Particle Size Distribution of Natural Clayey Soils: A Discussion on the Use of Laser Diffraction Analysis (LDA)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparative Tests of HM and LDA
3.2. Influence of Particle Shape Anisotropy for LDA and HM Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ISO 13320-1. Particle size analysis – Laser diffraction methods, Part 1: General Principles; International Organization for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- Goossens, D. Techniques to measure grain-size distributions of loamy sediments: A comparative study of ten instruments for wet analysis. Sedimentology 2008, 55, 65–96. [Google Scholar] [CrossRef]
- EN ISO 17892-4. Geotechnical investigation and testing -- Laboratory testing of soil -- Part 4: Determination of particle size distribution; European Committee for Standarization: Brussels, Belgium, 2016. [Google Scholar]
- ASTM D7928–17. Standard test method for particle size distribution (gradation) of fine grained soils using the sedimentation (hydrometer) analysis; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Beuselinck, L.; Govers, G.; Poesen, J.; Degraer, G.; Froyen, L. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena 1998, 32, 193–208. [Google Scholar] [CrossRef]
- Frankowski, Z.; Smagała, S. Przydatność metody laserowej w badaniach uziarnienia gruntów spoistych. In Proceedings of the XII Krajowa konferencja Mechaniki Gruntów i Fundamentowania, Szczecin-Międzyzdroje, Poland, 5–7 April 2000; pp. 163–171. [Google Scholar]
- Jonkers, L.; Prins, M.A.; Brummer, G.-J.A.; Konert, M.; Lougheed, B.C. Experimental insights into laser diffraction particle sizing of fine-grained sediments for use in palaeoceanography. Sedimentology 2009, 56, 2192–2206. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Mirabile, S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 2010, 106, 205–215. [Google Scholar] [CrossRef]
- Buurman, P.; Pape, T.; Muggler, C.C. LASER GRAIN-SIZE DETERMINATION IN SOIL GENETIC STUDIES 1. PRACTICAL PROBLEMS. Soil Sci. 1997, 162, 211–218. [Google Scholar] [CrossRef]
- Bieganowski, A.; Ryżak, M.; Witkowska-Walczak, B. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 2010, 45, 23–34. [Google Scholar] [CrossRef]
- Ryżak, M.; Bieganowski, A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. J. Plant Nutr. Soil Sci. 2011, 174, 624–633. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- ArrayExpress — a database of functional genomics experiments. Available online: http://www.ebi.ac.uk/arrayexpress/ (accessed on 12 November 2012).
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentol. 1997, 44, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Keck, C.M.; Müller, R.H. Size analysis of submicron particles by laser diffractometry—90% of the published measurements are false. Int. J. Pharm. 2008, 355, 150–163. [Google Scholar] [CrossRef]
- Gorączko, A.; Topoliński, S. Possibilities of using laser diffraction analysis (LDA) techniques for the identification of Neogene clayey sediments from Bydgoszcz. Przegląd Geol. 2017, 65, 243–250. [Google Scholar]
- Scott-Jackson, J.E.; Walkington, H. Methodological issues raised by laser particle size analysis of deposits mapped as Clay-with-flints from the Palaeolithic site of Dickett‘s Field, Yarnhams Farm, Hampshire, UK. J. Archaeol. Sci. 2005, 32, 969–980. [Google Scholar] [CrossRef]
- Traubner, H.; Roth, B.; Tippkotter, R. Determination of soil texture: Comparison of sedimentation method and laser-diffraction analysis. J. Plant Nutr. Soil Sci. 2009, 172, 161–171. [Google Scholar] [CrossRef]
- Kaczynski, R.; Grabowska-Olszewska, B. Soil mechanics of the potentially expansive clays in Poland. Appl. Clay Sci. 1997, 11, 337–355. [Google Scholar] [CrossRef]
- Gorączko, A.; Kumor, M.K. Swelling of mio-pliocen clays from the region of Bydgoszcz in comparison to their lithology. Biuletyn PIG 2011, 446, 305–314. [Google Scholar]
- Przystański, J. Posadowienie Budowli na Gruntach Ekspansywnych, Rozprawy nr 244; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 1991. [Google Scholar]
- Gawriuczenkow, I.; Wójcik, E. Comparison of expansive properties of Neogene clays from the Mazovia region. Przegl. Geol. 2013, 61, 243–247. [Google Scholar]
- Niedzielski, A. Factors affecting swelling pressure and free swelling of Poznań and Variegated clays. Rocz. Akad. Rol. w Pozn., Rozpr. Nauk. 1993, 238, 1–99. (in Polish). [Google Scholar]
- ISO 14688-2:2017 Geotechnical investigation and testing — Identification and classification of soil—Part 2: Principles for a classification; European Committee for Standarization: Brussels, Belgium, 2017.
- Makó, A.; Tóth, G.; Weynants, M.; Rajkai, K.; Hermann, T.; Tóth, B. Pedotransfer functions for converting laser diffraction particle-size data to conventional values. Eur. J. Soil Sci. 2017, 68, 769–782. [Google Scholar] [CrossRef]
- Jennings, B.R.; Parslow, K. Particle Size Measurement: The Equivalent Spherical Diameter. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1988, 419, 137–149. [Google Scholar]
- Kelly, R.N.; Kazanjian, J. Commerical reference shape standards use in the study of particle shape effect on laser diffraction particle size analysis. AAPS PharmSciTech 2006, 7, E126–E137. [Google Scholar] [CrossRef]
- Bowen, P.; Sheng, J.; Jongen, N. Particle size distribution measurement of anisotropic—particles cylinders and platelets—practical examples. Powder Technol. 2002, 128, 256–261. [Google Scholar] [CrossRef]
- Dur, J.C.; Elsass, F.; Chaplain, V.; Tessier, D. The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction. Eur. J. Soil Sci. 2004, 55, 265–270. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; HardPress Publishing: Los Angeles, CA, USA, 2013; p. 670. [Google Scholar]
- Nadeau, P.H. The physical dimensions of fundamental clay particles. Clay Miner. 1985, 20, 499–514. [Google Scholar] [CrossRef]
- Środoń, J. Direct High-Resolution Transmission Electron Microscopic Measurement of Expandability of Mixed-Layer Illite/Smectite in Bentonite Rock. Clays Clay Miner. 1990, 38, 373–379. [Google Scholar] [CrossRef]
- Jennings, B.R. Size and Thickness Measurement of Polydisperse Clay Samples. Clay Miner. 1993, 28, 485–494. [Google Scholar] [CrossRef]
- Chaney, R.; Demars, K.; Lu, N.; Ristow, G.; Likos, W. The Accuracy of Hydrometer Analysis for Fine-Grained Clay Particles. Geotech. Test. J. 2000, 23, 487. [Google Scholar] [CrossRef]
- Gorączko, A.; Topoliński, S. Influence of shape anisotropy on the results of grain size analysis of the clayey soils. Eng. Environ. Sci. 2018, 27, 142–151. [Google Scholar]
Localization | Clay Content | Liquid Limit | Plasticity Index | Surface Area | Expansive Index | Swelling Pressure | Expansivity |
---|---|---|---|---|---|---|---|
Cl [%] | wL [%] | IP [%] | S [m2/g] | εP [%] | Ps [MPa] | According to [23] | |
Poznań | |||||||
Mean value | 34 | 68 | 46 | >200 | 20 | 0.8 | High |
Min-Max | 30–60 | 40–140 | 24–90 | no data | 5–35 | 0.2–4.0 | Medium- V. high |
Warszawa | |||||||
Mean value | 60 | 77 | 45 | no data | 5.6 | 0.08 | Medium/High |
Min-Max | 13–90 | 35–116 | 17–73 | no data | 1.5–13.2 | 0.02–0.3 | Low-V. high |
Bydgoszcz | |||||||
Mean value | 49 | 86 | 58 | >200 | 20–30 | 0.2–0.6 | High |
Min-Max | 30–84 | 45.6–148 | 30–99 | 250–330 | 5–57 | 0.07–1.9 | Medium-V. high |
Sediments/Number of Samples | Transfer Functions | Source |
---|---|---|
Sicilian Basin / 228 samples | ClHM1 = 1.91ClLDA2 | [8] |
Mariahout / 158 samples | ClLDA = 0.316ClHM – 0.232 | [14] |
Lower Saxony / 16 samples | ClHM = 3.089ClLDA – 2.899 | [18] |
Poland / 223 samples | ClLDA = 0.453ClHM + 5.898 | [6] |
Europa/ 400 samples | ClHM = 0.92ClLDA + 0.69 | [25] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorączko, A.; Topoliński, S. Particle Size Distribution of Natural Clayey Soils: A Discussion on the Use of Laser Diffraction Analysis (LDA). Geosciences 2020, 10, 55. https://doi.org/10.3390/geosciences10020055
Gorączko A, Topoliński S. Particle Size Distribution of Natural Clayey Soils: A Discussion on the Use of Laser Diffraction Analysis (LDA). Geosciences. 2020; 10(2):55. https://doi.org/10.3390/geosciences10020055
Chicago/Turabian StyleGorączko, Aleksandra, and Szymon Topoliński. 2020. "Particle Size Distribution of Natural Clayey Soils: A Discussion on the Use of Laser Diffraction Analysis (LDA)" Geosciences 10, no. 2: 55. https://doi.org/10.3390/geosciences10020055
APA StyleGorączko, A., & Topoliński, S. (2020). Particle Size Distribution of Natural Clayey Soils: A Discussion on the Use of Laser Diffraction Analysis (LDA). Geosciences, 10(2), 55. https://doi.org/10.3390/geosciences10020055