Neogene Tree Trunk Fossils from the Meshgin Shahr Area, Northwest Iran
Abstract
:1. Introduction
1.1. Site Description
1.2. Geologic Setting and Paleoclimate
1.3. Regional Geology
- Sedimentary rocks: Early Miocene strata outcrop in a small area in the south of the study area. These sediments are the oldest rock units in the studied area and include 30 m of polymictic well-rounded conglomerate, green to gray sandstone with tree trunk fossils, sandy marl and claystone with leaf fossils and gypsum veins.
- Light-colored porphyritic dacitic tuff containing 14 known in situ tree trunk fossils. Plagioclase, biotite and hornblende are main minerals and are 1–1.5 mm in size with ~3.5 mm lithic particles.
- Dark ignimbrite tuffites containing ~4 mm phenocrysts of plagioclase, biotite, hornblende, quartz, clinopyroxene and lithic particles. This unit contains no fossil wood.
- Basalt porphyry containing ~2 mm clinopyroxene phenocrysts.
1.4. Age of Fossil Wood
2. Methods
3. Results
3.1. Palynology of Miocene Sediments
3.2. Taxonomy of Fossil Wood
3.3. Density Measurements
3.4. X-ray Diffraction
3.5. Optical Microscopy
3.6. Evidence from Polished Slabs
3.7. Scanning Electron Microscopy
3.8. Wood Color and Porosity
3.9. Minor Accessory Minerals
4. Discussion
4.1. Paleoecology, Paleogeography and Paleoclimate
4.2. Fossilization Process: Source of Silica
4.3. Mineralization Sequence
4.4. Stratigraphic Considerations
4.5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kollmann, H.A. Tethys—The Evolution of an Idea. In New Aspects on Tethyan Cretaceous Fossil Assemblages; Kollmann, H.A., Zapfe, H., Eds.; Springer: Berlin, Germany, 1992; pp. 9–14. ISBN 978-0387865553. [Google Scholar]
- Rögl, F. Mediterraneas and Paratethys facts and hypotheses of an Oligocene to Miocene paleogeography (short review). Geol. Carpathica 1999, 50, 339–349. [Google Scholar]
- Steininger, F.F.; Wessley, G. From the Tethys Ocean to the Parathethys Sea: Oligocene to Neogene stratigraphy, paleogeography, and paleobiology of the circum Mediterranean region and the Oligocene to Neogene basin evolution of Austria. Mitt. Österreichischen Geol. Ges. 1999, 92, 95–116. [Google Scholar]
- Popov, S.V.; Rögl, F.; Rozanov, A.Y.; Steininger, F.F.; Scherba, I.G.; Kovac, M. Lithological-paleogeographic maps of Paratethys. 10 maps late Eocene to Pliocene. Cour. Forsch. Senckenberg 2004, 250, 1–46. [Google Scholar]
- Abrantes, F.; Voelker, A.; Sierro, F.; Naughton, F.; Rodrigues, T.; Cacho, I.; Aristegui, D.; Brayshaw, D.; Cicre, M.-A.; Batista, L. Paleoclimate variability in the mediterranean region. In The Climate of the Mediterranean; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–86. ISBN 9780124160422. [Google Scholar]
- Uchupi, E.; Swift, S.A.; Ross, D.A. Late Quaternary stratigraphy, paleoclimate, and neotectonism of the Persian (Arabian) Gulf region. Mar. Geol. 1999, 160, 1–23. [Google Scholar] [CrossRef]
- Kehl, M. Quaternary climate change in Iran-the state of knowledge. Erdkunde 2009, 63, 1–17. [Google Scholar] [CrossRef]
- El-Moslimany, A.P. The late Pleistocene climates of the Lake Zeribar region (Kurdistan, western Iran) deduced from the ecology and pollen production of nonarboreal vegetation. Vegetatio 1987, 72, 131–139. [Google Scholar]
- Van Zeist, W. Late Quaternary vegetation history of western Iran. Rev. Paleobot. Palynol. 1967, 2, 301–311. [Google Scholar] [CrossRef]
- Van Zeist, W.; Bottema, S. Palynological investigations of western Iran. Palaeohistoria 1977, 19, 19–85. [Google Scholar]
- Jones, M.; Djamali, M.; Stevens, L.; Heyvaert, V.; Askari, H.; Noorallahi, D.; Weeks, L. Mid Holocene environmental and climatic change in Iran. In Ancient Iran and Its Neighbors: Local Development and Long-Range Interactions in the Fourth Milenium, B.C.; Petrie, C.A., Ed.; Oxbow Books: Barnsley, UK, 2013; pp. 26–35. [Google Scholar]
- Nabavi, M.H.A. An Introduction to Geology of Iran (in Persian); Geologic Survey of Iran: Tehran, Iran, 1976; 109p. [Google Scholar]
- Stöcklin, J. Structural history and tectonics of Iran: A review. AAPG Bull. 1968, 52, 1229–1258. [Google Scholar]
- Amidi, S.M.; Emami, M.H.; Michel, R. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation. Geol. Rundsch. 1984, 73, 917–932. [Google Scholar] [CrossRef]
- Mohajjel, M.; Fergusson, C.L. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjanzone, westernIran. J. Struct. Geol. 2000, 22, 1125–1139. [Google Scholar] [CrossRef]
- Berberian, F.; Berberian, M. Tectono-plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodyn. Evol. 1981, 3, 5–32. [Google Scholar]
- Allen, M.B.; Vincent, S.J.; Alsop, G.I.; Ismail-zadeh, A.; Flecker, R. Late Cenozoic deformation in the South Caspian region: Effects of a rigid basement block within a collision zone. Tectonophysics 2003, 366, 223–239. [Google Scholar] [CrossRef]
- Azizi, H.; Moinevaziri, H. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J. Geodyn. 2009, 47, 167–179. [Google Scholar] [CrossRef]
- Amraee, A.; Zareisahamieh, R.; Moayyed, M.; Ahmadikhalaji, A.; Azimzadeh, A.; Santos, J.F. Peshtasar basalts: An example of post-collision basalts in sedimentary basin of Moghan, NW Iran. J. Earth Syst. Sci. 2019, 128, 63. [Google Scholar] [CrossRef] [Green Version]
- Vincent, S.J.; Allen, M.B.; Ismail-Zadeh, A.D.; Flecker, R.; Foland, K.A.; Simmons, M.D. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol. Soc. Am. Bull. 2005, 117, 1513–1533. [Google Scholar] [CrossRef]
- Babakhani, A.; Hosseinkhan, N.; Amidi, M. Geological Map of Lahrud Quadrangle, Geological Map of Iran Series 1:100000, No. 5567; Geological Survey of Iran: Tehran, Iran, 1999. [Google Scholar]
- Amini, A. Oligo-Miocene fluvial-dominated deltas on the shelf of the South Caspian Sea (Parathethys). Facies 2006, 52, 579–597. [Google Scholar] [CrossRef]
- Didon, J.; Gemain, Y.M. Le Sabalan, Volcan Plio-Quaternaire de l’Azerbaidjan Oriental (Iran): Étude Géologique et Pétrographique de L’édifice et de Son Environnement Régional; Universite Scientifique et Médicale de Grenoble: Grenoble, France, 1976. [Google Scholar]
- Aghazadeh, M.; Castro, A.; Badrzadeh, Z.; Vogt, K. Post-collisional polycyclicplutonism from the Zagros hinterland: The Shaivar Dagh plutonic complex, Alborzbelt, Iran. Geol. Mag. 2011, 148, 980–1008. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.Z.; Darvishzadeh, A.; Ghalamghash, J.; Abedini, M.V. Volcanology and geochronology of Sabalan volcano, the highest stratovolcano in Azerbaijan region, NWIran. Nautilus 2014, 128, 85–98. [Google Scholar]
- Shiran, H.S.; Moghadam, H.S. Geochemistry and petrogenesis of the Sabalan Plio-Quaternary volcanic rocks: Implication for post-collision almagmatism. Iran Soc. Crystallogr. Miner. 2014, 22, 57–68. [Google Scholar]
- Ghalamghash, J.; Mousavi, S.; Hassanzadeh, J.; Schmitt, A. Geology, zircon geochronology, and petrogenesis of Sabalanvolcano (northwestern Iran). J. Volcanol. Geotherm. Res. 2016, 327, 192–207. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E. Density and loss on ignition as indicators o fthe fossilization of silicified wood. IAWA J. 2016, 37, 98–111. [Google Scholar] [CrossRef]
- Grey, K. A Modified Palynological Preparation Technique for the Extraction of Large Neoproterozoic Actinomorhacritarchs and Other Insoluble Microfossils Record 199/10; Geological Survey of Western Australia, Department of Minerals and Energy: Perth, Australia, 1999. [Google Scholar]
- Riding, J.B.; Kyffin-Hughes, J.I.; Owens, B. An effective palynological preparation procedure using hydrogen peroxide. Palynology 2007, 31, 19–36. [Google Scholar] [CrossRef]
- Kukacha, F. Identification of coniferous woods. TAPPI 1960, 43, 887–896. [Google Scholar]
- Lynne, B.Y.; Campbell, K.A.; James, B.J.; Browne, P.R.L.; Moore, J. Tracking crystallinity insiliceous hot-spring deposits. Am. J. Sci. 2007, 307, 612–641. [Google Scholar] [CrossRef]
- Fakhr, M.S.; Marguerier, J. Prototaxoxylon feriziense n. sp., boisfossile du Jurassique moyen del’ Iran. In Contribution à L’étude de la Florerhéto-Liassique de la Formation de Shemshak de l’Elbourz (Iran); Fakhr, M.S., Ed.; Bibliothèque Nat. Paris Mém. Sci. 5: Paris, France, 1977; pp. 146–150. [Google Scholar]
- Nadjafi, A. Contribution à la Connaissance de la Flore Ligneuse du Jurassique D’iran. Ph.D. Thesis, Pierre and Marie Curie University, Paris, France, 1982. [Google Scholar]
- Poole, I.; Ataabadi, M.M. Conifer woods of the middle Jurassic Hojedk formation (Kerman basin) Centra lIran. IAWA J. 2005, 26, 489–505. [Google Scholar] [CrossRef]
- Schönbeck-Temesy, E. Solanaceae. In Flora Iranica: Flora des Iranischen Hochlandes und der Umrahmenden Gebirge; Persien, Afghanistan, Teile von West-Pakistan, Nord-Iraq, Azerbaidjan, Turkmenistan; Rechinger, K.H., Ed.; Akademische Druck-u. Verlagsanstalt: Graz, Austria, 1972; Volume 100, pp. 1–102. [Google Scholar]
- Hasanov, Z.M.; Ibrahimov, Z.A.; Nabiyev, V.R. Beech forests of Ajerbaijan: The modern condition, age structure, and regeneration. Ann. Agrar. Sci. 2017, 15, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.C.; Gladfelter, H.J. Eldarica Pine, Afghan Pine (Pinus eldarica Medw.). In Trees III. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1991; Volume 16, pp. 269–287. ISBN 978-3-642-08093-7. [Google Scholar]
- Farjon, A.; Filer, D. An Atlas of the World’s Conifers; Brill: Leiden, The Netherlands, 2013; ISBN 978-90-040211803. [Google Scholar]
- Adams, R.P. Junipers of the World: The Genus Juniperus; Trafford: Victoria, BC, Canada, 2004; ISBN 1-4120-4250-X. [Google Scholar]
- Murata, K.J. Volcanic ash as a source of silica for the silicification of wood. Am. J. Sci. 1940, 238, 586–596. [Google Scholar] [CrossRef]
- Ballhaus, C.; Gee, C.T.; Bockrath, C.; Greef, K.; Mansfeldt, T.; Rhede, D. The silicification of trees in volcanic ash—An experimental study. Geochim. Cosmochim. Acta 2012, 84, 62–74. [Google Scholar] [CrossRef]
- Tolen, T.L.; Reidel, S.P.; Fecht, K.R. The unusual occurrence of fossil logs within a middle Miocene flood-basalt pillow lavac omplex—An examination of geologic events and processes that created the “Vantage Forest” of central Washington State (abstract). Eos Trans. Am. Geophys. Union 1991, 72, 602. [Google Scholar]
- Orsen, M. Ginkgo Petrified Forest; Ginkgo Gem Shop: Vantage, WA, USA, 1998; 26p. [Google Scholar]
- Matysová, P.; Rössler, R.; Götze, J.; Leichmann, J.; Forbes, G.; Taylor, E.L.; Sakala, J.; Grygar, T. Alluvial and volcanic pathways to silicified plant stems (Upper Carboniferous-Triassic) and their taphonomic and palaeoenvironmental meaning. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 127–143. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Tufts, S. Wood opal—A tryidymite-like material. Am. Mineral. 1973, 58, 717–720. [Google Scholar]
- Scurfield, G.; Segnit, E.R. Petrifaction of wood by silica minerals. Sediment. Geol. 1984, 39, 149–167. [Google Scholar] [CrossRef]
- Hellawell, J.; Ballhaus, C.; Gee, C.T.; Mustoe, G.E.; Nagel, T.J.; Wirth, R.; Rethemeyer, J.; Tomaschek, T.; Geisler, T.; Greef, K.; et al. Incipient silicification of recent conifer wood at a Yellowstone hotspring. Geochim. Cosmochim. Acta 2015, 149, 79–87. [Google Scholar] [CrossRef]
- Mustoe, G.E. Late Tertiary petrified wood from Nevada, USA: Evidence of multiple silicification pathways. Geosciences 2015, 5, 286–309. [Google Scholar] [CrossRef] [Green Version]
- Ernst, W.G.; Calvert, S.E. An experimental study of the recrystallization of porcellanite and its bearing on the origin of some bedded cherts. Am. J. Sci. 1969, 267, 114–133. [Google Scholar]
- Mizutani, S. Silica in the early stages of diagenesis. Sedimentology 1970, 15, 419–436. [Google Scholar] [CrossRef]
- Mizutani, S. Progressive ordering of cristobalite in early stages of diagenesis. Contrib. Mineral. Petrol. 1977, 61, 129–140. [Google Scholar] [CrossRef]
- Murata, K.J.; Nakata, J.K. Cristobalitic stage in the diagenesis of diatomaceous shale. Science 1974, 184, 567–568. [Google Scholar] [CrossRef]
- Kastner, M.; Keene, J.B.; Goeskes, J.M. Diagenesis of siliceous oozes. 1. Chemical controls and the rate of opal-A to opal-CT transformation—An experimental study. Geochem. Cosmochem. Acta 1977, 41, 1041–1059. [Google Scholar] [CrossRef]
- Iijama, A.; Tada, R. Silica diagenesis of Neogene diatomaceous and volcaniclastic sediments in northern Japan. Sedimentology 1981, 28, 185–200. [Google Scholar] [CrossRef]
- Williams, L.A.; Crerar, D.A. Silica diagenesis. II. General mechanisms. J. Sediment. Petrol. 1985, 55, 312–321. [Google Scholar]
- Williams, L.A.; Parks, G.A.; Crerar, D.A. Silica diagenesis. I. Solubility controls. J. Sediment. Petrol. 1985, 55, 301–311. [Google Scholar]
- White, D.E.; Thompson, G.A.; Sandburg, C.H. Rocks, Structure, and History of Steamboat Springs Thermal Area, Washoe County, Nevada; USA Geological Survey Professional Paper 458-B; USA Government Printing Office: Washington, DC, USA, 1964; 63p. [Google Scholar]
- White, D.E.; Heopolous, C.; Fournier, R.O. Gold and Other Minor Elements Associated with Hot Springs and Geysers of Yellowstone Park, Wyoming, Supplemented with Data from StEamboat Springs, Nevada; USA Geological Survey Bulletin 2001; USA Government Printing Office: Washington, DC, USA, 1992; 19p. [Google Scholar]
- Herdianita, N.R.; Browne, P.R.L.; Rodkers, K.A. Mineralogical and textural changes accompanying aging of silica sinter. Miner. Depos. 2000, 35, 48–62. [Google Scholar] [CrossRef]
- Smith, B.Y.; Campbell, K.A.; Rodgers, K.A.; Browne, P.R.L. Morphological changes accompanying opal-A to opal-CT silica phase transitions in silicasinters from Orakei Korako and TeKopia, TaupoVolcanic Zone. Geol. Soc. Am. Abstr. Programs 2001, 33, 384–385. [Google Scholar]
- Guidry, S.A.; Chafetz, H.S. Depositional facies and diagenetic alteration in a siliceous hotspring accumulation: Examples from Yellowstone National Park, USA. J. Sediment. Res. 2003, 73, 806–823. [Google Scholar] [CrossRef]
- Mustoe, G.E. Mineralogy and geochemistry of late Eocene silicified wood from Florissant Fossil Beds National Monument, Colorado. In Paleontology of the Upper Eocene Florissant Formation, Colorado; Geological Society of America Specia lPaper 435; Meyer, H.W., Smith, D.M., Eds.; Geological Society of America: Boulder, CO, USA, 2008; pp. 127–140. [Google Scholar]
- Saminpanya, S.; Sutherland, F.L. Silica phase-transformations during diagenesis within petrified woods found in fluviald eposits from Thailand-Myanmar. Sediment. Geol. 2013, 290, 15–26. [Google Scholar] [CrossRef]
- Viney, M.; Deitrich, D.; Mustoe, G.; Link, P.; Lampke, T.; Götze, J.; Röβler, R. Multi-stage silicification of Pliocene wood: Re-examination of an 1895 discovery from Idaho, USA. Geosciences 2016, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E. Wood petrifaction: A new view of permineralization and replacement. Geosciences 2017, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E.; Viney, M. Mineralogy of Paleocene petrified wood from Cherokee Ranch Fossil Forest, centra lColorado, USA. Geosciences 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Mustoe, G.E.; Viney, M.; Mills, J. Mineralogy of Eocene fossil wood from the “Blue Forest” locality, southwestern Wyoming, USA. Geosciences 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Viney, M.; Mustoe, G.E.; Dillhoff, T.A.; Link, P. The Bruneau Wood pile: A Miocene phosphatized wood locality in southwestern Idaho, USA. Geosciences 2017, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Leo, R.F.; Barghoorn, S. Silicification of wood. Bot. Mus. Leafl. Harv. Univ. 1976, 25, 1–47. [Google Scholar]
Trunk | Age | Diameter (m) | Length (m) | Distance above Basal Contact | Sample | Sample Position in Trunk | Density (g/cm3) |
---|---|---|---|---|---|---|---|
0 | Miocene | 0.60 | 1 | 5 | T-26 | outer | - |
1 | Miocene | 0.40 | 1 | 5 | T-1 | outer | 2.17 |
2 | Pleistocene | 0.33 | 1 | 31 | T-2 | outer | 2.03 |
3 | Pleistocene | 0.45 | 1 | 31.3 | T-3 | outer | 2.18 |
T-4 | middle | 2.03 | |||||
4 | Pleistocene | 1.2 | 1 | 33 | T-5 | center | 2.58 |
T-6 | middle | 2.43 | |||||
T-7 | outer | 2.29 | |||||
5 | Pleistocene | 1 | 2.1 | T-8 | center | 2.09 | |
T-9 | outer | 2.30 | |||||
6 | Pleistocene | 1.1 | 4 | T-10 | outer | 2.42 | |
7 | Pleistocene | 0.6–0.25 | 10 | 38 | T-11 | center | 2.07 |
T-12 | outer | 2.56 | |||||
T-13 | outer | 2.23 | |||||
T-14 | outer | 2.07 | |||||
8 | Pleistocene | 1.2 | 1 | 42 | T-15 | center | 2.31 |
T-16 | middle | 2.35 | |||||
T-17 | outer | 2.47 | |||||
9 | Pleistocene | 0.3 | 0.5 | 48 | T-18 | outer | 2.44 |
10 | Pleistocene | 0.3 | 0.3 | T-19 | middle | 2.07 | |
11 | Pleistocene | 1.4 | 1 | 58 | T-20 | center | 1.98 |
T-21 | middle | 2.31 | |||||
T-22 | outer | 2.28 | |||||
12 | Pleistocene | 0.85 | 1 | T-23 | center | 2.32 | |
T-24 | middle | 2.23 | |||||
T-25 | outer | 1.99 | |||||
13 | Pleistocene | 0.7 | 1 | T-27 | outer | - | |
T-28 | middle | - | |||||
T-29 | center | - | |||||
14 | Pleistocene | 0.8 | 3.1 | 62 | T-30 | outer | - |
15 | Pleistocene | 0.6 | 0.5 | 58 | T-31 | outer | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustoe, G.E.; Abbassi, N.; Hosseini, A.; Mahdizadeh, Y. Neogene Tree Trunk Fossils from the Meshgin Shahr Area, Northwest Iran. Geosciences 2020, 10, 283. https://doi.org/10.3390/geosciences10080283
Mustoe GE, Abbassi N, Hosseini A, Mahdizadeh Y. Neogene Tree Trunk Fossils from the Meshgin Shahr Area, Northwest Iran. Geosciences. 2020; 10(8):283. https://doi.org/10.3390/geosciences10080283
Chicago/Turabian StyleMustoe, George E., Nasrollah Abbassi, Afsaneh Hosseini, and Yousef Mahdizadeh. 2020. "Neogene Tree Trunk Fossils from the Meshgin Shahr Area, Northwest Iran" Geosciences 10, no. 8: 283. https://doi.org/10.3390/geosciences10080283
APA StyleMustoe, G. E., Abbassi, N., Hosseini, A., & Mahdizadeh, Y. (2020). Neogene Tree Trunk Fossils from the Meshgin Shahr Area, Northwest Iran. Geosciences, 10(8), 283. https://doi.org/10.3390/geosciences10080283