The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Description
2.2. Procedures and Agronomic Practices Assessed
2.3. Description of the DES, Soil ρb, and µ Measurements
2.3.1. Electric Control Unit (ECU)
2.3.2. Microwave Drying Unit (MDU)
2.4. Working Mechanism of the DES Technology to Measure Soil ρb and µ
2.5. Mathematical Calculations
2.6. Data Analysis
3. Results and Discussions
3.1. Microwave Penetration Depth (MDP)
3.2. The Thermal Efficiency of the DES (ηth)
3.3. Specific Energy Consumption for DES (Qcon)
3.4. Soil Bulk Density Measurement
4. Conclusions and Recommendations
- Develop a new design for the DES to measure soil bulk density at depths greater than 30 cm and not compacting the soil too much during the measurement, which would allow its use for geological research or deeper soils;
- Study and measure the systematic error of the bulk density measuring during preparation into the soil using a penetration cylinder and inserting the DES sensor into the soil downwards;
- Determine if it is comparable to a system based on using a microwave for drying the soil (heat from inside) and with a system based on using an oven (heat from outside);
- Design new implementations and solutions to measure soil bulk density while encountering stones or roots during the sampling.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pfeiffer, S.A.; Guevara, J.; Cheein, F.A.; Sanz, R. Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation. Comput. Electron. Agric. 2018, 146, 104–113. [Google Scholar] [CrossRef]
- Mahadhir, K.A.; Tan, S.C.; Low, C.Y.; Dumitrescu, R.; Amin, A.T.M.; Jaffar, A. Terrain Classification for Track-driven Agricultural Robots. Procedia Technol. 2014, 15, 775–782. [Google Scholar] [CrossRef]
- Cay, A.; Kocabiyik, H.; May, S. Development of an electro-mechanic control system for seed-metering unit of single seed corn planters Part II: Field performance. Comput. Electron. Agric. 2018, 145, 11–17. [Google Scholar] [CrossRef]
- Umani, K.C.; Fakayode, O.A.; Ituen, E.U.U.; Okokon, F.B. Development and testing of an automated contact plate unit for a cassava grater. Comput. Electron. Agric. 2019, 157, 530–540. [Google Scholar] [CrossRef]
- Alameen, A.A.; Al-Gaadi, K.A.; Tola, E. Development and performance evaluation of a control system for variable rate granular fertilizer application. Comput. Electron. Agric. 2019, 160, 31–39. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil Bulk Density Estimation Methods: A Review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Mattson, K.G.; Zhang, W.; Weber, T.A. Sample Sizes to Control Error Estimates in Determining Soil Bulk Density in California Forest Soils. Soil Sci. Soc. Am. J. 2016, 80, 756–764. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.Á.; Reyes, M.; Taguas, F.J. Estimating soil bulk density with information metrics of soil texture. Geoderma 2017, 287, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Shiri, J.; Keshavarzi, A.; Kisi, O.; Karimi, S.; Iturraran-Viveros, U. Modeling soil bulk density through a complete data scanning procedure: Heuristic alternatives. J. Hydrol. 2017, 549, 592–602. [Google Scholar] [CrossRef]
- Nasri, B.; Fouché, O.; Torri, D. Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 2015, 131, 99–108. [Google Scholar] [CrossRef]
- Xing, X.; Li, Y.; Ma, X.J.E.G. Water retention curve correction using changes in bulk density during data collection. Eng. Geol. 2018, 233, 231–237. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Saeed, T.R.; Lahmod, N.R.; Mouazen, A.M. Evaluation of a novel electromechanical system for measuring soil bulk density. Biosyst. Eng. 2019, 179, 140–154. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.; Saeed, T.R.; Rodrigo-Comino, J. A new digital electromechanical system for measurement of soil bulk density. Comput. Electron. Agric. 2019, 156, 227–242. [Google Scholar] [CrossRef]
- Kanaan, H.; Frenk, S.; Raviv, M.; Medina, S.; Minz, D. Long and short term effects of solarization on soil microbiome and agricultural production. Appl. Soil Ecol. 2018, 124, 54–61. [Google Scholar] [CrossRef]
- Cerdà, A.; González-Pelayo, Ó.; Giménez-Morera, A.; Jordán, A.; Pereira, P.; Novara, A.; Brevik, E.C.; Prosdocimi, M.; Mahmoodabadi, M.; Keesstra, S. Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency–high magnitude simulated rainfall events. Soil Res. 2016, 54, 154–165. [Google Scholar] [CrossRef]
- Abu-Irmaileh, B. Soil solarization controls broomrapes (Orobanche spp.) in host vegetable crops in the Jordan Valley. Weed Technol. 1991, 5, 575–581. [Google Scholar] [CrossRef]
- Gamliel, A.; Katan, J. Disinfestation. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 394–400. [Google Scholar] [CrossRef]
- Anghinoni, G.; Tormena, C.A.; Lal, R.; Moreira, W.H.; Júnior, E.B.; Ferreira, C.J.B. Within cropping season changes in soil physical properties under no-till in Southern Brazil. Soil Tillage Res. 2017, 166, 108–112. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.A.; Karlen, D.L.; da Silva, Á.P.; Keller, T.; Betioli, E. Seasonal changes in soil physical properties under long-term no-tillage. Soil Tillage Res. 2016, 160, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Boluwade, A.; Madramootoo, C.A. Independent principal component analysis for simulation of soil water content and bulk density in a Canadian Watershed. Int. Soil Water Conserv. Res. 2016, 4, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Braunack, M.; Johnston, D.; Price, J.; Gauthier, E. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crop. Res. 2015, 184, 91–103. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.; Wang, E.; Zhou, T.; Xin, P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Jabro, J.D.; Iversen, W.M.; Stevens, W.B.; Evans, R.G.; Mikha, M.M.; Allen, B.L. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil Tillage Res. 2016, 159, 67–72. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Sadoon, J.N.A. Influence of tillage depth, soil mulching systems and fertilizers on some thermal properties of silty clay soil. Eur. J. Agric. For. Res. 2014, 2, 1–16. [Google Scholar]
- Regina, K.; Alakukku, L. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. Soil Tillage Res. 2010, 109, 144–152. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Silva, A.M.D.; Moradi, E.; Terol, E.; Cerdà, A. Improved Stock Unearthing Method (ISUM) as a tool to determine the value of alternative topographic factors in estimating inter-row soil mobilisation in citrus orchards. Span. J. Soil Sci. 2020, 10. [Google Scholar]
- Ferrero, A.; Usowicz, B.; Lipiec, J.J.S.; Research, T. Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil Tillage Res. 2005, 84, 127–138. [Google Scholar] [CrossRef]
- Burgos Hernández, T.D.; Slater, B.K.; Tirado Corbalá, R.; Shaffer, J.M. Assessment of long-term tillage practices on physical properties of two Ohio soils. Soil Tillage Res. 2019, 186, 270–279. [Google Scholar] [CrossRef]
- Ashraf, M.; Pearson, C.; Westfall, D.; Sharp, R. Effect of conservation tillage on crop yields, soil erosion, and soil properties under furrow irrigation in western Colorado. Am. J. Altern. Agric. 1999, 14, 85–92. [Google Scholar] [CrossRef]
- Barbosa, F.; Bertol, I.; Luciano, R.; Gonzalez, A.J.S.; Research, T. Phosphorus losses in water and sediments in runoff of the water erosion in oat and vetch crops seed in contour and downhill. Soil Tillage Res. 2009, 106, 22–28. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Davis, J.; Keesstra, S.D.; Cerdà, A. Updated measurements in vineyards improves accuracy of soil erosion rates. Agron. J. 2018, 110, 411–417. [Google Scholar] [CrossRef]
- Foltz, R. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States. J. Soil Water Conserv. 2012, 67, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Subrahmaniyan, K.; Kalaiselvan, P.; Balasubramanian, T.; Zhou, W. Crop productivity and soil properties as affected by polyethylene film mulch and land configurations in groundnut (Arachis hypogaea L.) (Einfluss von Polyethylenfilm-Mulch und Feldbeschaffenheit auf Ertrag und Bodeneigenschaften im Erdnussanbau [Arachis hypogaea L.]). Arch. Agron. Soil Sci. 2006, 52, 79–103. [Google Scholar]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O. Response of okra (Abelmoschus esculentus (L.) Moench) and soil properties to different mulch materials in different cropping seasons. Sci. Hortic. 2017, 217, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Dang, T.; Guo, S.; Hao, M. Effects of mulching measures on soil moisture and N leaching potential in a spring maize planting system in the southern Loess Plateau. Agric. Water Manag. 2019, 213, 803–808. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, F.; Zhang, C.; Jia, Z. Effects of different mulching patterns on soil moisture, temperature, and maize yield in a semi-arid region of the Loess Plateau, China. Arid Land Res. Manag. 2016, 30, 490–504. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. Chapter Three—The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 153, pp. 121–173. [Google Scholar]
- Öz, H. A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce (Lactuca Sativa, L. Duna). Sci. Hortic. 2018, 228, 153–161. [Google Scholar] [CrossRef]
- Castello, I.; D’Emilio, A.; Raviv, M.; Vitale, A. Soil solarization as a sustainable solution to control tomato Pseudomonads infections in greenhouses. Agron. Sustain. Dev. 2017, 37, 59. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapović-Solomun, M.; Keesstra, S.D. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 2018, 75, 734–745. [Google Scholar]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution in olive groves treated with glyphosate. A biophysical and socio-economic assessment. Land Degrad. Dev. 2019. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Ahire, D.V.; Ahire, V.D.; Chkravarty, M.; Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 2013, 3, 1–8. [Google Scholar]
- Zhou, L.; Feng, H.; Zhao, Y.; Qi, Z.; Zhang, T.; He, J.; Dyck, M. Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil. Agric. Water Manag. 2017, 184, 114–123. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Tsiafouli, M.A.; Sgardelis, S.P.; Pantis, J.D. Organic farming without organic products. Land Use Policy 2013, 32, 324–328. [Google Scholar] [CrossRef]
- Benbrook, C.; McCullum-Gómez, C. Organic vs Conventional Farming. J. Am. Diet. Assoc. 2009, 109, 809. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. Gcb Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Barataud, F.; Aubry, C.; Wezel, A.; Mundler, P. Management of drinking water catchment areas in cooperation with agriculture and the specific role of organic farming. Experiences from Germany and France. Land Use Policy 2014, 36, 585–594. [Google Scholar] [CrossRef]
- Gao, F. Comparison of Microwave Drying and Conventional Drying of Coal. 2010. Available online: https://qspace.library.queensu.ca/handle/1974/6258 (accessed on 24 March 2020).
- Almahmood, H. Study of Some Physical and Chemical Characterizations of water from Southern Iraqi Marshlands after Rehabiliation/2003. Marsh Bull 2010, 1, 82–91. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Kroetsch, D.; Wang, C. Particle size distribution. Soil Sampl. Methods Anal. 2008, 2, 713–725. [Google Scholar]
- Katan, J.; DeVay, J.E. (Eds.) Soil Solarization; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Rozenberg, S.; Yahalom, A. A THz Slot Antenna Optimization Using Analytical Techniques. arXiv 2017, arXiv:1704.06564. [Google Scholar]
- Jackson, T.J. Effects of soil properties on microwave dielectric constants. Transp. Res. Board 1987, 126–131. [Google Scholar]
- Institute, S. Base SAS 9.4 Procedures Guide: Statistical Procedures; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Robinson, J.P.; Kingman, S.W.; Lester, E.H.; Yi, C. Microwave remediation of hydrocarbon-contaminated soils—Scale-up using batch reactors. Sep. Purif. Technol. 2012, 96, 12–19. [Google Scholar] [CrossRef]
- Cao, H.; Fan, D.; Jiao, X.; Huang, J.; Zhao, J.; Yan, B.; Zhou, W.; Zhang, W.; Ye, W.; Zhang, H. Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating. J. Food Eng. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Salema, A.A.; Yeow, Y.K.; Ishaque, K.; Ani, F.N.; Afzal, M.T.; Hassan, A. Dielectric properties and microwave heating of oil palm biomass and biochar. Ind. Crop Prod. 2013, 50, 366–374. [Google Scholar] [CrossRef]
- Krouzek, J.; Durdak, V.; Hendrych, J.; Masin, P.; Sobek, J.; Spacek, P. Pilot scale applications of microwave heating for soil remediation. Chem. Eng.-Process.-Process. Intensif. 2018, 130, 53–60. [Google Scholar] [CrossRef]
- Maharjan, G.R.; Prescher, A.-K.; Nendel, C.; Ewert, F.; Mboh, C.M.; Gaiser, T.; Seidel, S.J. Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil Tillage Res. 2018, 180, 210–221. [Google Scholar] [CrossRef]
- Mahdavi, S.M.; Neyshabouri, M.R.; Fujimaki, H.; Heris, A.M. Coupled heat and moisture transfer and evaporation in mulched soils. CATENA 2017, 151, 34–48. [Google Scholar] [CrossRef]
- Mousa, N.; Farid, M. Microwave vacuum drying of banana slices. Dry. Technol. 2002, 20, 2055–2066. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Jafari, H.; Kalantari, D.; Azadbakht, M. Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying. Energy 2018, 142, 647–654. [Google Scholar] [CrossRef]
Soil Depth (cm) | Moisture Content (%) | Soil Organic Matter (g kg−1) | Soil Dry Bulk Density (g cm−3) | Particle Size Distribution (%) | ||
---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||
0–10 | 27.7 | 8.0 | 1.31 | 47 | 41 | 12 |
10–20 | 38.2 | 4.8 | 1.35 | 45 | 41 | 14 |
20–30 | 41.6 | 4.0 | 1.39 | 41 | 43 | 16 |
Tillage systems |
|
Mulching with fertilizer treatments |
|
Soil depths (cm) |
|
Mulching Systems ID (B) | Mulching System-Soil Depth | Tillage Systems-Mulching System | Mean of Mulching System | |||
---|---|---|---|---|---|---|
Soil Depth (cm) (C) | ||||||
Tillage System (A) | ||||||
10 | 20 | 30 | Disc Plough (DP) + Spring Disk | Mouldboard Plough (MP) + Spring Disk | ||
TSC | 1.83h | 1.91e–h | 2.24bc | 2.03a | 1.95a | 1.99a |
TSW | 1.91d–g | 1.95de | 2.27abc | 2.05a | 2.03a | 2.04a |
TSO | 1.85ghf | 1.91d–g | 2.24bc | 2.01b | 1.99a | 2.00a |
TDW | 1.93def | 1.95de | 2.26abc | 2.06a | 2.03a | 2.04a |
TDO | 1.84gh | 1.90e–f | 2.20c | 2.01a | 1.99a | 1.98a |
TDC | 1.86fgh | 1.91f–e | 2.23bc | 1.97a | 2.00a | 2.00a |
BO | 1.91d–g | 1.95de | 2.27abc | 2.03a | 2.06a | 2.04a |
BC | 1.96de | 1.99d | 2.32a | 2.10a | 2.08a | 2.09a |
BW | 1.91e–g | 1.95de | 2.27abc | 2.03a | 2.06a | 2.04a |
WC | 1.92e–g | 1.98de | 2.31ab | 2.09a | 2.04a | 2.07a |
WO | 1.85fgh | 1.93def | 2.27abc | 2.06a | 1.97a | 2.01a |
WW | 1.91d–g | 1.95de | 2.27abc | 2.09a | 2.00a | 2.04a |
Least significant difference ( LSD 0.05) | B-C 0.08 | A-B N.S | B N.S. | |||
Tillage system | Tillage system-soil depth | Mean tillage system | ||||
Disc plough (DP) followed by a spring disk | 1.91c | 1.95b | 2.27a | 2.04a | ||
Mouldboard plough (MP) followed by a spring disk | 1.87d | 1.93bc | 2.25a | 2.02b | ||
LSD0.05 | A-C 0.03 | A 0.04 | ||||
Mean of soil depth | 1.89c | 1.94b | ||||
LSD0.05 | C 0.02 |
Mulching Systems ID (B) | Mulching System-Soil Depth | Tillage Systems-Mulching System | Mean of Mulching System | |||
---|---|---|---|---|---|---|
Soil Depth (cm) (C) | Tillage Systems (A) | |||||
10 | 20 | 30 | Disc plough (DP) + Spring Disk | Mouldboard plough (MP) + Spring Disk | ||
TSC | 2.22l | 2.39hij | 2.51b–g | 2.47c–g | 2.27i | 2.37d |
TSW | 2.41e–i | 2.50b–h | 2.59ab | 2.52a–e | 2.48b–g | 2.50abc |
TSO | 2.26kl | 2.39g–j | 2.52b–e | 2.41e–h | 2.37ghi | 2.39d |
TDW | 2.44d–i | 2.51b–f | 2.55a–d | 2.52a–e | 2.48b–g | 2.50abc |
TDO | 2.23l | 2.37ijk | 2.44c–i | 2.32hi | 2.38ghi | 2.35d |
TDC | 2.29jkl | 2.39g–j | 2.52b–e | 2.41e–h | 2.39f–i | 2.40d |
BO | 2.39hij | 2.51b–f | 2.59ab | 2.47d–g | 2.53a–d | 2.50bc |
BC | 2.51b–f | 2.58ab | 2.67a | 2.59abc | 2.59abc | 2.59a |
BW | 2.39hij | 2.51b–f | 2.59ab | 2.46d–g | 2.54a–d | 2.50bc |
WC | 2.41e–i | 2.56abc | 2.67a | 2.59ab | 2.50a–f | 2.55ab |
WO | 2.24l | 2.45c–i | 2.59ab | 2.54a–d | 2.31hi | 2.43cd |
WW | 2.40f–j | 2.50b–h | 2.59ab | 2.60a | 2.39fgh | 2.50bc |
Least significant difference (LSD0.05) | B-C 0.11 | A-B 0.11 | B 0.08 | |||
Tillage system | Tillage system x soil depth | Mean tillage system | ||||
Disc plough (DP) followed by a spring disk | 2.39c | 2.50b | 2.58a | 2.49a | ||
Mouldboard plough (MP) followed by a spring disk | 2.30d | 2.45b | 2.55a | 2.44b | ||
LSD0.05 | A-C 0.05 | A 0.03 | ||||
Mean of soil depth | 2.35c | 2.47b | ||||
LSD0.05 | C 0.03 |
SOV1 | Df | SS2 | M.S3 | F Value | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil ρn (Mgwet cm−3) | Soil ρb (Mgdry cm−3) | MDP (m) | ηth of DES (%) | Qcon for DES (kJ kg−1) | Soil ρn (Mgwet cm−3) | Soil ρb (Mgdry cm−3) | MDP (m) | ηth of DES (%) | Qcon for DES (kJ kg−1) | Soil ρn (Mgwet cm−3) | Soil ρb (Mgdry cm−3) | MDP (m) | ηth of DES (%) | Qcon for DES (kJ kg−1) | |||||
Main-plot analysis: | |||||||||||||||||||
Rep | 2 | ||||||||||||||||||
Tillage system (A) | 1 | 0.68 | 0.06 | 0.16 | 0.04 | 231.5 | 294.7 | 0.68 | 0.06 | 0.16 | 0.04 | 231.5 | 294.7 | 69.1** | 6** | 7.4** | 1.1** | 13.1** | 7.9** |
Error A | 2 | 0.01 | 0.01 | 0.02 | 0.03 | 17.6 | 37.39 | ||||||||||||
Sub-plot analysis | |||||||||||||||||||
Mulching system (B) | 11 | 0.1 | 0.53 | 1.08 | 0.21 | 1228 | 2209.7 | 0.01 | 0.05 | 0.09 | 0.02 | 111.7 | 200.9 | 0.7 n.s | 5.5** | 5.3** | 0.6 n.s | 8.2** | 6.7** |
A-B | 11 | 1.08 | 0.85 | 1.79 | 0.34 | 2056.9 | 3470.6 | 0.05 | 0.04 | 0.08 | 0.01 | 89.4 | 150.9 | 5.3** | 4.9** | 4.9** | 0.4 n.s | 8.8** | 6** |
Error B | 44 | 0.01 | 0.01 | 0.02 | 0.03 | 13.6 | 29.8 | ||||||||||||
Sub-sub plot analysis | |||||||||||||||||||
Depth (C) | 2 | 0.38 | 0.88 | 1.75 | 5.89 | 146.4 | 92.1 | 0.19 | 0.44 | 0.87 | 2.94 | 73.2 | 46.1 | 16.7** | 65.4** | 60.2** | 543.4** | 4.0** | 1.2n.s |
A-C | 2 | 1.13 | 0.96 | 1.94 | 5.93 | 478.7 | 594.6 | 0.23 | 0.19 | 0.39 | 1.19 | 95.7 | 118.9 | 28.6** | 29.6** | 28.1** | 223.7** | 5.7** | 3.2** |
B-C | 22 | 0.66 | 1.47 | 2.97 | 6.12 | 1518.7 | 2537.3 | 0.02 | 0.04 | 0.08 | 0.17 | 43.3 | 72.5 | 1.6** | 8.8** | 8.2** | 34.3** | 3.1** | 2.3** |
A-B-C | 22 | 1.95 | 1.85 | 3.81 | 6.28 | 2614.0 | 4326.9 | 0.03 | 0.03 | 0.05 | 0.09 | 36.8 | 60.9 | 4.7** | 7.9** | 7.6** | 16.8** | 3.81** | 2.2** |
Error C | 96 | 0.01 | 0.01 | 0.01 | 0.01 | 18.1 | 38.5 | ||||||||||||
Total | 215 | 2.80 | 2.32 | 4.84 | 7.03 | 4004.9 | 8296.8 |
Mulching Systems (B) | Mulching System-Soil Depth | Tillage Systems-Mulching System | Mean of Mulching System | |||
---|---|---|---|---|---|---|
Soil Depth (cm) (C) | Tillage System (A) | |||||
10 | 20 | 30 | Disc plough (DP) + Spring Disk | Mouldboard plough (MP) + Spring Disk | ||
TSC | 19.85a–e | 18.31b–j | 17.82c–k | 13.75ghi | 23.56a | 18.66abc |
TSW | 13.36lm | 14.15j–m | 14.86h–m | 12.38i | 15.86e–h | 14.12ef |
TSO | 22.35ab | 21.20abc | 16.91d–l | 19.00bcd | 21.3ab | 20.15ab |
TDW | 15.21f–m | 15.28f–m | 15.01g–m | 13.81ghi | 16.53d–g | 15.17ef |
TDO | 22.66a | 19.98a–e | 19.43a–f | 20.61abc | 20.77abc | 20.69a |
TDC | 20.35a–d | 18.40b–i | 16.56d–l | 14.76f–i | 22.11a | 18.43abc |
BO | 19.23a–g | 17.70c–k | 16.16d–m | 17.32def | 18.11cde | 17.71cd |
BC | 13.48lm | 14.63h–m | 13.83klm | 14.51f–i | 13.45hi | 13.98f |
BW | 15.86e–m | 15.45f–m | 14.90h–m | 16.40d–h | 14.41f–i | 15.40def |
WC | 14.38i–m | 12.83lm | 12.06m | 12.66i | 13.52hi | 13.09f |
WO | 18.75a–h | 18.28b–j | 16.86d–l | 17.30def | 18.63b–e | 17.96bc |
WW | 18.08c–j | 16.43d–l | 14.98h–m | 16.95def | 16.04d–h | 16.50cde |
Least significant difference (LSD0.05) | B-C 4.23 | A-B 2.96 | B 2.42 | |||
Tillage system | Tillage system-soil depth | Mean tillage system | ||||
Disc plough (DP) followed by a spring disk | 16.00b | 15.71b | 15.64b | 15.79b | ||
Mouldboard plough (MP) followed by a spring disk | 19.59a | 18.06a | 15.92b | 17.86a | ||
LSD 0.05 | A-C 1.90 | A 1.12 | ||||
Mean of soil depth | 17.80a | 16.89ab | 15.78b | |||
LSD 0.05 | C 1.39 |
Mulching Systems (B) | Mulching System-Soil Depth | Tillage Systems-Mulching System | Mean of Mulching System | |||
---|---|---|---|---|---|---|
Soil Depth (cm) (C) | Tillage Systems (A) | |||||
10 | 20 | 30 | Disc plough (DP) + Spring Disk | Mouldboard plough (MP) + Spring Disk | ||
TSC | 20.95c–j | 22.06b–j | 30.08d–j | 26.77ab | 15.57i | 21.17cde |
TSW | 28.23ab | 25.71a–e | 24.35a–h | 29.54a | 22.65b–e | 26.10ab |
TSO | 16.48j | 17.23ij | 18.83f–j | 17.71f–i | 17.32ghi | 17.51f |
TDW | 24.22a–h | 24.25a–h | 24.10e–f | 26.30abc | 22.07c–f | 24.19bc |
TDO | 16.40j | 18.40g–j | 18.93f–j | 17.96f–i | 17.85f–i | 17.91ef |
TDC | 18.28hij | 21.61c–j | 22.58b–j | 24.98a–d | 16.66f–i | 20.82c–f |
BO | 19.08f–j | 20.40d–j | 22.71b–j | 21.23d–h | 20.23hi | 20.73c–f |
BC | 27.30abc | 25.18a–f | 26.80a–d | 25.34a–d | 27.51a | 26.42ab |
BW | 23.38b–i | 23.50b–i | 24.81a–g | 22.24b–f | 25.55a–d | 23.90bcd |
WC | 25.95a–e | 28.38ab | 30.08a | 28.55a | 27.72a | 28.13a |
WO | 19.75e–j | 20.11e–j | 21.50c–j | 21.16d–h | 19.74e–i | 20.45def |
WW | 20.33e–j | 22.46b–j | 24.35a–h | 21.94c–g | 22.82b–e | 22.38cd |
Least significant difference (LSD0.05) | B-C 6.44 | A-B 4.66 | B 3.59 | |||
Tillage system | Tillage system x soil depth | Mean tillage system | ||||
Disc plough (DP) followed by a spring disk | 23.86a | 23.95a | 23.13ab | 23.64a | ||
Mouldboard plough (MP) followed by a spring disk | 19.53c | 20.93ab | 23.46ab | 21.31b | ||
LSD0.05 | A-C 2.81 | A 1.64 | ||||
Mean of soil depth | 21.69a | 22.44a | 23.29a | |||
LSD0.05 | C N.S |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W.P.; AL-Maliki, M.; Rodrigo-Comino, J. The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices. Geosciences 2020, 10, 117. https://doi.org/10.3390/geosciences10040117
Alshammary AAG, Kouzani AZ, Kaynak A, Khoo SY, Norton M, Gates WP, AL-Maliki M, Rodrigo-Comino J. The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices. Geosciences. 2020; 10(4):117. https://doi.org/10.3390/geosciences10040117
Chicago/Turabian StyleAlshammary, Ahmed Abed Gatea, Abbas Z. Kouzani, Akif Kaynak, Sui Yang Khoo, Michael Norton, Will P. Gates, Mustafa AL-Maliki, and Jesús Rodrigo-Comino. 2020. "The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices" Geosciences 10, no. 4: 117. https://doi.org/10.3390/geosciences10040117
APA StyleAlshammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., Gates, W. P., AL-Maliki, M., & Rodrigo-Comino, J. (2020). The Performance of the DES Sensor for Estimating Soil Bulk Density under the Effect of Different Agronomic Practices. Geosciences, 10(4), 117. https://doi.org/10.3390/geosciences10040117