Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco)
Abstract
:1. Introduction
2. Geological Setting and Previous Work
3. Aim and Methods
4. Stratigraphy of the El Habt and Ouezzane Nappes
4.1. El Habt Tectonic Unit
4.2. Ouezzane Tectonic Unit
5. Petrographic and Mineralogical Analyses
6. Discussion and Interpretations
6.1. Tectono-Sedimentary Evolution
6.2. Supply Origin
6.3. Correlations with Regional Tectonic Phases and Deformation
7. Conclusions
- Five unconformities with associate gaps were detected. The Unconformity-1, only recognized in the Ouezzane Unit, has a gap affecting the uppermost Cretaceous to the Lowermost Paleocene. The Unconformity-2, recognized in both tectonic units, is located at the Paleocene-Eocene boundary with a gap affecting the middle Paleocene-lowermost Ypresian. The Unconformity-3, only visible in the Ouezzane Unit, appears at the Eocene-Oligocene boundary with a gap affecting the upper Eocene-lowermost Ruppelian. The Unconformity-4 is also only exposed in the Ouezzane Unit and has a gap marking the time span Chattian p.p.-lowermost Burdigalian. The Unconformity-5 is very reduced and only restricted at the Burdigalian-Langhian boundary in the Ouezzane Unit passing laterally to continuity.
- On the basis of recognized unconformities, the following main stratigraphic units with range of depositional sequence were proposed: (1) lower Paleocene (Danian p.p.); (2) Eocene (lower Ypresian-lower Bartonian p.p.); (3) lower Rupelian-upper Chattian p.p. (4) Burdigalian p.p.; (5) Langhian-Serravallian p.p.
- On the basis of lithofacies features, fossils association and minerals distribution some generic reconstruction of the sedimentary realms can be proposed: (i) the upper Cretaceous-lower Paleocene succession was assigned to a deep basin; (ii) the lower Eocene p.p.-upper Eocene p.p. to a deep basin to external carbonate-siliceous platform; (iii) the Oligocene p.p. sequence was deposited on unstable slope with turbidite channels passing upward to an external siliciclastic platform; (iv) the two upper depositional sequences (Burdigalian to Serravallian period) indicate the upward transition from slope to external platform.
- The sequences are arranged into transgressive-regressive intervals where the deposits are related to the transgressive interval; meanwhile, the gaps are interpreted as erosive periods due to regressions. The whole Cenozoic sedimentation represents a major regressive cycle. Climate driven sea-level changes are only modest (≈100 m) and do not offer a satisfactory interpretation for alternating erosive and depositional stages spanning millions of years each. Therefore, these must reflect alternating tectonic uplift and subsidence due to a regional tectonics at western Mediterranean scale, probably related to the Africa-Iberia-Europe plate motion.
- The petrographic preliminary study allows proposing a source area belonging to rocks deriving from “recycled orogen” (transitional recycled and quartzose recycled subtypes). The clay-mineralogy preliminary study indicates a complex unroofing with erosion of Cenozoic terrains in the whole period accomplished by Cretaceous terrains erosion, first, followed by upper Jurassic erosion later. An Atlas origin is evoked for these terrigenous supplies.
- The study area was affected by a prenappe tectonics resulting in blind thrusts and growth folds during the Paleogene after the generalized tectonic inversion (from extension to compression) in the Perimediterranean area. After the Alpine extensional phase, the Paleogene tectonic evolution (after the tectonic inversion to compression) can be correlated with a prenappe compressional tectonics consisting of gentle deformation prevalently resulting in a Mesozoic substrate growing folds and blind thrusts. This evolution predated the Miocene nappe tectonics and it is recognized the whole Central-Western Mediterranean Chains. Both Paleogene and Miocene tectonic phases have been also recognized in other sectors of the Rif, in the Tunisian Tell and in the External Betic Cordillera.
- The beginning of the large and growing volumes of reworked terrigeneous supply (turbidites, slumps, olistostromes, etc.) during the latest Oligocene and the Miocene p.p. indicates the starts of the synorogenic sedimentation (foredeep stage of the basins) controlled by active tectonics during the sedimentary processes
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michard, A.; Frizon de Lamotte, D.; Liégeois, J.-P.; Saddiqi, O.; Chalouan, A. Conclusion: Continental Evolution in Western Maghreb. In Lecture Notes in Earth Sciences; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2008; Volume 116, pp. 395–404. [Google Scholar]
- Doglioni, C. Main differences between thrust belts. Terra Nova 1992, 4, 152–164. [Google Scholar] [CrossRef]
- Guerrera, F.; Martin-Algarra, A.; Perrone, V. Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 1993, 5, 525–544. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Perrone, V.; Tramontana, M. Tectono-sedimentary evolution of the southern branch of the Western Tethys (Magrebian Flysch Basin and Lucanian Ocean). Terra Nova 2005, 17, 358–367. [Google Scholar] [CrossRef]
- Doglioni, C.; Mongelli, F.; Pialli, G. Boudinage of the Alpine belt in the Apenninic back-arc. Mem. Soc. Geol. Ital. 1998, 52, 457–468. [Google Scholar]
- Doglioni, C.; Fernandez, M.; Gueguen, E.; Sabat, F. On the interference between the early Apennines-Maghrebides back-arc extension and the Alps-Betics orogen in the Neogene geodynamics of the Western Mediterranean. Boll. Soc. Geol. Ital. 1999, 118, 75–89. [Google Scholar]
- Guerrera, F.; Martín-Martín, M. Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western Tethys). Bull. Soc. Geol. Fr. 2014, 185, 329–341. [Google Scholar] [CrossRef]
- Critelli, S.; Muto, F.; Perri, F.; Tripodi, V. Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution. Mar. Petrol. Geol. 2017, 87, 2–14. [Google Scholar] [CrossRef]
- Guerrera, F.; Manuel Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the Central-Western Peri-Mediterranean chains: A review. Intern. Geol. Rev. 2019, 1–12. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Guerrera, F.; Rodriguez-Estrella, T.; Serrano, F.; Alcalà, F.J.; Raffaelli, G.; Tramontana, M. Miocene tectono-sedimentary evolution of the eastern external Betic Cordillera (Spain). Geodin. Acta 2018, 30, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Martín-Martín, M.; Guerrera, F.; Tramontana, M. Geodynamic implications of the latest Chattian-Langhian central-western Mediterranean volcano-sedimentary event: A review. J. Geol. 2020, 128, 706262. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Guerrera, F.; Miclaus, C.; Tosquella, J.; Tramontana, M. Paleocene-Lower Eocene carbonate platforms of westernmost Tethys. Sediment. Geol. 2020, 404, 105674. [Google Scholar] [CrossRef]
- Durand Delga, M.; Rossi, P.; Olivier, P.; Puglisi, D. Situation structurale et nature ophiolitique des roches basiques jurassiques associées aux flysch maghrébins du Rif (Maroc) et de Sicile (Italie). Comptes Rendus Acad. Sci. Paris 2000, 331, 29–38. [Google Scholar] [CrossRef]
- Carte Géologique du Rif, 1/500,000. Available online: https://www.researchgate.net/figure/Carte-Geologique-du-Rif-Suter-1980-and-Chalouan-et-al-2001_fig1_340023318 (accessed on 12 November 2020).
- Kuhnt, W.; Chellai, H.; Holhoum, A.; Luderer, F.; Thurow, J.; Wagner, I.; El Albani, A.; Beckmann, B.; Herbin, J.P.; Kawamura, H.; et al. Morocco Basins’s sedimentary record may provide correlation for Cretaceous paleoceanographic event worldwide. EOS 1990, 82, 361–364. [Google Scholar] [CrossRef]
- Kolonic, S.; Sinninghé Damsté, J.S.; Böttcher, M.E.; Kuypers, M.M.M.; Kuhnt, W.; Beckmann, B.; Scheeder, G.; Wagner, T. Geochemical characterization of Cenomano/Turonian Black shales from the Tarfaya Basin (SW Morocco). Relationships between paleoenvironmental conditions and early sulphurization of sedimentary organic matter. J. Pet. Geol. 2002, 25, 325–350. [Google Scholar] [CrossRef]
- Lüning, S.; Adamson, K.; Craig, J. Frasnian organic-rich shales in North Africa: Regional distribution and depositional model. Geol. Soc. Lond. Spéc. Publ. 2003, 207, 165–184. [Google Scholar] [CrossRef]
- Sachse, V.F.; Kittke, R.; Heim, S.; Kluth, O.; Schober, J.; Boutib, L.; Jabour, H.; Perssen, F.; Sindern, S. Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Org. Geochem. 2011, 42, 209–227. [Google Scholar] [CrossRef]
- Groune, K.; Halim, M.; Benmakhlouf, M.; Arsalane, S.; Lemée, L.; Amblés, A. Organic geochemical and mineralogical characterization of the Moroccan Rif bituminous rocks. J. Mater. Environ. Sci. 2013, 4, 472–481. [Google Scholar]
- Groune, K.; Halim, M.; Arsalane, S. Thermal and mineralogical studies of Moroccan Rif bituminous rocks. Oil Shale 2013, 30, 536–549. [Google Scholar] [CrossRef] [Green Version]
- Maaté, S.; Alcalá, F.J.; Guerrera, F.; Hlila, R.; Maaté, A.; Martín-Martín, M.; Raffaelli, G.; Serrano, F.; Tramontana, M. The External Tanger Unit (Intrarif sub-Domain, External Rifian Zones, Morocco): An interdisciplinary study. Arab. J. Geosci. 2017, 10, 556. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A. The Alpine rif belt (Morocco): A case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl. Geophys. 2004, 161, 489–519. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Zaghloul, M.N.; Faouziya, H.; Mohn, G.; Leprêtre, R.; Gimeno-Vives, O.; Atouabat, A.; El Mourabet, M.; Abass, A. Rif externe: Comment comprendre et expliquer le chaos apparent? Géologues 2017, 194, 13–15. [Google Scholar]
- Michard, A.; Saddiqi, O.; Missenard, Y.; Oukassou, M.; Barbarand, J. Les grandes regions géologique du Maroc; diversité et soulèvement d’ensemble. Géologues 2017, 194, 4–12. [Google Scholar]
- Lespinasse, P. Géologie des Zones Externs et des Flyschs Entre Chaouen et Zoumi (Centre de la Chaine Rifaine, Maroc); Université Pierre et Marie Curie-Paris VI: Toulouse, France, 1975; p. 248. [Google Scholar]
- Asebriy, L. Evolution Tectonique et Métamorphique du Rif Central (Maroc): Definition du Domaine Subrifain. Ph.D. Thesis, Université Mohammed V, Rabat, Morocco, 1994; p. 283. [Google Scholar]
- Asebriy, L.; de Luca, P.; Bourgois, J.; Chotin, P. Resédimentation d’âge sénonien dans le Rif central (Maroc): Conséquences sur les divisions paléogéographiques et structurales de la chaîne. J. Afr. Earth Sci. 1987, 6, 917. [Google Scholar]
- Tejera de Leon, J.; Duée, G. Relationships between the Neogene foredeep basins of the Western external Rifian belt related to the Arbaoua-Jebha transform fault. Consequences for the interpretation of the evolution of the Rifian belt (Morocco). Trav. Inst. Sci. Rabat Sér. Géol. Géogr. Phys. 2003, 21, 1–19. [Google Scholar]
- Zaghloul, M.N.; Di Staso, A.; Gigliuto, L.G.; Maniscalco, R.; Puglisi, D. Stratigraphy and provenance of Lower and Middle Miocene strata within the External Tanger Unit (Intra-Rif sub-Domain, External Domain; Rif, Morocco): First evidence. Geol. Carpathica 2005, 56, 517–530. [Google Scholar]
- Azdimousa, A.; Bourgois, J.; Poupeau, G.; Montigny, R. Histoire thermique du massif de Kétema (Maroc): Sa place en Afrique du Nord et dans les Cordillères bétiques. Comptes Rendus Acad. Sci. Paris 1998, 326, 847–853. [Google Scholar]
- Azdimousa, A.; Jabaloy, A.; Asebriy, L.; Booth-Rea, G.; González-Lodeiro, F.; Bourgois, J. Lithostratigraphy and structure of the Temsamane Unit (Eastern External Rif, Morocco). Rev. Soc. Geol. Esp. 2007, 20, 119–132. [Google Scholar]
- El Mrihi, A. Structures Alpines des Zones Externes et des Nappes de Flyschs à l’ouest de la Chaîne du Haouz (Rif Septentrional, Maroc). Ph. D. Thesis, Université Mohammed V, Rabat, Morocco, 1995; p. 149. [Google Scholar]
- Chaouni, A. Apport des Données Landsat MSS, Radar ERS1-SAR, Modèles Numériques de Terrain à la Compréhension de la Cinématique des Principales Failles de la Péninsule de Tanger Depuis l’Oligocène Supérieur jusqu’à l’Actuel (Rif Septentrional, Maroc). Ph. D. Thesis, Université Mohammed V, Rabat, Morocco, 1996; p. 295. [Google Scholar]
- Bargach, K.; Ruano, P.; Chabli, A.; Galindo-Zaldivar, J.; Chalouan, A.; Jabaloy, A.; Akil, M.; Ahmamou, M.; Sanz de Galdeano, C.; Benmakhlouf, M. Recent tectonic deformations and stresses in the frontal part of the Rif Cordillera and the Saïss Basin (Fes and Rabat regions, Morocco). Pure Appl. Geophys. 2004, 161, 521–540. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A.; El Kadiri, K.H.; Frizon de Lamotte, D.; Soto, J.I.; Saddiqi, O. Continental evolution: The geology of Morocco. Springer-Verlag Berlin Heidelberg. Lect Notes Earth Sci. 2008, 116, 203–302. [Google Scholar] [CrossRef]
- Vázquez, M.; Asebriy, L.; Azdimousa, A.; Jabaloy, A.; Booth-Rea, G.; Barbero, L.; Mellini, M.; González-Lodeiro, F. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian passive margin: The Tanger-Ketama unit (external Rif, northern Morocco). Geol. Acta 2013, 11, 277–293. [Google Scholar]
- Jabaloy-Sánchez, A.; Azdimousa, A.; Booth-Rea, G.; Asebriy, L.; Vázquez-Vílchez, M.; Martínez-Martínez, J.M.; Gabites, J. The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): Evolution of a transpressional orogenic wedge. Tectonophysics 2015, 663, 150–176. [Google Scholar] [CrossRef]
- Maaté, S.; Guerrera, F.; Hlila, R.; Maaté, A.; Martín-Martín, M.; Tramontana, M. New structural data on Tertiary of the External Tanger Unit (Intrarif, Morocco). Geogaceta 2018, 63, 123–126. [Google Scholar]
- Zakir, A.; Chalouan, A.; Feinberg, H. Evolution tectono-seédimentaire d’un domaine d’avant-chaˆıne: Exemple des bassin d’El-Habt et de Sidi Mrayt, Rif externe nord-occidental (Maroc); précisions stratigraphiques et modélisation tectonique. Bull. Soc. Géol. Fr. 2004, 175, 383–397. [Google Scholar] [CrossRef]
- El Kadiri, K.H.; Hlila, R.; Sanz de Galdeano, C.; López-Garrido, A.C.; Chalouan, A.; Serrano, F.; Bahmad, A.; Guerra-Merchán, A.; Liemlahi, H. Regional correlations across the Internides-Externides front (northwestern Rif Belt, Morocco) during thr Late Cretaceous-Early Burdigalian times: Palaeogeographical and palaeotectonic implications. In Tectonics of the Western Mediterranean and North Africa; Moratti, G., Chalouan, A., Eds.; Geological Society, Special Publications: London, UK, 2006; Volume 262, pp. 193–215. [Google Scholar]
- Didon, J.; Hoyez, B. Les séries à faciès mixtes, numidien et gréso-micacé, dans le Rif occidental (Maroc). C. R. Somm. Soc. Géol. Fr. 1978, 6, 304–307. [Google Scholar]
- Suter, G.; Fiechter, G. Le Rif méridional atlantique (Maroc): Aperçu structural sur la région Ouezzane-Zourni et le pays du Habt (Larache). Notes Mém. Serv. Géol. Maroc. 1966, 26, 15–20. [Google Scholar]
- Critelli, S. Provenienza Delle Torbiditi Oligo-Mioceniche del Dominio Esterno e Della Falda Numidica del Rif (Marocco Nord-Occidentale). Ph.D. Thesis, Università della Calabria, Rende, Italy, 1984; p. 128. [Google Scholar]
- Cazzola, C.; Critelli, S. Litostratigrafia e petrografia delle quarzareniti torbiditiche oligomioceniche di Asilah (catena del Rif, Marocco Nord-Occidentale). Mineral. Petrogr. Acta 1986, 30, 203–226. [Google Scholar]
- Wildi, W. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Rev. Géol. Dyn. Géogr. Phys. 1983, 24, 201–297. [Google Scholar]
- Hottinger, L.; Suter, G. La structure de la zone prérifaine au Sud du Moyen Ouerrha. Comptes Rendus Acad. Sc. Paris 1962, 254, 140–142. [Google Scholar]
- Durand Delga, M. La courbure de Gibraltar, extrémité occidentale des chaînes alpines, unit l’Europe et l’Afrique. Eclogae Geol. Helv. 1972, 65, 267–278. [Google Scholar]
- Ben Yaïch, A. Evolution Tectono-Sédimentaire du Rif Externe Centro-Occidental (Régions de M’Sila et Ouezzane, Maroc). La Marge Africaine du Jurassique au Crétacé Inférieur. Les Bassins Néogènes D’avant-Fosse. Ph.D. Thesis, Unitversité Paul Sabatier, Toulouse, France, 1991; p. 308. [Google Scholar]
- Frizon De Lamotte, D.; Andrieux, J.; Guezou, J.C. Cinématique deschevauchements néogènes dans l’Arc bético-rifain: Discussion sur les modèles géodynamiques. Bull. Soc Géol Fr. 1991, 162, 611–626. [Google Scholar] [CrossRef]
- Tejera De Leon, J. Les Bassins Néogènes d’avant-Pays du Rif Occidental Liés à la Transformante Jebha-Arbaoua (Maroc). Ph.D. Thesis, Thèse d’Etat es-Sciences, Université De Pau et des Pays de l’Adour, Pyrénées-Atlantiques, France, 1993; p. 323. [Google Scholar]
- Chalouan, A.; Michard, A.; Feinberg, H.; Montigny, R.; Saddiqi, O. The Rif Mountain Building (Morocco): A New Tectonic Scenario. Bull. Soc. Géol. Fr. 2001, 172, 603–616. [Google Scholar] [CrossRef]
- Michard, A.; Feinberg, H.; Elazzab, D.; Bouybaouene, M.; Saddiqi, O. A serpentinite ridge in a collisional paleomargin setting: The Beni Malek massif, External Rif, Morocco. Earth Planet. Sci. Lett. 1992, 113, 435–442. [Google Scholar] [CrossRef]
- Michard, A.; Frizon De Lamotte, D.; Negro, F. Serpentinite slivers and metamorphism in the External Maghrebides: Arguments for an intracontinental suture in the African paleomargin (Morocco, Algeria). Rev. Soc. Geol. España 2007, 20, 173–185. [Google Scholar]
- Groune, K.; Halim, M.; Lemée, L.; Benmakhlouf, M.; Amblés, A. Chromatographic study of the organic matter from Moroccan Rif bituminous rocks. Arab. J. Chem. 2019, 12, 1552–1562. [Google Scholar] [CrossRef] [Green Version]
- Berggren, W.A.; Kent, D.V.; Swisher, C.C.; Aubry, M.-P. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time-Scales, and Global Stratigraphic Correlation; Berggren, W.A., Ed.; SEPM (Society for Sedimentary Geology) Special Publication: Tulsa, OK, USA, 1995; Volume 54, pp. 129–212. [Google Scholar]
- Olsson, R.K.; Hemleben, C.; Berggren, W.A. (Eds.) Atlas of Paleocene Planktonic Foraminifera: Smithsonian Contributions to Paleobiology; Smithsonian Institution Press: Washington, DC, USA, 1999; Volume 85, p. 252. [Google Scholar]
- Berggren, W.A.; Pearson, P.P. A revised tropical to subtropical planktonic foraminiferal zonation of the Eocene and Oligocene. J. Foraminifer. Res. 2005, 35, 279–298. [Google Scholar] [CrossRef] [Green Version]
- Berggren, W.A.; Pearson, P.N. Tropical and subtropical planktonic foraminiferal zonation of the Eocene and Oligocene. In Cushman Foundation Special Publication; Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., Berggren, W.A., Eds.; Cushman Foundation: Fredericksburg, VA, USA, 2006; Volume 41, pp. 29–40. [Google Scholar]
- Wade, B.S.; Pearson, P.N.; Berggren, W.A.; Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 2011, 104, 11–142. [Google Scholar] [CrossRef] [Green Version]
- Blow, W.H. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Proceedings of the 1st International Conference on Planktonic Microfossils; Bronniman, P., Renz, H., Eds.; EJ Brill Leiden: Geneva, Switzerland, 1969; Volume 1, pp. 199–422. [Google Scholar]
- Iaccarino, S. Mediterranean Miocene and Pliocene planktic foraminifera. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 283–314. [Google Scholar]
- Serrano, F. Biostratigraphic control of Neogene volcanism in Sierra de Gata (south-east Spain). Geol. Mijnb. 1992, 71, 3–14. [Google Scholar]
- Di Stefano, A.; Foresi, L.M.; Lirer, F.; Iaccarino, S.M.; Turco, E.; Amore, F.O.; Morabito, S.; Salvatorini, G.; Mazzei, R.; Abdul Aziz, H. Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area. Riv. Ital. Paleontol. Stratigr. 2008, 114, 51–76. [Google Scholar]
- Lourens, L.J.; Hilgen, F.J.; Laskar, J.; Shackleton, N.J.; Wilson, D. The Neogene Period. In A Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Smith, A.G., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 409–440. [Google Scholar]
- Gazzi, P. Le arenarie del flysch supracretaceodell’Appennino modenese; correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar]
- Dickinson, W.R. Interpreting detrital modes of greywacke and arkose. J. Sediment. Petrol. 1970, 40, 695–707. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar]
- Zuffa, G.G. Hybrid arenites: Their composition and classification. J. Sediment. Petrol. 1980, 50, 21–29. [Google Scholar]
- Zuffa, G.G. Optical analyses of arenites: Influence of methodology on compositional results. In Marine Clastic Sedimentology; Zuffa, G.G., Ed.; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1985; Volume 148, pp. 165–189. [Google Scholar]
- Zuffa, G.G. Unravelling hinterland and offshore palaeogeography from deep-water arenites. In Marine Clastic Sedimentology, Models and Case Studies (a Volume in Memory of C. Tarquin Teatle); Leggett, J.K., Zuffa, G.G., Eds.; Graham and Trotman: London, UK; Haughton, LA, USA, 1987; pp. 39–61. [Google Scholar]
- Fontana, D.; Zuffa, G.G.; Garzanti, E. The interaction of eustasy and tectonism from provenance studies of the Eocene Hecho Group turbidite complex (South-Central Pyreneees, Spain). Basin Res. 1989, 2, 223–237. [Google Scholar] [CrossRef]
- Martín-Ramos, J.D.; Díaz-Hernández, J.L.; Cambeses, A.; Scarrow, J.H.; López-Galindo, A. Pathways for quantitative analysis by X-ray diffraction. In An Introduction to the Study of Mineralogy; Aydinalp, C., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 73–92. [Google Scholar]
- Holtzapffel, T. Les minéraux argileux: Préparation, analyse diffractométrique et détermination. Soc. Géol. Nord Publ. 1985, 12, 136. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 378. [Google Scholar]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Esquevin, J. Influence de la composition chimique des illites sur la cristallinité. Bull. Centre Rech. 1969, 3, 147–154. [Google Scholar]
- Eslinger, E.; Mayer, L.; Durst, T.; Hower, J.; Savin, S. A X-ray technique for distinguishing between detrital and secondary quartz in the fine grained fraction of sedimentary rocks. J. Sediment. Petrol. 1973, 43, 540–543. [Google Scholar]
- Hunziker, J.C. The evolution of illite to muscovite: An example of the behavior of isotopes in low grade metamorphic terrains. Chem. Geol. 1986, 57, 31–40. [Google Scholar] [CrossRef]
- Drits, V.A.; Sakharov, B.A.; Lindgreen, H.; Salyn, A. Sequential structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from the North Sea and Denmark. Clay Miner. 1997, 32, 351–371. [Google Scholar] [CrossRef]
- Guerrera, F.; Manuel Martín-Martín, M.; Tramontana, M. Evolutionary Models of the Cenozoic Basins of Central-Western Mediterranean Area: A Review of Methodological Approaches. Geosciences 2020, 10, 366. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Rey, J.; Alcalá-García, F.J.; Tosquella, J.; Deramond, J.; Lara-Corona, E.; Duranthon, F.; Antoine, P.O. Tectonic controls of the deposits of a foreland basin: An example from the Eocene Corbières-Minervois basin, France. Basin Res. 2001, 13, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Frizon de Lamotte, D.; Michard, A.; Saddiqi, O. Quelques développements recent sur la géodynamique du Maghreb. Comptes rendus Geosci. 2006, 338, 1–10. [Google Scholar] [CrossRef]
- Guerrera, F.; Estévez, A.; López-Arcos, M.; Martín-Martín, M.; Martín-Pérez, J.A.; Serrano, F. Paleogene tectono-sedimentary evolution of the Alicante trough (external Betic zone, SE Spain) and its bearing in the timing of deformation of the sud-Iberian Margin. Geodin. Acta 2006, 19, 87–101. [Google Scholar] [CrossRef]
- Guerrera, F.; Mancheño, M.A.; Martín-Martín, M.; Raffaelli, G.; Rodríguez-Estrella, T.; Serrano, F. Paleogene evolution of the Externl Betic Zone and geodynamic implications. Geol. Acta 2014, 12, 171–192. [Google Scholar]
- Dickinson, W.R.; Beard, L.R.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Azdimousa, A.; Bourgois, J.; Asebriy, L.; Poupeau, G.; Montigny, R. Histoire thermique et surrection du Rif externe et des nappes de flyschs associées (Nord Maroc). Trav. Inst. Sci. Rabat 2003, 21, 15–26. [Google Scholar]
- El Ouahabi, M.; Daoudi, L.; Fagel, N. Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry. Clay Miner. 2014, 49, 35–51. [Google Scholar] [CrossRef]
- Faleh, A.; Sadiki, A. Glissement rotationnel de Dhar El Harrag: Exemple d’instabilité de terrain dans le Prérif central (Maroc). Bull. Inst. Sci. Rabat 2002, 24, 41–48. [Google Scholar]
- Khomsi, S.; Bédir, M.; Soussi, M.; Ben Jemia, M.G.; Ben Ismail-Lattrache, K. Highlight of middle-late Eocene compressional events in the subsurface of eastern Tunisia (Sahel): Generality of the Atlasic phase in North Africa. Comptes rendus Geosci. 2006, 338, 41–49. [Google Scholar] [CrossRef]
- Khomsi, S.; Ben Jemia, M.G.; Frizon de Lamotte, D.; Maherssi, C.; Echihi, O.; Mezni, R. An overview of the late cretaceous–Eocene positive inversions and oligo-Miocene subsidence events in the foreland of the Tunisian atlas: Structural style and implications for the tectonic agenda of the Maghrebian atlas system. Tectonophysics 2009, 475, 38–582. [Google Scholar] [CrossRef]
- Belayouni, H.; Guerrera, F.; Martín Martín, M.; Serrano, F. Stratigraphic update of the Cenozoic Sub-Numidian formations of the Tunisian Tell (North Africa): Tectonic/sedimentary evolution and correlations along the Maghrebian Chain. J. Afr. Earth Sci. 2012, 64, 48–64. [Google Scholar] [CrossRef]
- Belayouni, H.; Guerrera, F.; Martín Martín, M.; Serrano, F. Paleogeographic and geodynamic Miocene evolution of the Tunisian Tell (Numidian and Post-Numidian Successions): Bearing with the Maghrebian Chain. Int. J. Earth Sci. 2013, 102, 831–855. [Google Scholar] [CrossRef]
- Vitale, S.; Zaghloul, M.N.; Tramparulo, F.D.A.; El Ouaragli, B. Deformation char- acterization of a regional thrust zone in the northern Rif (Chefchaouen, Morocco). J. Geodyn. 2014, 77, 22–38. [Google Scholar] [CrossRef]
- Vitale, S.; Zaghloul, M.N.; El Ouaragli, B.; Tramparulo, F.D.A.; Ciarcia, S. Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evo- lution of the Central Rif belt. J. Geodyn. 2015, 90, 14–31. [Google Scholar] [CrossRef]
- Gouiza, M.; Gharton, R.; Bertotti, G.; Andriessen, P.; Storms, J.E.A. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology. Int. J. Earth Sci. 2017, 106, 593–616. [Google Scholar] [CrossRef] [Green Version]
EL HABT NAPPE (External Intrarif Subdomain) | ||||
---|---|---|---|---|
Log 1: Nord of the Tahar Village (UTM Coordinates: 30 S/237,475 E/3,918,521 N) | ||||
Thickness (80 m) | Lithofacies and lithological associations | Age | Samples | Minero-Petrofacies Association |
40 | yellowish-whitish marls, calcareous marls, thin arenites | Middle-LowerEocene | S7 to S8 | |
15 | Transitional stratigraphic boundary (conformity) | |||
25 | greenish and reddish pelites, marly pelites, silty sandy pelites and occasional thin arenites | Middle-Lower Eocene | S3 to S6 | |
Unconformity | ||||
50 | greenish, reddish pelites, marly pelites | Uppermost Cretaceous p.p., near to the K/T boundary | S1 to S2 | |
Log 2: Mezgalef (UTM Coordinates:30 S/219,397 E/3,908,369 N) | ||||
Thickness (>330 m) | Lithofacies and lithological associations | Age | Samples | Minero-Petrofacies Association |
>20 | beach deposits with large-scale cross-lamination | Quaternary | --- | |
Quaternary Unconformity (Paleobeach) | ||||
30 | amalgamated andlenticular (channelized) thick arenites | --- | --- | |
40 | brownish pelites, marly pelites, arenites withmicroconglomerates | --- | S22 | |
80 | amalgamated, lenticular thick quartzose arenites channelized | --- | --- | |
70 | brownish pelites, marlypelites, quartzose arenites and microconglomerates | MiddleRupelian | S17 to S21 | |
30 | amalgamated, lenticular (channelized) thick quartzose arenites (Numidian-like) | Lowermost Oligoceneor older | S14 to S16 | Calcarenites, Terrigenous Arenites *, Sublitharenite ** |
80 | homogeneous brownish pelites, marly pelites, silty sandy pelites with presence of Fe-Mn and chert nodules | Lowermost Oligoceneor older | S9 to S13 | |
OUEZZANE NAPPE (External Intrarif Subdomain) | ||||
Log 3: Douar Ahel Chane (UTM Coordinates:30 S/263,677 E/3,863,451 N) | ||||
Thickness (>1500 m) | Lithofacies and lithological associations | Age | Samples | Minero-Petrofacies Association |
>500 | pelites, marly pelite and occasional calcarenites | Langhian-Lower Serravallian | S49 | Ill + (I-S) ± Sme + Kln + Chl |
50 | turbiditic succession: thick calcarenites, brownish quartzose arenites, limestones and calcareous-marls | Lower Langhian | S48 | |
Unconformity (?) | ||||
150 | turbiditic succession: thick calcarenites, brownish quartzose arenites, limestones and calcareous-marls | Lower-Middle Burdigalian | S45 to S47 | Ill + (I-S) ±S me + Kln + Chl |
Unconformity (?) | ||||
200 | pelites, marly pelites, brownish quartzose arenites (with Bouma structures), rare limestones, calcareous-marls and calcarenites | Lower to Middle Rupelian (O1–O2) | S43 to S44 | Terrigenous arenite *, Litharenite **, Ill + Kln ± (I-S) + Sme + Chl |
S42 | ||||
Unconformity (?) | ||||
250 | greyish marls, calcareous marls, calcarenites, medium-thick turbiditic calcarenites and quartzose arenites, conglomerates and presence of chaotic internal structure with frequent blocks | Middle Lutetian (E10–E11)-Upper Eocene | S34 to S41 | Terrigenous arenite *, Litharenite ** Ill + Kln ± (I-S) + Sme + Chl |
200 | stratified grey-whitish pelites, limestones, yellowish marly limestones, and rare thin conglomerates | Upper Ypresian (E6–E7)-Middle Lutetian (E10–E11) | S30 to S33 | Ill + Kln ± (I-S) + Sme + Chl |
105 | stratified grey-whitish marls, marly limestones, silicified siltites with bluish chert lenses | Middle Ypresian (E4–E5) | S25 to S29 | Ill + (I-S) ± Sme + Kln |
45 | greyish pelites, marly and thin grey-whitish limestones, sometime in block, and conglomerates | Lower-Middle Ypresian (E3–E4) | S23 to S24 | |
Log 4: Oulad Ktir (UTM Coordinates: 30 S/273,351 E/3,827,972 N) | ||||
Thickness (2110 m) | Lithofacies and lithological associations | Age | Samples | Minero-Petrofacies Association |
200 | yellowish marls | UpperLanghian | --- | |
50 | white-yellowish marls, calcarenites | S71 to S74 | Terrigeneous arenite *, Litharenite ** | |
10 | Lower Langhian | --- | ||
3 | calcarenites, marls | S69 to S70 | Hybrids arenite *, Litharenite ** | |
55 | arenites and white-yellowish marls | --- | ||
22 | marls, calcarenites | |||
70 | white-yellowish marls | --- | ||
Unconformity (?) | ||||
15 | calcareous marls interstratified with marly limestones | Lower Burdigalian | S65 to S67 | |
Unconformity (?) | ||||
247 | yellowish marls | Middle Rupelian Lower Chattian | S61 to S64 | |
Unconformity (?) | ||||
80 | yellowish marls | Late Lutetian (E10) to Priabonian (E14-E15) | S58 to S60 | |
Stratigraphic contact (conformity) | ||||
30 | fine-medium amalgamated arenites with breccias at the base, rare stratified marls | --- | S57 | Terrigenous arenite * Litharenite ** |
10 | well cemented conglomerates with rounded fine arenitic clasts | --- | --- | |
60 | fine-medium amalgamated arenite beds with breccias at the base and rare interbedded well stratified marls | --- | --- | |
40 | marls with occasional thin conglomerates intercalations | Lower Lutetian (late E8–E9) | S56 | marls with occasional thin conglomerates intercalations |
Stratigraphic contact (conformity) | ||||
60 | yellowish-grey marls and thin well stratified fine-grained arenites, rare thick conglomerates (polygenic and cherty clasts) and calcareous marly | Upper Ypresian (E5–E6)—Lowermost Lutetian (E8) | S54 to S55 | |
Stratigraphic contact (conformity) | ||||
320 | yellowish-whitish marls with occasional thin calcareous marly beds | Lower Paleocene (P2)—Upper Paleocene (P4c–P5) | S52 to S53 | |
Unconformity (?) | ||||
30 | blackish pelites | Late Maastrichtian | S51 | |
>40 | blackish pelites | Middle-Upper Maastrichtian | S50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Martín, M.; Guerrera, F.; Hlila, R.; Maaté, A.; Maaté, S.; Tramontana, M.; Serrano, F.; Cañaveras, J.C.; Alcalá, F.J.; Paton, D. Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco). Geosciences 2020, 10, 487. https://doi.org/10.3390/geosciences10120487
Martín-Martín M, Guerrera F, Hlila R, Maaté A, Maaté S, Tramontana M, Serrano F, Cañaveras JC, Alcalá FJ, Paton D. Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco). Geosciences. 2020; 10(12):487. https://doi.org/10.3390/geosciences10120487
Chicago/Turabian StyleMartín-Martín, Manuel, Francesco Guerrera, Rachid Hlila, Alí Maaté, Soufian Maaté, Mario Tramontana, Francisco Serrano, Juan Carlos Cañaveras, Francisco Javier Alcalá, and Douglas Paton. 2020. "Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco)" Geosciences 10, no. 12: 487. https://doi.org/10.3390/geosciences10120487
APA StyleMartín-Martín, M., Guerrera, F., Hlila, R., Maaté, A., Maaté, S., Tramontana, M., Serrano, F., Cañaveras, J. C., Alcalá, F. J., & Paton, D. (2020). Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco). Geosciences, 10(12), 487. https://doi.org/10.3390/geosciences10120487