Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia)
Abstract
:1. Introduction
2. Geological Setting of the Litsa Area
3. Materials and Methods
3.1. Rock Samples
3.2. Analytical Methods
4. Results
4.1. LA–ICP-MS Data
4.2. REE Composition of Zircon
4.3. Raman Spectroscopy
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M.; Möller, A. Zircon behaviour and the thermal histories of mountain chains. Elements 2007, 3, 25–30. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Tomaschek, F.; Kennedy, A.K.; Villa, I.M.; Lagos, M.; Ballhaus, C. Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. J. Petrol. 2003, 44, 1977–2002. [Google Scholar] [CrossRef] [Green Version]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Nasdala, L.; Hanchar, J.M.; Rhede, D.; Kennedy, A.K.; Váczi, T. Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario. Chem. Geol. 2010, 269, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Kronz, A.; Wirth, R.; Váczi, T.; Pérez-Soba, C.; Willner, A.; Kennedy, A.K. The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim. Cosmochim. Acta 2009, 73, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Watson, E.B. Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance: Transactions of the Royal Society of Edinburgh. Earth Sci. 1996, 87, 43–56. [Google Scholar]
- Rizvanova, N.G.; Levchenkov, O.A.; Belous, A.E. The dynamics of the interaction of zircon with hydrothermal carbonate fluid. Geochem. Int. 1996, 34, 226. [Google Scholar]
- Mathieu, R.; Zetterström, L.; Cuney, M.; Gauthier-Lafaye, F.; Hidaka, H. Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo–Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem. Geol. 2001, 171, 147–171. [Google Scholar] [CrossRef]
- Ewing, R.C.; Medrum, A.; Wang, L.; Weber, W.J.; Corrales, L.R. Radiation effects in zircon. Rev. Mineral. Geochem. 2003, 53, 387–425. [Google Scholar] [CrossRef]
- Krogh, T.E.; Davis, G.L. Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst. Wash. Year B 1975, 74, 619–623. [Google Scholar]
- Rimša, A.; Whitehouse, M.J.; Johansson, L.; Piazolo, S. Brittle fracturing and fracture healing of zircon: An integrated cathodoluminescence, EBSD, U-Th-Pb, and REE study. Am. Mineral. 2007, 92, 1213–1224. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Pantleon, W.; Trimbly, P. Quantitative characterization of plastic deformation of zircon and geological implications. Contrib. Mineral. Petrol. 2007, 153, 625–645. [Google Scholar] [CrossRef] [Green Version]
- Timms, N.E.; Kinny, P.D.; Reddy, S.M.; Evans, K.; Clark, C.h.; Heal, D. Relationship among titanium, rare earth elements, U–Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry. Chem. Geol. 2011, 280, 33–46. [Google Scholar] [CrossRef]
- Pidgeon, R.T.; Nemchin, A.A.; Hitchen, G.J. Internal structures of zircons from Archean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib. Mineral. Petrol. 1998, 132, 288–299. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Pidgeon, R.T.; Nemchin, A.A.; Cliff, J. Interaction of weathering solutions with oxygen and U-Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petrol. 2013, 166, 511–523. [Google Scholar] [CrossRef]
- Bouvier, A.-S.; Ushikubo, T.; Kita, N.T.; Cavosie, A.J.; Kozdon, R.; Valley, J.W. Li isotopes and trace elements as a petrogenetic tracer in zircon: Insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 2012, 163, 745–768. [Google Scholar] [CrossRef]
- Rayner, N.; Stern, R.A.; Carr, S.D. Grain-scale variations in trace element composition 753 of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib. Mineral. Petrol. 2005, 148, 721–734. [Google Scholar] [CrossRef]
- Fu, B.; Mernagh, T.P.; Kita, N.T.; Kemp, A.I.; Valley, J.W. Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chem. Geol. 2009, 259, 131–142. [Google Scholar] [CrossRef]
- Wayne, D.M.; Sinha, A.K. Physical and chemical response of zircons to deformation. Contrib. Mineral. Petrol. 1988, 98, 109–121. [Google Scholar]
- Rubin, N.J.; Henry Ch, D.; Price, J.G. The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem. Geol. 1993, 110, 29–47. [Google Scholar] [CrossRef]
- Watson, E.B.; Cherniak, D.J.; Hanchar, J.M.; Harrison, T.M.; Wark, D.A. The incorporation of Pb into zircon. Chem. Geol. 1997, 141, 19–31. [Google Scholar] [CrossRef]
- Pettke, T.; Audétat, A.; Schaltegger, U.; Heinrich, C.A. Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 2005, 220, 191–213. [Google Scholar] [CrossRef]
- Wei, H.; Xu, J.; Zhang, G.; Cheng, X.; Chu, H.; Bian, C.; Zhang, Z. Hydrothermal Metasomatism and Gold Mineralization of Porphyritic Granite in the Dongping Deposit, North Hebei, China: Evidence from Zircon Dating. Minerals 2018, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Courtney-Davies, L.; Ciobanu, C.L.; Verdugo-Ihl, M.R.; Slattery, A.; Cook, N.J.; Dmitrijeva, M.; Keyser, W.; Wade, B.P.; Domnick, U.I.; Ehrig, K.; et al. Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrotherma Ore Systems. Minerals 2019, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Savitsky, A.V.; Gromov Yu, A.; Mel’nikov, E.V.; Sharikov, P.I. Uranium mineralization in the Litsa district of the Kola Peninsula (Russia). Geol. Ore Depos. 1995, 5, 403–416. (In Russian) [Google Scholar]
- Glebovitsky, V.A. Early Precambrian of the Baltic Shield; Nauka: St. Petersburg, Russia, 2005; p. 711. (In Russian) [Google Scholar]
- Kaulina, T.V.; Kalinin, A.A.; Il’chenko, V.L.; Gannibal, M.A.; Avedisyan, A.A.; Elizarov, D.V.; Nerovich, L.I.; Nitkina, E.A. Age and formation conditions of U mineralization in the Litsa area and the Salla-Kuolajarvi zone (Kola region, Russia). Minerals 2018, 8, 563. [Google Scholar] [CrossRef] [Green Version]
- Serov, L. Métallogenèse de L’uranium dans la Région de Litsa (Péninsule de Kola, Russie). Ph.D. Thesis, Nancy Université Henry Poincaré (en Géosciences), Nancy, France, 24 June 2011. [Google Scholar]
- Thompson, J.; Meffre, S.; Maas, R.; Kamenetsky, V.; Kamenetsky, M.; Goemann, K.; Ehrig, K.; Danyushevsky, L. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 2016, 31, 1206–1215. [Google Scholar] [CrossRef]
- Huang, Q.; Kamenetsky, V.S.; McPhie, J.; Ehrig, K.; Meffre, S.; Maas, R.; Thompson, J.; Kamenetsky, M.; Chambefort, I.; Apukhtina, O.; et al. Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, SouthAustralia: Links with the Gairdner Large Igneous Province. Precambrian Res. 2015, 271, 160–172. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex version 3.60: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2008; p. 4. [Google Scholar]
- Fedotova, A.A.; Bibikova, E.V.; Simakin, S.G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 2008, 46, 912–927. [Google Scholar] [CrossRef]
- Myskova, T.A.; Berezhnaya, N.G.; Glebovitsky, V.A.; Mil’kevich, R.I.; Lepekhina, E.N.; Matukov, D.I.; Antonov, A.V.; Sergeev, S.A.; Shuleshko, I.K. Findings of the Oldest (3600 Ma) Zircons in Gneisses of the Kola Group, Central Kola Block, Baltic Shield: Evidence from U–Pb (SHRIMP-II) Data. Dokl. Earth Sci. 2005, 402, 547–550. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Nasdala, L.; Irmer, G.; Wolf, D. The degree of metamictization in zircon: A Raman spectroscopic study. Eur. J. Miner. 1995, 7, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.; Hargreave, M.M.; Wilkinson, G.R. The vibrational spectrum of zircon (ZrSiO4). Phys. C Solid St. Phys. 1971, 4, 240–256. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A.; Armbruster, T. The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. Eur. J. Miner. 2001, 13, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Titorenkova, R.; Mihailova, B.; Konstantinov, L. Raman spectroscopic study of variably recrystallized metamict zircon from amphibolite-facies metagranites, Serbo-Macedonian massif, Bulgaria. Can. Mineral. 2006, 44, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Salje, E.K.H.; Farnan, I.; Graeme-Barber, A.; Daniel, P.; Ewing, R.C.; Clark, A.M.; Leroux, H. Metamictization of zircon: Raman spectroscopic study. J. Phys. 2000, 12, 1915–1925. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Miner. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Levchenkov, O.A.; Levsky, L.K.; Nordgulen, Ø.; Dobrzhinetskaya, L.F.; Vetrin, V.R.; Cobbing, J.; Nilsson, L.P.; Sturt, B.A. U-Pb zircon ages from Sörvaranger, Norway and the western part of the Kola Peninsula, Russia. Nor. Geol. Unders. Spec. Publ. 1995, 7, 29–47. [Google Scholar]
- Kozlov, N.E.; Sorokhtin, N.O.; Glaznev, V.N.; Kozlova, N.E.; Ivanov, A.A.; Kudryashov, N.M.; Martynov, E.V.; Tyuremnov, V.A.; Matyushkin, A.V.; Osipenko, L.G. Geology of the Archean of the Baltic Shield; SPb Science: St.Petersburg, Russia, 2006; p. 345. (In Russian) [Google Scholar]
- Rubatto, D. Zircon—the metamorphic mineral. Rev. Mineral. Geochem. 2017, 83., 261–295. [Google Scholar] [CrossRef]
- Kaulina, T.V.; Sinai, M.Y.; Savchenko, E.E. Crystallogenetic models for metasomatic replacement in zircons: Implications for U-Pb geochronology of Precambrian rocks. Int. Geol. Rev. 2015, 57, 1526–1542. [Google Scholar] [CrossRef]
- Skublov, S.G. Geochemistry of Rare-Earth Elements in Rock-Forming Metamorphic Minerals; Nauka: St. Petersburg, Russia, 2005; p. 147. (In Russian) [Google Scholar]
Spot No | Isotope Composition, ppm | Isotope Ratios | Age, Ma | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pb tot | Pb com | 232Th | 238U | 232Th /238U | 207Pb/ 235U | ±1σ % | 206Pb/ 238U | ±1σ % | 207Pb/ 206Pb | 206Pb/ 238U | |
KT-1—plagiogranite | |||||||||||
1 | 353 | 1.1 | 15 | 602 | 0.02 | 11.60 | 1.0 | 0.4598 | 1.0 | 2680 ± 4 | 2368 ± 25 |
2 | 453 | 0.95 | 10 | 1372 | 0.01 | 6.64 | 0.9 | 0.2749 | 0.9 | 2608 ± 3 | 1428 ± 13 |
3 | 288 | 0.97 | 71 | 740 | 0.10 | 8.71 | 1.5 | 0.2912 | 1.5 | 2958 ± 4 | 1434 ± 21 |
4 | 107 | 1.1 | 34 | 176 | 0.20 | 14.52 | 1.0 | 0.5155 | 1.0 | 2860 ± 4 | 2609 ± 29 |
6 | 200 | 0.93 | 11 | 849 | 0.01 | 4.31 | 1.3 | 0.2089 | 1.3 | 2341 ± 4 | 1127 ± 15 |
7 | 36 | 1.1 | 18 | 50 | 0.36 | 15.27 | 0.9 | 0.5539 | 0.9 | 2826 ± 5 | 2841 ± 32 |
KT-2—gneissic plagiogranite | |||||||||||
8 | 355 | 1.1 | 16 | 586 | 0.03 | 13.08 | 0.8 | 0.5146 | 0.8 | 2692 ± 3 | 2670 ± 24 |
9 | 195 | 1.1 | 5 | 343 | 0.01 | 11.92 | 1.0 | 0.4917 | 1.0 | 2613 ± 3 | 2567 ± 29 |
10 | 319 | 1.1 | 8 | 527 | 0.01 | 12.93 | 1.1 | 0.5191 | 1.1 | 2659 ± 3 | 2696 ± 33 |
11 | 197 | 0.89 | 29 | 1404 | 0.02 | 2.04 | 1.1 | 0.1268 | 1.1 | 1903 ± 5 | 723 ± 8 |
12 | 176 | 0.89 | 28 | 1381 | 0.02 | 1.82 | 1.5 | 0.1157 | 1.5 | 1870 ± 8 | 663 ± 9 |
14 | 170 | 1.1 | 123 | 245 | 0.50 | 14.42 | 1.1 | 0.5149 | 1.1 | 2851 ± 3 | 2610 ± 32 |
15 | 223 | 1.1 | 106 | 275 | 0.39 | 16.43 | 1.1 | 0.6151 | 1.1 | 2774 ± 3 | 3090 ± 48 |
16 | 158 | 1.1 | 129 | 214 | 0.60 | 15.22 | 0.9 | 0.5507 | 0.9 | 2830 ± 4 | 2827 ± 30 |
KT-3—monzogranite | |||||||||||
17 | 740 | 0.95 | 45 | 2339 | 0.02 | 5.99 | 1.3 | 0.2612 | 1.3 | 2521 ± 3 | 1373 ± 17 |
18 | 646 | 0.92 | 191 | 2409 | 0.08 | 4.65 | 1.3 | 0.2014 | 1.3 | 2532 ± 4 | 1064 ± 14 |
19 | 208 | 0.88 | 11 | 1653 | 0.01 | 1.58 | 1.3 | 0.1100 | 1.3 | 1696 ± 4 | 639 ± 8 |
KT-5—muscovite-biotite gneiss | |||||||||||
20 | 420 | 1.0 | 555 | 844 | 0.66 | 9.41 | 1.2 | 0.3685 | 1.2 | 2700 ± 3 | 1884 ± 22 |
21 | 301 | 1.1 | 214 | 496 | 0.43 | 12.03 | 1.2 | 0.4561 | 1.2 | 2753 ± 3 | 2325 ± 29 |
22 | 43 | 1.1 | 27 | 62 | 0.44 | 14.35 | 0.9 | 0.5318 | 0.9 | 2790 ± 5 | 2732 ± 29 |
23 | 176 | 1.0 | 72 | 319 | 0.23 | 11.25 | 1.4 | 0.4505 | 1.4 | 2664 ± 3 | 2323 ± 33 |
24 | 161 | 1.1 | 66 | 235 | 0.28 | 14.58 | 0.8 | 0.5439 | 0.8 | 2780 ± 3 | 2800 ± 28 |
25 | 298 | 1.1 | 95 | 434 | 0.22 | 15.07 | 0.8 | 0.5495 | 0.8 | 2817 ± 3 | 2823 ± 27 |
26 | 70 | 1.1 | 105 | 97 | 1.09 | 12.97 | 0.9 | 0.4910 | 0.9 | 2755 ± 4 | 2514 ± 25 |
27 | 407 | 1.0 | 365 | 831 | 0.44 | 8.93 | 1.2 | 0.3581 | 1.2 | 2661 ± 3 | 1841 ± 21 |
Spot | REE Content (ppm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Dy | Er | Yb | Lu | ∑REE | Th | U | |
KT-1 plagiogranite | ||||||||||||||
1 | 0.17 | 2.2 | 0.04 | 0.49 | 1.1 | 0.43 | 6.1 | 23 | 46 | 96 | 18 | 193 | 5.5 | 23 |
2 | 18 | 150 | 18 | 102 | 22 | 12 | 37 | 51 | 76 | 175 | 34 | 694 | 11 | 962 |
3 | 67 | 323 | 35 | 213 | 62 | 29 | 103 | 128 | 213 | 506 | 83 | 1760 | 83 | 4104 |
4 | 49 | 182 | 21 | 116 | 34 | 17 | 50 | 49 | 74 | 231 | 42 | 866 | 23 | 2017 |
5 | 11 | 109 | 13 | 94 | 54 | 21 | 106 | 176 | 271 | 449 | 77 | 1382 | 110 | 407 |
6 | 99 | 556 | 85 | 549 | 162 | 62 | 206 | 136 | 172 | 382 | 68 | 2477 | 19 | 1952 |
7 | 0.41 | 10 | 0.22 | 2.8 | 3.7 | 1.4 | 19 | 70 | 164 | 364 | 68 | 704 | 66 | 156 |
Sample RK-473 muscovite-biotite gneiss. | ||||||||||||||
1 | 28 | 113 | 11 | 53 | 20 | 7 | 52 | 188 | 415 | 791 | 123 | 1802 | 334 | 1090 |
2 | 19 | 53 | 5.2 | 28 | 12 | 4.0 | 34 | 127 | 304 | 759 | 131 | 1475 | 95 | 948 |
3 | 0.27 | 24 | 0.19 | 2.4 | 4.2 | 1.0 | 25 | 117 | 295 | 593 | 103 | 1166 | 239 | 662 |
4 | 2.0 | 16 | 0.71 | 4.0 | 1.6 | 0.51 | 5.6 | 24 | 59 | 139 | 26 | 279 | 104 | 426 |
TK-473A metasomatite | ||||||||||||||
1 | 120 | 308 | 30 | 124 | 40 | 15 | 77 | 249 | 473 | 910 | 143 | 2488 | 142 | 6624 |
2 | 9.1 | 84 | 8.5 | 54 | 38 | 3.4 | 83 | 186 | 295 | 517 | 88 | 1364 | 331 | 535 |
3 | 443 | 512 | 44 | 192 | 48 | 91 | 91 | 244 | 488 | 967 | 152 | 3273 | 104 | 6759 |
4 | 61 | 445 | 47 | 280 | 122 | 51 | 195 | 243 | 217 | 397 | 74 | 2132 | 202 | 1397 |
TK-20 vein pegmatoid granite | ||||||||||||||
1 | 63 | 310 | 27 | 137 | 68 | 24 | 134 | 224 | 341 | 618 | 100 | 2045 | 630 | 1182 |
2 | 182 | 717 | 104 | 585 | 221 | 207 | 310 | 206 | 233 | 450 | 76 | 3291 | 18 | 2688 |
3 | 181 | 918 | 115 | 842 | 570 | 267 | 1035 | 733 | 907 | 1569 | 244 | 7381 | 1715 | 2588 |
4 | 152 | 956 | 133 | 912 | 613 | 191 | 1269 | 1516 | 1159 | 1585 | 275 | 8760 | 44 | 6561 |
5 | 296 | 1464 | 228 | 1271 | 456 | 345 | 551 | 405 | 443 | 838 | 141 | 6437 | 26 | 3876 |
6 | 57 | 306 | 47 | 273 | 121 | 62 | 148 | 153 | 281 | 773 | 138 | 2359 | 35 | 1645 |
7 | 1.6 | 16 | 0.54 | 3.4 | 4.9 | 1.2 | 24 | 94 | 200 | 362 | 60 | 768 | 249 | 1315 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaulina, T.; Lyalina, L.; Kamenetsky, V.; Il’chenko, V.; Bocharov, V.; Gannibal, M. Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia). Geosciences 2020, 10, 278. https://doi.org/10.3390/geosciences10080278
Kaulina T, Lyalina L, Kamenetsky V, Il’chenko V, Bocharov V, Gannibal M. Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia). Geosciences. 2020; 10(8):278. https://doi.org/10.3390/geosciences10080278
Chicago/Turabian StyleKaulina, Tatiana, Lyudmila Lyalina, Vadim Kamenetsky, Vadim Il’chenko, Vladimir Bocharov, and Maria Gannibal. 2020. "Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia)" Geosciences 10, no. 8: 278. https://doi.org/10.3390/geosciences10080278
APA StyleKaulina, T., Lyalina, L., Kamenetsky, V., Il’chenko, V., Bocharov, V., & Gannibal, M. (2020). Composition and Structure of Zircon from Hydrothermal Uranium Occurrences of the Litsa Ore Area (Kola Region, Russia). Geosciences, 10(8), 278. https://doi.org/10.3390/geosciences10080278