Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis
Abstract
:1. Introduction
2. Datasets and Methods
3. Results
4. Discussion
4.1. Discrimination Performance
4.2. Feature Selection: Monazite Geochemistry
4.3. Application to Detrital Monazite from Major African Rivers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morton, A.C. Geochemical studies of detrital heavy minerals and their application to provenance research. Geol. Soc. Lond. Spéc. Publ. 1991, 57, 31–45. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital zircon analysis of the sedimentary record. Rev. Miner. Geochem. 2003, 53, 277–303. [Google Scholar] [CrossRef]
- Bodet, F.; Schärer, U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim. et Cosmochim. Acta 2000, 64, 2067–2091. [Google Scholar] [CrossRef]
- Campbell, I.H.; Reiners, P.W.; Allen, C.M.; Nicolescu, S.; Upadhyay, R. He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth Planet. Sci. Lett. 2005, 237, 402–432. [Google Scholar] [CrossRef]
- Cavosie, A.J.; Valley, J.W.; Wilde, S.A. Chapter 2.5 The Oldest Terrestrial Mineral Record: A Review of 4400 to 4000 Ma Detrital Zircons from Jack Hills, Western Australia. Precambrian Ophiolites Relat. Rocks 2007, 15, 91–111. [Google Scholar]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef]
- Goldstein, S.; O’Nions, R.; Hamilton, P. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 1984, 70, 221–236. [Google Scholar] [CrossRef]
- Hietpas, J.; Samson, S.; Moecher, D.; Schmitt, A.K. Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology 2010, 38, 167–170. [Google Scholar] [CrossRef]
- Itano, K.; Iizuka, T.; Chang, Q.; Kimura, J.-I.; Maruyama, S. U–Pb chronology and geochemistry of detrital monazites from major African rivers: Constraints on the timing and nature of the Pan-African Orogeny. Precambrian Res. 2016, 282, 139–156. [Google Scholar] [CrossRef]
- Liu, X.C.; Wu, Y.B.; Fisher, C.M.; Hanchar, J.M.; Beranek, L.; Gao, S.; Wang, H. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers. Geology 2017, 45, 103–106. [Google Scholar] [CrossRef]
- Gaschnig, R.M. Benefits of a Multiproxy Approach to Detrital Mineral Provenance Analysis: An Example from the Merrimack River, New England, USA. Geochem. Geophys. Geosyst. 2019, 20, 1557–1573. [Google Scholar] [CrossRef]
- Iizuka, T.; McCulloch, M.T.; Komiya, T.; Shibuya, T.; Ohta, K.; Ozawa, H.; Sugimura, E.; Collerson, K.D. Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance. Contrib. Miner. Pet. 2010, 160, 803–823. [Google Scholar] [CrossRef]
- Iizuka, T.; Nebel, O.; MuCulloch, M.T. Tracing the provenance and recrystallization processes of the Earth’s oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite. Earth Planet Sci. Lett. 2011, 308, 350–358. [Google Scholar] [CrossRef]
- Goudie, D.J.; Fisher, C.M.; Hanchar, J.M.; Crowley, J.L.; Ayers, J.C. Simultaneous in situ determination of U-Pb and Sm-Nd isotopes in monazite by laser ablation ICP-MS. Geochem. Geophys. Geosyst. 2014, 15, 2575–2600. [Google Scholar] [CrossRef]
- Lee, D.E.; Bastron, H. Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochim. Cosmochim. Acta 1967, 31, 339–356. [Google Scholar] [CrossRef]
- Watt, G.R.; Harley, S.L. Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib. Miner. Pet. 1993, 114, 550–566. [Google Scholar] [CrossRef]
- Kelts, A.B.; Ren, M.; Anthony, E.Y. Monazite occurrence, chemistry, and chronology in the granitoid rocks of the Lachlan Fold Belt, Australia: An electron microprobe study. Am. Miner. 2008, 93, 373–383. [Google Scholar] [CrossRef]
- Overstreet, W.C. The Geologic Occurrence of Monazite; US Geological Survey: Reston, VI, USA, 1967. [Google Scholar]
- Williams, M.L.; Jercinovic, M.J.; Hetherington, C.J. Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology. Annu. Rev. Earth Planet. Sci. 2007, 35, 137–175. [Google Scholar] [CrossRef] [Green Version]
- Hietpas, J.; Samson, S.; Moecher, D. A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for the record of Phanerozoic orogenic events. Earth Planet. Sci. Lett. 2011, 310, 488–497. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Miner. Pet. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Suggate, S.M.; Hall, R. Using detrital garnet compositions to determine provenance: A new compositional database and procedure. Geol. Soc. Lond. Spec. Publ. 2014, 386, 373–393. [Google Scholar] [CrossRef]
- Itano, K.; Iizuka, T.; Hoshino, M. REE-Th-U and Nd isotope systematics of monazites in magnetite- and ilmenite-series granitic rocks of the Japan arc: Implications for its use as a tracer of magma evolution and detrital provenance. Chem. Geol. 2018, 484, 69–80. [Google Scholar] [CrossRef]
- Petrelli, M.; Perugini, D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data. Contrib. Miner. Pet. 2016, 171, 81. [Google Scholar] [CrossRef] [Green Version]
- Ueki, K.; Hino, H.; Kuwatani, T. Geochemical Discrimination and Characteristics of Magmatic Tectonic Settings: A Machine-Learning-Based Approach. Geochem. Geophys. Geosyst. 2018, 19, 1327–1347. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- Buick, I.; Clark, C.; Rubatto, D.; Hermann, J.; Pandit, M.; Hand, M. Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 2010, 120, 511–528. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Gao, S.; Hu, Z.; Liu, X.; Gong, H. LA–ICP–MS monazite U–Pb age and trace element constraints on the granulite-facies metamorphism in the Tongbai orogen, central China. J. Asian Earth Sci. 2014, 82, 90–102. [Google Scholar] [CrossRef]
- Mottram, C.M.; Warren, C.J.; Regis, D.; Roberts, N.M.; Harris, N.B.; Argles, T.W.; Parrish, R.R. Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet. Sci. Lett. 2014, 403, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Rubatto, D.; Hermann, J.; Buick, I.S. Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). J. Pet. 2006, 47, 1973–1996. [Google Scholar] [CrossRef]
- Holder, R.M.; Hacker, B.R.; Kylander-Clark, A.R.; Cottle, J.M. Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: Examples from the Western Gneiss Region, Norway. Chem. Geol. 2015, 409, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Guerrero, V.M.; Johnson, R.A. Use of the Box–Cox transformation with binary response models. Biometrika 1982, 69, 309–314. [Google Scholar] [CrossRef]
- Iizuka, T.; Campbell, I.H.; Allen, C.M.; Gill, J.B.; Maruyama, S.; Makoka, F. Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochim. et Cosmochim. Acta 2013, 107, 96–120. [Google Scholar] [CrossRef]
- Agresti, A.; Kateri, M. Categorical Data Analysis. In International Encyclopedia of Statistical Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2011; pp. 206–208. [Google Scholar]
- Nagata, K.; Kitazono, J.; Nakajima, S.; Eifuku, S.; Tamura, R.; Okada, M. An Exhaustive Search and Stability of Sparse Estimation for Feature Selection Problem. IPSJ Online Trans. 2015, 8, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, Y.; Nagata, K.; Kuwatani, T.; Omori, T.; Nakanishi-Ohno, Y.; Okada, M. Three levels of data-driven science. J. Physics: Conf. Ser. 2016, 699, 12001. [Google Scholar] [CrossRef]
- Kuwatani, T.; Nagata, K.; Okada, M.; Watanabe, T.; Ogawa, Y.; Komai, T.; Tsuchiya, N. Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits. Sci. Rep. 2014, 4, 7077. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Yasutaka, T.; Kuwatani, T.; Komai, T. Development of a predictive model for lead, cadmium and fluorine soil–water partition coefficients using sparse multiple linear regression analysis. Chemosphere 2017, 186, 501–509. [Google Scholar] [CrossRef]
- Ueki, K.; Kuwatani, T.; Okamoto, A.; Akaho, S.; Iwamori, H. Thermodynamic modeling of hydrous-melt–olivine equilibrium using exhaustive variable selection. Phys. Earth Planet. Inter. 2020, 106430. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schnetzler, C.; A Philpotts, J. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II. Geochim. Cosmochim. Acta 1970, 34, 331–340. [Google Scholar] [CrossRef]
- Fujimaki, H.; Tatsumoto, M.; Aoki, K.-I. Partition coefficients of Hf, Zr, and ree between phenocrysts and groundmasses. J. Geophys. Res. Space Phys. 1984, 89, B662. [Google Scholar] [CrossRef]
- Štípská, P.; Hacker, B.R.; Racek, M.; Holder, R.; Kylander-Clark, A.R.C.; Schulmann, K.; Hasalová, P. Monazite dating of prograde and retrograde P-T-d paths in the Barrovian terrane of the Thaya window, Bohemian Massif. J. Petrol. 2015, 56, 1007–1035. [Google Scholar] [CrossRef] [Green Version]
- Bea, F.; Pereira, M.; Stroh, A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 1994, 117, 291–312. [Google Scholar] [CrossRef]
- Bea, F.; Mitchell, J.N.; Scoates, J.S.; Frost, C.D.; Kolker, A. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. J. Pet. 1996, 37, 521–552. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.C.; Wang, D.Z.; Qiu, J.S. A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China. Miner. Mag. 2006, 70, 709–729. [Google Scholar] [CrossRef]
- Guo, S.; Li, S. Petrochemical characteristics of leucogranite and a case study of Bengbu leucogranites. Sci. Bull. 2009, 54, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Hopkinson, T.N.; Harris, N.B.; Warren, C.J.; Spencer, C.J.; Roberts, N.M.; Horstwood, M.S.; Parrish, R.R. Eimf The identification and significance of pure sediment-derived granites. Earth Planet. Sci. Lett. 2017, 467, 57–63. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Cocherie, A.; Legendre, O.; Peucat, J.; Kouamelan, A. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite. Geochim. Cosmochim. Acta 1998, 62, 2475–2497. [Google Scholar] [CrossRef]
- Jercinovic, M.J.; Williams, M.L. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Am. Miner. 2005, 90, 526–546. [Google Scholar] [CrossRef]
- Montel, J.-M.; Foret, S.; Veschambre, M.; Nicollet, C.; Provost, A. Electron microprobe dating of monazite. Chem. Geol. 1996, 131, 37–53. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S.; Wark, D.A.; Daniel, C.G.; Storm, L.C. Contributions to precision and accuracy of monazite microprobe ages. Am. Miner. 2005, 90, 547–577. [Google Scholar] [CrossRef]
- Suzuki, K.; Adachi, M. Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. J. Metamorph. Geol. 1998, 16, 23–37. [Google Scholar] [CrossRef]
- Suzuki, K.; Adachi, M. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the Th-U-total Pb chemical isochron ages of monazite, zircon and xenotime. Geochem. J. 1991, 25, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Kato, T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Res. 2008, 14, 569–586. [Google Scholar] [CrossRef]
(a) Granitic | Metamorphic | |
---|---|---|
(b) Garnet-free | (c) Garnet-bearing | |
[Eu/Eu*]N < 0.1 [Gd/Lu]N < 400 | [Eu/Eu*]N > 0.1 [Gd/Lu]N < 400 | [Gd/Lu]N > 400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itano, K.; Ueki, K.; Iizuka, T.; Kuwatani, T. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences 2020, 10, 63. https://doi.org/10.3390/geosciences10020063
Itano K, Ueki K, Iizuka T, Kuwatani T. Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences. 2020; 10(2):63. https://doi.org/10.3390/geosciences10020063
Chicago/Turabian StyleItano, Keita, Kenta Ueki, Tsuyoshi Iizuka, and Tatsu Kuwatani. 2020. "Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis" Geosciences 10, no. 2: 63. https://doi.org/10.3390/geosciences10020063
APA StyleItano, K., Ueki, K., Iizuka, T., & Kuwatani, T. (2020). Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences, 10(2), 63. https://doi.org/10.3390/geosciences10020063