A Note on “Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)” by Bonnail et al. (2019)
Abstract
:1. Introduction
2. Ganges River
2.1. Ganges and Hooghly (Hugli)
2.2. Origin and Trajectory of the Ganges River
2.3. Seasonal Variation of the Ganges River
3. Materials and Methods
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnail, E.; Antón-Martín, R.; Riba, I.; DelValls, T.Á. Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India). Geosciences 2019, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Lodrick, D.O.; Ahmad, N. Chapter 8: Major rivers of Asia and Australia. In Living Earth: Rivers and Streams, 2nd ed.; Rafferty, J.P., Ed.; Britannica Educational Publications: Chicago, IL, USA, 2011; pp. 201–207. [Google Scholar]
- Coleman, J.M. Brahmaputra River: Channel processes and sedimentation. Sediment. Geol. 1969, 3, 129–239. [Google Scholar] [CrossRef]
- Rudra, K. Rivers of the Ganga-Brahmaputra-Meghna Delta: A Fluvial Account of Bengal; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Mirza, M.M.Q. The Ganges Water Diversion: Environmental Effects and Implications—An Introduction. In The Ganges Water Diversion: Environmental Effects and Implications; Mirza, M.M.Q., Ed.; Water Science and Technology Library, 49; Springer: Dordrecht, The Netherlands, 2004; pp. 1–12. [Google Scholar] [CrossRef]
- Ranjan, P.; Ramanathan, A. Hooghly River. In The Indian Rivers: Scientific and Socio-Economic Aspects; Singh, D.S., Ed.; Springer: Singapore, 2018; pp. 251–258. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Biswas, H.; De, T.K.; Jana, T.K. Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. J. Mar. Syst. 2006, 62, 9–21. [Google Scholar] [CrossRef]
- Parua, P.K. The Ganga: Water Use in the Indian Subcontinent; Springer: Dordrecht, The Netherlands, 2009; p. 391. [Google Scholar] [CrossRef]
- Salman, S.M.A.; Uprety, K. Conflict and cooperation on South Asia’s international rivers: A legal perspective. In International and National Water Law and Policy Series; Wouters, O., Vinogradow, S., Eds.; Kluwer Law International: The Hague, The Netherlands, 2003; pp. 135–136. [Google Scholar]
- Samanta, S.; Dalai, T.K. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans. Geochim. Cosmochim. Acta 2018, 228, 243–258. [Google Scholar] [CrossRef]
- Biswas, S. Nature and Humans in the Imagination of Bengali Intellectuals of 1930s–1950s. Stud. Asia 2011, 1, 15–34. [Google Scholar]
- Middleton, N. Rivers: A Very Short Introduction; Oxford University Press: Oxford, UK, 2012; p. 152. [Google Scholar]
- Levick, L.; Fonseca, J.; Goodrich, D.; Hernandez, M.; Semmens, D.; Stromberg, J.; Leidy, R.; Scianni, M.; Guertin, D.P.; Tluczek, M.; et al. The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-Arid American Southwest; EPA/600/R-08/134, ARS/233046; U.S. Environmental Protection Agency and USDA/ARS Southwest Watershed Research Center: Tucson, AZ, USA, 2008.
- Haines, A.T.; Findlayson, B.L.; McMahon, T.A. A global classification of river regimes. Appl. Geogr. 1988, 8, 255–272. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Miller, G.T.; Spoolman, S.E. Living in the Environment: Concepts, Connections, and Solutions, 16th ed.; Brooks/Cole Cengage Learning: Belmont, CA, USA, 2009. [Google Scholar]
- Brown, L. China and India will face massive food shortage from glacier melt. In Famine and Natural Disasters; Henningfeld, D.A., Ed.; Greenhaven Publishing: New York, NY, USA, 2009; pp. 121–127. [Google Scholar]
- Jain, S.K. Impact of retreat of Gangotri glacier on the flow of Ganga River. Curr. Sci. 2008, 95, 1012–1014. [Google Scholar]
- Miller, J.D.; Immerzeel, W.W.; Rees, G. Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush–Himalayas. Mt. Res. Dev. 2012, 32, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Rees, H.G.; Holmes, M.G.R.; Young, A.R.; Kansaker, S.R. Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas. Hydrol. Earth Syst. Sci. 2004, 8, 891–902. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; van Beek, L.P.H.; Konz, M.; Shrestha, A.B.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkley, A.; Black, I.A. An Examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Fernandes, R.B.A.; Carvalho, I.A., Jr.; Ribeiro, E.S., Jr.; Mendonça, E.S. Comparison of different methods for the determination of total organic carbon and humic substances in Brazilian soils. Rev. Ceres 2015, 62, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Allison, L.E. Wet combustion apparatus and procedure for organic and inorganic carbon in soil. Soil Sci. Soc. Am. J. 1960, 24, 36–40. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 963–1010. [Google Scholar] [CrossRef]
- Chacón, N.; Dezzeo, N.; Fölster, H.; Mogollón, P. Comparison between colorimetric and titration methods for organic carbon determination in acidic soils. Comm. Soil Sci. Plant Anal. 2002, 33, 203–211. [Google Scholar] [CrossRef]
- Matus, F.; Amigo, X.; Kristiansen, S.M. Aluminium stabilization controls organic carbon levels in Chilean volcanic soils. Geoderma 2006, 132, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Santi, C.; Certini, G.; D’Acqui, L.P. Direct determination of organic carbon by dry combustion in soils with carbonates. Comm. Soil Sci. Plant Anal. 2006, 37, 155–162. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Prasad, G.; Rupainwar, D.C. Heavy metal pollution of river Ganga in Mirzapur, India. Int. J. Environ. Stud. 1992, 40, 41–53. [Google Scholar] [CrossRef]
- Paul, D. Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci. 2017, 15, 278–288. [Google Scholar] [CrossRef]
- Sankla, M.S.; Kumari, M.; Sharma, K.; Kushwah, R.S.; Kumar, R. Heavy metal pollution of Holy River Ganga: A review. Int. J. Res. 2018, 5, 424–436. [Google Scholar]
- Easwaran, K. The Politics of Name Changes in India; Open Computing Facility, University of California at Berkeley: Berkley, CA, USA, 2011. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.A. A Note on “Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)” by Bonnail et al. (2019). Geosciences 2020, 10, 61. https://doi.org/10.3390/geosciences10020061
Alam MA. A Note on “Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)” by Bonnail et al. (2019). Geosciences. 2020; 10(2):61. https://doi.org/10.3390/geosciences10020061
Chicago/Turabian StyleAlam, Mohammad Ayaz. 2020. "A Note on “Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)” by Bonnail et al. (2019)" Geosciences 10, no. 2: 61. https://doi.org/10.3390/geosciences10020061
APA StyleAlam, M. A. (2020). A Note on “Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)” by Bonnail et al. (2019). Geosciences, 10(2), 61. https://doi.org/10.3390/geosciences10020061