Eds.; IRD: Marseille, France, 1995; pp. 121–131. [Google Scholar]
- Olivry, J.C.; Briquet, J.P.; Laraque, A.; Guyot, J.L.; Bourges, J.; Roche, M.A. Flux liquides, dissous et particulaires de deux grands bassins intertropicaux: Le Congo à Brazzaville et le Rio Madeira à Villabella. In Grands Bassins Fluviaux Périatlantiques: Congo, Niger, Amazone; Olivry, J.C., Boulegue, J., Eds.; IRD: Marseille, France, 1995; pp. 345–355. [Google Scholar]
- Gaillardet, J.; Dupré, B.; Allègre, C.J. A global chemical budget applied to the Congo Basin Rivers: Erosion rates and continental crust composition. Geochem. Cosmochim. Acta 1995, 59, 3469–3485. [Google Scholar] [CrossRef]
- Coynel, A.; Seyler, P.; Etcheber, H.; Meybeck, M.; Orange, D. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob. Biogeochem. Cycles 2006, 19, GB4019. [Google Scholar] [CrossRef]
- Seyler, P.; Coynel, A.; Moreira-Turcq, P.; Etcheber, H.; Colas, C.; Orange, D.; Bricquet, J.P.; Laraque, A.; Guyot, J.L.; Meybeck, M. Organic carbon transported by the equatorial rivers: Example of Zaire-Congo and Amazon Rivers. In Soil Erosion and Carbon Dynamics; Roose, E.J., Lal, R., Feller, C., Barthes, B., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; Volume 15, pp. 255–274. [Google Scholar]
- Laraque, A.; Bricquet, J.P.; Pandi, A.; Olivry, J.C. A review of material transport by the Congo River and its tributaries. Hydrol. Process. 2009, 23, 3216–3224. [Google Scholar] [CrossRef]
- Leturmy, P.; Lucazeau, F.; Brigaud, F. Dynamic interactions between the Gulf of Guinea passive margin and the Congo River drainage basin: 1. Morphology and mass balance. J. Geophys. Res. 2003, 108, 2383. [Google Scholar] [CrossRef]
- Hybam. So-Hybam Amazon Basin Water Resources Observation Serve. Available online: http://www.so-hybam.org (accessed on 27 September 2019).
- Laraque, A.; Castellanos, B.; Steiger, J.; Lopez, J.L.; Pandi, A.; Rodriguez, M.; Rosales, J.; Adèle, G.; Perez, J.; Lagane, C. A comparison of the suspended and dissolved matter dynamics of two large inter-tropical rivers draining into the Atlantic Ocean: The Congo and the Orinoco. Hydrol. Process. 2013, 1–18. [Google Scholar] [CrossRef]
- Hughes, H.J.; Sondag, F.; Cocquyt, C.; Laraque, A.; Pandi, A.; André, L.; Cardinal, D. Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnol. Oceanogr. 2011, 56, 551–561. [Google Scholar] [CrossRef]
- Mann, P.J.; Spencer, R.G.M.; Dinga, B.J.; Poulsen, J.R.; Hernes, P.J.; Fiske, G.; Salter, M.E.; Wang, Z.A.; Hoering, K.A.; Six, J.; et al. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. J. Geophys. Res. Biogeosci. 2014, 119, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.G.M.; Hernes, P.J.; Dinga, B.; Wabakanghanzi, J.N.; Drake, T.W.; Six, J. Origins, seasonality, and fluxes of organic matter in the Congo River. Glob. Biogeochem. Cycles 2016, 30. [Google Scholar] [CrossRef]
- Guillocheau, F.; Galmier, V.; Robin, C. Source to Sink study of the Congo system since 40 Myr: A measurement ratio between mechanical and chemical erosion. In Proceedings of the Source to Sink: A Long Term Perspective of Sediment Budgets and Sources Characterization, Rennes, France, 30 November–2 December 2016. [Google Scholar]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Moukandi N’kaya, G.D.; Laraque, A.; Paturel, J.M.; Gulemvuga, G.; Mahé, G.; Tshimanga Muamba, R. A new look at hydrology in the Congo Basin, based on the study of multi-decadal chronicles. In Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future; Alsdorf, D., Tshimanga Muamba, R., Moukandi N’kaya, G.D., Eds.; AGU, John Wiley & Sons Inc.: Malden, MA, USA, 2021; Unpublished work. [Google Scholar]
- Giresse, P. La succession des sédimentations dans les bassins marins et continentaux du Congo depuis le début du Mésozoïque. Sci. Géol. Bull. Strasbg. 1982, 35, 183–206. [Google Scholar]
- Négrel, P.; Allegre, C.J.; Dupre, B.; Lewin, E. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth Planet. Sci. Lett. 1993, 120, 59–76. [Google Scholar] [CrossRef]
- Giresse, P. Mesozoic-Cenozoic history of the Congo basin. J. Afr. Earth Sci. 2005, 43, 301–315. [Google Scholar] [CrossRef]
- Dürr, H.H.; Meybeck, M.; Dürr, S.H. Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem. Cycles 2005, 19, GB4S10. [Google Scholar] [CrossRef]
- Runge, J. The Congo River, Central Africa. In Large Rivers: Geomorphology and Management; Gupta, A., Ed.; Wiley and Sons: London, UK, 2007; pp. 293–309. [Google Scholar]
- BRLi. Développement et Mise en Place de L’outil de Modélisation et D’allocation des Ressources en eau du Bassin du Congo; Rapport technique de construction et de calage du modèle; CICOS: Kinshasa, Republic of the Congo, 2016. [Google Scholar]
- Laraque, A.; Pouyaud, B.; Rocchia, R.; Robin, R.; Chaffaut, I.; Moutsambote, J.M.; Maziezoula, B.; Censier, C.; Albouy, Y.; Elenga, H.; et al. Origin and function of a closed depression in equatorial humid zones: The lake Tele in north Congo. J. Hydrol. 1998, 207, 236–253. [Google Scholar] [CrossRef]
- Wei, X.; Sauvage, S.; Le, T.P.Q.; Ouillon, S.; Orange, D.; Vinh, V.D.; Sanchez-Perez, J.M. A modeling approach to diagnose the impacts of global changes on discharge and suspended sediment concentration within the Red River Basin. Water 2019, 11, 958. [Google Scholar] [CrossRef] [Green Version]
- Wesselink, A.; Orange, D.; Feizouré, C.T.; Randriamiarisoa. Les régimes hydroclimatiques et hydrologiques d’un bassin versant de type tropical humide: L’Oubangui (République Centrafricaine). In L’hydrologie Tropicale: Géosciences et Outil Pour le Développement: Mélanges à la Mémoire de Jean Rodier; Chevallier, P., Pouyaud, B., Eds.; IAHS: Wallingford, UK, 1996; Volume 238, pp. 179–194. [Google Scholar]
- Laraque, A.; Mietton, M.; Olivry, J.C.; Pandi, A. Impact of lithological and vegetal covers on flow discharge and water quality of Congolese tributaries from the Congo River. Rev. Sci. Eau. 1998, 11, 209–224. [Google Scholar]
- Molinier, M.; Barilly, A.; Gathelier, R.; Thébé, B. Note Hydrologique sur Les Rivières Mary et Gamboma; ORSTOM: Brazzaville, Republic of the Congo, 1974. [Google Scholar]
- Minitab. Available online: http://www.minitab.com/fr-fr/products/minitab/free-trial/ (accessed on 27 September 2019).
- Moatar, F.; Birgand, F.; Meybeck, M.; Faucheux, C.; Raymond, S. Incertitudes sur les métriques de qualité des cours d’eau (médianes et quantiles de concentrations, flux, cas des nutriments évaluées à partir de suivis discrets). Houil. Blanc. 2009, 3, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Orange, D. Hydroclimatologie du Fouta Djalon et dynamique actuelle d’un vieux paysage latéritique (Afrique de l’Ouest). Sci. Géol. 1992, 93, 206. [Google Scholar]
- Butturini, A.; Gallart, F.; Latron, J.; Vazquez, E.; Sabater, F. Cross-site comparison of variability of DOC and nitrate c–q hysteresis during the autumn–winter period in three Mediterranean headwater streams: A synthetic approach. Biogeochemistry 2006, 77, 327–349. [Google Scholar] [CrossRef]
- Butturini, A.; Alvarez, M.; Bernal, S.; Vazquez, E.; Sabater, F. Diversity and temporal sequences of forms of DOC and NO3-discharge responses in an intermittent stream: Predictable or random succession? J. Geophys. Res. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Algharib, I. Apport des Isotopes a vie Moyenne de L’uranium et du Thorium, 210Pb et 10Be Dans L’étude de L’érosion Chimique et Physique de Deux Grands Bassins: Amazone et Congo. Ph.D. Thesis, Nice Sophia Antipolis University, Nice, France, 1992. [Google Scholar]
- Summerfield, M.A.; Hulton, N.J. Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res. Solid Earth 1994, 99, 13871–13883. [Google Scholar] [CrossRef]
- Degens, E.T.; Kempe, S.; Richey, J.E. Biogeochemistry of Major World Rivers, SCOPE Report 42; John Wiley & Sons: Chichester, UK, 1991. [Google Scholar]
- Dang, T.H.; Coynel, A.; Orange, D.; Blanc, G.; Etcheber, H.; Le, L.A. Long-term monitoring (1960-2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Sci. Total Environ. 2010, 408, 4654–4664. [Google Scholar] [CrossRef] [PubMed]
- Cadée, G.C. Particulate and dissolved organic matter and chlorophyll A in the Zaire River, estuary and plume. Neth. J. Sea Res. 1984, 17, 426–440. [Google Scholar] [CrossRef]
- Orange, D. Transports de matières dans un bassin fluvial tropical humide en zone de forêt: L’Uélé au Zaïre. Sci. Géol. Bull. 1996, 49, 71–88. [Google Scholar]
- Clerfayt, A. Composition des eaux de rivières du Congo - Influence des Facteurs Géologiques et Climatiques. In Centre Belge d’étude et de Documentation des Eaux; CEBEDEAU: Liège, Belgium, 1956; Volume 31, pp. 26–31. [Google Scholar]
- Nguimalet, C.; Orange, D. Hydroclimatic variabilities in Tomi at Sibut, Gribingui at Kaga-Bandoro and Fafa at Bouca basins, Central-north and central-south of Central African Republic. In Proceedings of the 8th Global FRIEND-Water Conference: Hydrological Processes and Water Security in a Changing World, Beijing, China, 6–9 November 2018. [Google Scholar]
- Espinoza Villar, R.; Martinez, J.M.; Guyot, J.L.; Fraizy, P.; Armijos, E.; Crave, A.; Bazan, H.; Vauchel, P.; Lavado, W. The integration of field measurements and satellite observations to determine river solid loads in poorly monitored basins. J. Hydrol. 2012, 444, 221–228. [Google Scholar] [CrossRef]
- Espinoza Villar, R.; Martinez, J.M.; Le Texier, M.; Guyot, J.L.; Fraizy, P.; Meneses, P.R.; Oliveira de, E. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J. South Am. Earth Sci. 2012, 44, 45–54. [Google Scholar] [CrossRef]
- Yepez, S.; Laraque, A.; Martinez, J.M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Gallay, M.; Lopez, J.L. Retrieval of suspended sediment concentrations using landsat-8 OLI satellite images in the Orinoco River (Venezuela). C. R. Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Gallay, M.; Martinez, J.M.; Mora, A.; Castellano, B.; Yepez, S.; Cochonneau, G.; Alfonso, J.A.; Carrera, J.M.; Lopez, J.L.; Laraque, A. Assessing Orinoco river sediment discharge trend using MODIS satellite images. J. South Am. Earth Sci. 2019, 91, 320–331. [Google Scholar] [CrossRef]
PEGI/GBF (1987–1993) | SOH (2006–2017) | |||||||
---|---|---|---|---|---|---|---|---|
Parameters & Units | Mean ± Std | Max | Min | Max/Min | Mean ± Std | Max | Min | Max/Min |
Qy (m3 s−1) | 38,080 ± 8.46 | 61,400 | 24,000 | 3.5 | 39,660 ± 8.70 | 61,330 | 22,710 | 2.7 |
Temperature (T °C) | - | - | - | - | 27.7 ± 1.6 | 31.7 | 20.0 | 1.6 |
pH | 6.7 ± 0.5 | 8.4 | 5.7 | 1.5 | 6.0 ± 0.7 | 8.9 | 5.1 | 1.8 |
EC (µs cm−1 at 25 °C) | 36.6 ± 6.7 | 48.4 | 22.0 | 2.2 | 28.4 ± 4.98 | 36.0 | 20.0 | 1.8 |
SiO2 | 9.6 ± 1.1 | 15.0 | 7.2 | 2.1 | 10.5 ± 1.1 | 14.4 | 5.7 | 2.5 |
TSS (mg L−1) | 25.3 ± 4.6 | 41.2 | 11.9 | 3.5 | 27.2 ± 7.9 | 53.2 | 10.6 | 5.0 |
TDS (mg L−1) | 36.5 ± 5.4 | 48.9 | 23.0 | 2.1 | 31.1 ± 3.8 | 39.5 | 18.2 | 2.2 |
DOC (mg L−1) | * 9.9 ± 3.0 | * 17.6 | * 6.2 | 2.8 | 12.7 ± 5.0 | 29.3 | 5.2 | 5.6 |
TOTAL (mg L−1) | 71.7 | - | - | - | 71.0 | - | - | - |
PEGI/GBF Program (1987–1993) | SO HYBAM Program (2006–2017) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Qm | TSS | TDS | DOC | TDM | DOC/TDM | Qm | TSS | TDS | DOC | TDM | DOC/TDM |
Unit | m3 s−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | % | m3 s−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | % |
Jan. | 46,979 | 24.95 | 29.53 | 9.40 | 38.93 | 24 | 48,597 | 21.24 | 24.92 | 14.60 | 39.52 | 37 |
Febr. | 35,841 | 25.94 | 33.37 | 8.65 | 42.02 | 21 | 38,696 | 28.78 | 29.54 | 14.01 | 43.55 | 32 |
March | 32,566 | 27.87 | 35.55 | 7.23 | 42.77 | 17 | 35,580 | 31.17 | 29.89 | 11.10 | 40.99 | 27 |
April | 35,073 | 26.78 | 37.57 | 6.20 | 43.77 | 14 | 36,942 | 31.78 | 31.69 | 11.28 | 42.97 | 26 |
May | 35,557 | 26.12 | 39.07 | 7.60 | 46.67 | 16 | 37,447 | 28.08 | 33.19 | 11.17 | 44.37 | 25 |
June | 33,606 | 24.02 | 39.31 | 7.50 | 46.81 | 16 | 34,868 | 23.34 | 33.06 | 13.58 | 46.65 | 29 |
July | 29,137 | 22.36 | 41.56 | 7.63 | 49.18 | 16 | 30,778 | 28.39 | 32.95 | 12.99 | 45.94 | 28 |
Aug. | 28,663 | 23.17 | 42.22 | 9.25 | 51.47 | 18 | 30,478 | 27.10 | 34.35 | 10.92 | 45.27 | 24 |
Sept. | 34,383 | 26.66 | 39.84 | 11.13 | 50.96 | 22 | 35,198 | 26.97 | 33.05 | 11.74 | 44.79 | 26 |
Oct. | 39,854 | 26.07 | 36.26 | 14.55 | 50.81 | 29 | 41,592 | 27.23 | 32.18 | 12.73 | 44.92 | 28 |
Nov. | 48,014 | 25.18 | 34.06 | 15.00 | 49.06 | 31 | 49,743 | 27.33 | 29.66 | 13.48 | 43.15 | 31 |
Dec. | 52,774 | 25.22 | 32.15 | 13.30 | 45.45 | 29 | 55,855 | 24.15 | 26.57 | 15.72 | 42.28 | 37 |
Mean ± Std | 37,704 ± 7.678 | 25.36 ± 1.57 | 36.71 ± 3.92 | 9.79 ± 3.01 | 46.49 ± 4.01 | 21 ± 6 | 39,648 ± 7.883 | 27.13 ± 3.03 | 30.92 ± 2.89 | 12.78 ± 1.56 | 43.70 ± 2.07 | 29 ± 4 |
Max. | 52 774 | 27.87 | 42.22 | 15.00 | 51.47 | 31 | 55,855 | 31.78 | 34.35 | 15.72 | 46.65 | 37 |
Min. | 28 663 | 22.36 | 29.53 | 6.20 | 38.93 | 14 | 30,478 | 21.24 | 24.92 | 10.92 | 39.52 | 24 |
Max./Min. | 1.84 | 1.25 | 1.43 | 2.42 | 1.32 | 2.21 | 1.83 | 1.50 | 1.38 | 1.44 | 1.18 | 1.54 |
Mean Inter-Annual Fluxes | Basin Area at Station 106 km2 | Total Basin Area 106 km2 | Qm 109 m3 yr−1 | TSS 106 t yr−1 | TDS 106 t yr−1 | DOC 106 t yr−1 | TDM 106 t yr−1 | TOTAL 106 t yr−1 |
1987–1993 | 3.6 | 3.7 | 1189 | 30.2 | 42.7 | 11.1 | 53.8 | 84.0 ± 15.9 |
2006–2017 | 3.6 | 3.7 | 1250 | 33.6 | 38.1 | 16.2 | 54.3 | 87.9 ± 11.6 |
Specific Fluxes | Qs l s−1 km−2 | TSS t km−2 yr−1 | TDS t km−2 yr−1 | DOC t km−2 yr−1 | TDM t km−2 yr−1 | TOTAL t km−2 yr−1 | ||
1987–1993 | 10.3 | 8.4 | 11.9 | 3.1 | 14.9 | 23.3 ± 4.4 | ||
2006–2017 | 10.8 | 9.3 | 10.6 | 4.5 | 15.1 | 24.4 ± 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
N’kaya, G.D.M.; Orange, D.; Bayonne Padou, S.M.; Datok, P.; Laraque, A. Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa. Geosciences 2020, 10, 341. https://doi.org/10.3390/geosciences10090341
N’kaya GDM, Orange D, Bayonne Padou SM, Datok P, Laraque A. Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa. Geosciences. 2020; 10(9):341. https://doi.org/10.3390/geosciences10090341
Chicago/Turabian StyleN’kaya, Guy Dieudonne Moukandi, Didier Orange, Sandra Murielle Bayonne Padou, Pankyes Datok, and Alain Laraque. 2020. "Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa" Geosciences 10, no. 9: 341. https://doi.org/10.3390/geosciences10090341
APA StyleN’kaya, G. D. M., Orange, D., Bayonne Padou, S. M., Datok, P., & Laraque, A. (2020). Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa. Geosciences, 10(9), 341. https://doi.org/10.3390/geosciences10090341